1
|
Clemm von Hohenberg K, Müller S, Schleich S, Meister M, Bohlen J, Hofmann TG, Teleman AA. Cyclin B/CDK1 and Cyclin A/CDK2 phosphorylate DENR to promote mitotic protein translation and faithful cell division. Nat Commun 2022; 13:668. [PMID: 35115540 PMCID: PMC8813921 DOI: 10.1038/s41467-022-28265-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
DENR and MCTS1 have been identified as oncogenes in several different tumor entities. The heterodimeric DENR·MCTS1 protein complex promotes translation of mRNAs containing upstream Open Reading Frames (uORFs). We show here that DENR is phosphorylated on Serine 73 by Cyclin B/CDK1 and Cyclin A/CDK2 at the onset of mitosis, and then dephosphorylated as cells exit mitosis. Phosphorylation of Ser73 promotes mitotic stability of DENR protein and prevents its cleavage at Asp26. This leads to enhanced translation of mRNAs involved in mitosis. Indeed, we find that roughly 40% of all mRNAs with elevated translation in mitosis are DENR targets. In the absence of DENR or of Ser73 phosphorylation, cells display elevated levels of aberrant mitoses and cell death. This provides a mechanism how the cell cycle regulates translation of a subset of mitotically relevant mRNAs during mitosis.
Collapse
Affiliation(s)
- Katharina Clemm von Hohenberg
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Heidelberg University, 69120, Heidelberg, Germany
- CellNetworks-Cluster of Excellence, Heidelberg University, Heidelberg, Germany
- Department of Medicine III, Universitätsmedizin Mannheim, 68167, Mannheim, Germany
| | - Sandra Müller
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Heidelberg University, 69120, Heidelberg, Germany
| | - Sibylle Schleich
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Heidelberg University, 69120, Heidelberg, Germany
| | - Matthias Meister
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jonathan Bohlen
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Heidelberg University, 69120, Heidelberg, Germany
- CellNetworks-Cluster of Excellence, Heidelberg University, Heidelberg, Germany
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Thomas G Hofmann
- Institute of Toxicology, University Medical Center Mainz at the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Heidelberg University, 69120, Heidelberg, Germany.
- CellNetworks-Cluster of Excellence, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
2
|
Huang Z, Su Q, Li W, Ren H, Huang H, Wang A. MCTS1 promotes invasion and metastasis of oral cancer by modifying the EMT process. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:997. [PMID: 34277797 PMCID: PMC8267330 DOI: 10.21037/atm-21-2361] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022]
Abstract
Background The oncogene, malignant T-cell-amplified sequence 1 (MCTS1), has been found to be highly expressed in a variety of cancer cell lines. It has been shown to be involved in cell cycle progression and to confer a growth advantage for lymphomas and breast cancer. Nevertheless, the role of MCTS1 in contributing to the development of oral cancer remains elusive. Methods We analyzed the gene expression profiles of MCTS1 in normal oral keratinocytes and cancerous cells. Cellular proliferation, invasion, and migration experiments were performed to detect the effect of MCTS1 on the biological evolution of oral cancer. The in vitro results were verified by the in vivo lymphatic metastasis test. The underlying mechanism of MCTS1 in promoting oral cancer invasion and metastasis correlated with the epithelial-mesenchymal transition (EMT) process as revealed by western blotting. Results The results showed that MCTS1 was aberrantly expressed in oral cancer cells. MCTS1 overexpression significantly promoted tumor cell growth, proliferation, migration, and invasion. MCTS1-mediated lymphatic metastasis was verified in vivo using an intraplantar tumor model. Biomarkers associated with EMT progression were positively or negatively regulated upon knockdown or overexpression of MCTS1, respectively. Conclusions Higher MCTS1 expression in oral cancer may be connected with an unfavorable prognosis due to involvement of MCTS1. MCTS1 potentiates the growth and proliferation of oral cancer cells and subsequent metastasis by regulating cell cycle and modifying the EMT process. Keywords Oral cancer; oncogene; malignant T-cell-amplified sequence 1 (MCTS1); metastasis; invasion.
Collapse
Affiliation(s)
- Zhexun Huang
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiao Su
- Animal Experiment Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wuguo Li
- Animal Experiment Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Ren
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huiqiang Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Anxun Wang
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Gao C, Dong R, Li Y, Liang J, Tian H. MCTS1 promotes the development of lung adenocarcinoma by regulating E2F1 expression. Oncol Lett 2021; 22:531. [PMID: 34079590 PMCID: PMC8156638 DOI: 10.3892/ol.2021.12792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/16/2021] [Indexed: 11/06/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common subtype of lung cancer that results in the majority of cancer-associated mortality. Multiple copies in T-cell lymphoma-1 (MCTS1) is an oncogene that is expressed at high levels in several types of cancer tissues. However, its exact role and pathomechanism in the development of LUAD remains unknown. Reverse transcription-quantitative PCR analysis was performed to detect MCTS1 expression. Immunohistochemistry analysis was performed to detect MCTS1 expression in LUAD tissues and normal tissues. The MTT, colony formation, EdU, flow cytometry, wound healing and Transwell assays were performed to assess the proliferation, apoptosis, migration and invasion of LUAD cells. Western blot analysis was performed to detect protein expression levels. The present study aimed to investigate the effects of MCTS1 on the progression of LUAD and the potential mechanisms underlying its effects. The results demonstrated that MCTS1 expression was upregulated in LUAD tissues and cells, which was associated with an unfavorable outcome in patients with LUAD. MCTS1 knockdown inhibited LUAD progression by suppressing cell viability and motility, and promoting apoptosis. In addition, E2F1 protein expression was attenuated following MCTS1 knockdown. The silencing MCTS1-induced inhibitory effect on LUAD malignancy was reversed following overexpression of E2F1 by modulating the c-Myc signaling pathway. Taken together, the results of the present study suggest that MCTS1 facilitates cell proliferation and migration, and suppresses apoptosis of LUAD cells by regulating E2F1 expression and the c-Myc signaling pathway.
Collapse
Affiliation(s)
- Cun Gao
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Rui Dong
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yongmeng Li
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jinghui Liang
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hui Tian
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
4
|
Shyrokova EY, Prassolov VS, Spirin PV. The Role of the MCTS1 and DENR Proteins in Regulating the Mechanisms Associated with Malignant Cell Transformation. Acta Naturae 2021; 13:98-105. [PMID: 34377560 PMCID: PMC8327141 DOI: 10.32607/actanaturae.11181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/28/2020] [Indexed: 02/05/2023] Open
Abstract
The mutations associated with malignant cell transformation are believed to disrupt the expression of a significant number of normal, non-mutant genes. The proteins encoded by these genes are involved in the regulation of many signaling pathways that are responsible for differentiation and proliferation, as well as sensitivity to apoptotic signals, growth factors, and cytokines. Abnormalities in the balance of signaling pathways can lead to the transformation of a normal cell, which results in tumor formation. Detection of the target genes and the proteins they encode and that are involved in the malignant transformation is one of the major evolutions in anti-cancer biomedicine. Currently, there is an accumulation of data that shed light on the role of the MCTS1 and DENR proteins in oncogenesis.
Collapse
Affiliation(s)
- E. Y. Shyrokova
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow, 119991 Russia
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, 141701 Russia
| | - V. S. Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow, 119991 Russia
| | - P. V. Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow, 119991 Russia
| |
Collapse
|
5
|
Klümper T, Bruckmueller H, Diewock T, Kaehler M, Haenisch S, Pott C, Bruhn O, Cascorbi I. Expression differences of miR-142-5p between treatment-naïve chronic myeloid leukemia patients responding and non-responding to imatinib therapy suggest a link to oncogenic ABL2, SRI, cKIT and MCL1 signaling pathways critical for development of therapy resistance. Exp Hematol Oncol 2020; 9:26. [PMID: 32999756 PMCID: PMC7519530 DOI: 10.1186/s40164-020-00183-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/21/2020] [Indexed: 12/22/2022] Open
Abstract
Background Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by constitutive activity of the tyrosine kinase BCR-ABL1. Although the introduction of tyrosine kinase inhibitors (TKIs) has substantially improved patients’ prognosis, drug resistance remains one of the major challenges in CML therapy. MicroRNAs (miRNAs), a class of short non-coding RNAs acting as post-transcriptional regulators, are implicated in CML progression and drug resistance. The aim of the present study was to analyze the miRNA expression profiles of 45 treatment-naïve CML patients in chronic phase (28 peripheral blood and 17 bone marrow samples) with respect to future response to imatinib therapy. Methods TaqMan low density arrays were used to analyze the miRNA expression pattern of the patient samples. For selected microRNAs, reporter gene assays were performed to study their ability to regulate CML associated target genes. Results Significant lower expression levels of miR-142-5p were identified in both, peripheral blood and bone marrow samples of future non-responders suggesting a potential tumor suppressor role of this miRNA. This was supported by reporter gene assays that identified the survival, proliferation and invasion promoting CML related genes ABL2, cKIT, MCL1 and SRI as targets of miR-142-5p and miR-365a-3p, the latter identified as potential biomarker in peripheral blood samples. Conclusion MiR-142-5p and to a certain extend also miR-365a-3p were able to discriminate treatment-naïve CML patients not responding to imatinib in the course of their treatment from patients, who responded to therapy. However, further large-scale studies should clarify if the identified miRNAs have the potential as predictive biomarkers for TKI resistance.
Collapse
Affiliation(s)
- Theresa Klümper
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Henrike Bruckmueller
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Tobias Diewock
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Meike Kaehler
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Sierk Haenisch
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Christiane Pott
- Department of Medicine II, Haematology and Oncology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Oliver Bruhn
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| |
Collapse
|
6
|
DENR promotes translation reinitiation via ribosome recycling to drive expression of oncogenes including ATF4. Nat Commun 2020; 11:4676. [PMID: 32938922 PMCID: PMC7494916 DOI: 10.1038/s41467-020-18452-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 08/14/2020] [Indexed: 12/19/2022] Open
Abstract
Translation efficiency varies considerably between different mRNAs, thereby impacting protein expression. Translation of the stress response master-regulator ATF4 increases upon stress, but the molecular mechanisms are not well understood. We discover here that translation factors DENR, MCTS1 and eIF2D are required to induce ATF4 translation upon stress by promoting translation reinitiation in the ATF4 5'UTR. We find DENR and MCTS1 are only needed for reinitiation after upstream Open Reading Frames (uORFs) containing certain penultimate codons, perhaps because DENR•MCTS1 are needed to evict only certain tRNAs from post-termination 40S ribosomes. This provides a model for how DENR and MCTS1 promote translation reinitiation. Cancer cells, which are exposed to many stresses, require ATF4 for survival and proliferation. We find a strong correlation between DENR•MCTS1 expression and ATF4 activity across cancers. Furthermore, additional oncogenes including a-Raf, c-Raf and Cdk4 have long uORFs and are translated in a DENR•MCTS1 dependent manner.
Collapse
|
7
|
Mughees M, Samim M, Sharma Y, Wajid S. Identification of protein targets and the mechanism of the cytotoxic action of Ipomoea turpethum extract loaded nanoparticles against breast cancer cells. J Mater Chem B 2020; 7:6048-6063. [PMID: 31549130 DOI: 10.1039/c9tb00824a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The shortcomings of the currently available anti-breast cancer agents compel the development of the safer targeted drug delivery for the treatment of breast cancer. The aim of the present study was to evaluate the anti-breast cancer potential of Ipomoea turpethum extract loaded nanoparticles (NIPAAM-VP-AA) against breast cancer, together with the identification of the key proteins responsible for the caused cytotoxicity. For this, we explored the tumor microenvironment for targeted drug delivery and synthesized (temperature and pH responsive) double triggered polymeric nanoparticles by the free radical mechanism and characterized them by DLS and TEM. The extract which emerged as the best extract, i.e. root extract, was loaded on the nanoparticles and the cytotoxicity was evaluated in breast cancer cell lines (MCF-7 and MDA-MB-231) by various cytotoxic assays like MTT assay, CFSE cell proliferation assay, apoptosis assay, cell cycle study and DAPI nuclear staining. The key protein targets responsible for the caused cytotoxicity were identified by nano-LC-MS/MS analysis. The proteome analysis revealed that most of the significantly differentially expressed proteins have a role in proliferation, vesicular trafficking, apoptosis and tumor suppression. Finally, the interaction among the highly differentially expressed proteins was identified by using the STRING online tool, which showed that I. turpethum nanoparticles caused apoptosis in MCF-7 and MDA MB-231 cells by targeting nucleolysin TIAR, serine/threonine-protein phosphatase PP1 and ubiquitin-60S ribosomal protein L40.
Collapse
Affiliation(s)
- Mohd Mughees
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi-110062, India.
| | | | | | | |
Collapse
|
8
|
Rehman MYA, van Herwijnen M, Krauskopf J, Farooqi A, Kleinjans JCS, Malik RN, Briedé JJ. Transcriptome responses in blood reveal distinct biological pathways associated with arsenic exposure through drinking water in rural settings of Punjab, Pakistan. ENVIRONMENT INTERNATIONAL 2020; 135:105403. [PMID: 31864032 DOI: 10.1016/j.envint.2019.105403] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/28/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Groundwater Arsenic (As) contamination is a global public health concern responsible for various health implications and a neglected area of environmental health research in Pakistan. Because of interindividual differences in genetic predisposition, As-related health issues may not be equally distributed among the As-exposed population. However, till date, no studies have been conducted including multiple SNPs involved in As metabolism and disease risk using a linear mixed effect model approach to analyze peripheral blood transcriptomics results. OBJECTIVES In order to detect early responses on the gene expression level and to evaluate the impact of selected SNPs inferring disease risks associated with As exposure, we designed a systematic study to investigate blood transcriptomics profiles of 57 differentially exposed rural subjects living in drinking water As-contaminated settings of Lahore and Kasur districts in Punjab Province in southeast Pakistan. Exposure among the subjects was correlated with individual transcriptome responses applying urinary As profiles as the main biomarker for risk stratification. METHODS We performed whole genome gene expression analysis in blood of subjects using microarrays. Linear effect mixed models were applied for evaluating the combined impact of SNPs hypothetically increasing the risk for As exposure-induced health effects (GSTM1, GSTT1, As3MT, DNMT1, MTHFR, ERCC2 and EGFR). RESULTS Our findings confirmed important signaling, growth factor, cancer and other disease related pathways known to be associated with increased As exposure levels. In addition, upon implementing our integrative SNPs-based genetic risk factor, pathways associated with an increased risk of NAFLD and diabetes appeared significantly enhanced by down-regulation of genes NDUFV3, IKBKB, IL6R, ADIPOR1, PPARA, OGT and FOXO1. CONCLUSION We report the first comprehensive study applying state-of-the-art bioinformatics approaches to address multiple SNP-based inter-individual variability in adverse molecular responses among subjects exposed to drinking water As contamination in Pakistan thereby providing strong evidence of various gene expression targets associated with development of known As-related diseases.
Collapse
Affiliation(s)
- Muhammad Yasir Abdur Rehman
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Marcel van Herwijnen
- Grow School of Oncology and Developmental Biology, Department of Toxicogenomics, Maastricht University, the Netherlands
| | - Julian Krauskopf
- Grow School of Oncology and Developmental Biology, Department of Toxicogenomics, Maastricht University, the Netherlands
| | - Abida Farooqi
- Environmental Hydro-Geochemistry Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jos C S Kleinjans
- Grow School of Oncology and Developmental Biology, Department of Toxicogenomics, Maastricht University, the Netherlands
| | - Riffat Naseem Malik
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Jacco Jan Briedé
- Grow School of Oncology and Developmental Biology, Department of Toxicogenomics, Maastricht University, the Netherlands.
| |
Collapse
|
9
|
Weng YS, Tseng HY, Chen YA, Shen PC, Al Haq AT, Chen LM, Tung YC, Hsu HL. MCT-1/miR-34a/IL-6/IL-6R signaling axis promotes EMT progression, cancer stemness and M2 macrophage polarization in triple-negative breast cancer. Mol Cancer 2019; 18:42. [PMID: 30885232 PMCID: PMC6421700 DOI: 10.1186/s12943-019-0988-0] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/26/2019] [Indexed: 02/07/2023] Open
Abstract
Background Triple-negative breast cancer (TNBC) is a poor prognostic breast cancer with the highest mutations and limited therapeutic choices. Cytokine networking between cancer cells and the tumor microenvironment (TME) maintains the self-renewing subpopulation of breast cancer stem cells (BCSCs) that mediate tumor heterogeneity, resistance and recurrence. Immunotherapy of those factors combined with targeted therapy or chemoagents may advantage TNBC treatment. Results We found that the oncogene Multiple Copies in T-cell Malignancy 1 (MCT-1/MCTS1) expression is a new poor-prognosis marker in patients with aggressive breast cancers. Overexpressing MCT-1 perturbed the oncogenic breast epithelial acini morphogenesis and stimulated epithelial-mesenchymal transition and matrix metalloproteinase activation in invasive TNBC cells, which were repressed after MCT-1 gene silencing. As mammary tumor progression was promoted by oncogenic MCT-1 activation, tumor-promoting M2 macrophages were enriched in TME, whereas M2 macrophages were decreased and tumor-suppressive M1 macrophages were increased as the tumor was repressed via MCT-1 knockdown. MCT-1 stimulated interleukin-6 (IL-6) secretion that promoted monocytic THP-1 polarization into M2-like macrophages to increase TNBC cell invasiveness. In addition, MCT-1 elevated the soluble IL-6 receptor levels, and thus, IL-6R antibodies antagonized the effect of MCT-1 on promoting M2-like polarization and cancer cell invasion. Notably, MCT-1 increased the features of BCSCs, which were further advanced by IL-6 but prevented by tocilizumab, a humanized IL-6R antibody, thus MCT-1 knockdown and tocilizumab synergistically inhibited TNBC stemness. Tumor suppressor miR-34a was induced upon MCT-1 knockdown that inhibited IL-6R expression and activated M1 polarization. Conclusions The MCT-1 pathway is a novel and promising therapeutic target for TNBC. Electronic supplementary material The online version of this article (10.1186/s12943-019-0988-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yueh-Shan Weng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Hong-Yu Tseng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Yen-An Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Pei-Chun Shen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Aushia Tanzih Al Haq
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Li-Mei Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Yi-Chung Tung
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsin-Ling Hsu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan.
| |
Collapse
|
10
|
Dong YD, Yuan YL, Yu HB, Tian GJ, Li DY. SHCBP1 is a novel target and exhibits tumor‑promoting effects in gastric cancer. Oncol Rep 2018; 41:1649-1657. [PMID: 30592290 PMCID: PMC6365712 DOI: 10.3892/or.2018.6952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/05/2018] [Indexed: 02/03/2023] Open
Abstract
The present study investigated the expression and potential influence of SHC SH2 domain-binding protein 1 (SHCBP1) in gastric cancer (GC) cells. SHCBP1 is closely related to cell proliferation and cell cycle progression, but its role in GC remains unclear. The TCGA database revealed that SHCBP1 is highly expressed in GC tissues. Furthermore, SHCBP1 was revealed to be highly expressed in GC cell lines MGC-803 and SGC-7901 cells, and downregulation of SHCBP1 significantly inhibited GC cell proliferation. Furthermore, SHCBP1 expression promoted cell cycle progression and inhibition of apoptosis. Since the CDK4, cyclin D1 and caspase family proteins play important roles in cell cycle and apoptosis regulation, it was examined whether there was an association between SHCBP1 and these signaling pathways in GC. Our results revealed that SHCBP1 promoted cell cycle progression by regulating the CDK4-cyclin D1 cascade and suppressed caspase-3, caspase PARP-dependent apoptotic pathways. Cell invasion and metastasis experiments also revealed that SHCBP1 promoted tumor growth and invasiveness. These tumor-promoting functions of SHCBP1 may provide a potential molecular basis for the diagnosis and targeted therapy of GC.
Collapse
Affiliation(s)
- Ya-Dong Dong
- Department of Hepatobiliary Pancreatic Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Yan-Li Yuan
- Zhengzhou Children's Hospital, Henan Children's Hospital, Children's Hospital of Zhengzhou University, Zhengzhou, Henan 450018, P.R. China
| | - Hai-Bo Yu
- Department of Hepatobiliary Pancreatic Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Guang-Jin Tian
- Department of Hepatobiliary Pancreatic Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - De-Yu Li
- Department of Hepatobiliary Pancreatic Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
11
|
Investigating Pathogenic and Hepatocarcinogenic Mechanisms from Normal Liver to HCC by Constructing Genetic and Epigenetic Networks via Big Genetic and Epigenetic Data Mining and Genome-Wide NGS Data Identification. DISEASE MARKERS 2018; 2018:8635329. [PMID: 30344796 PMCID: PMC6174771 DOI: 10.1155/2018/8635329] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/02/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022]
Abstract
The prevalence of hepatocellular carcinoma (HCC) is still high worldwide because liver diseases could develop into HCC. Recent reports indicate nonalcoholic fatty liver disease and nonalcoholic steatohepatitis (NAFLD&NASH) and primary biliary cirrhosis and primary sclerosing cholangitis (PBC&PSC) are significant of HCC. Therefore, understanding the cellular mechanisms of the pathogenesis and hepatocarcinogenesis from normal liver cells to HCC through NAFLD&NASH or PBC&PSC is a priority to prevent the progression of liver damage and reduce the risk of further complications. By the genetic and epigenetic data mining and the system identification through next-generation sequencing data and its corresponding DNA methylation profiles of liver cells in normal, NAFLD&NASH, PBC&PSC, and HCC patients, we identified the genome-wide real genetic and epigenetic networks (GENs) of normal, NAFLD&NASH, PBC&PSC, and HCC patients. In order to get valuable insight into these identified genome-wide GENs, we then applied a principal network projection method to extract the corresponding core GENs for normal liver cells, NAFLD&NASH, PBC&PSC, and HCC. By comparing the signal transduction pathways involved in the identified core GENs, we found that the hepatocarcinogenesis through NAFLD&NASH was induced through DNA methylation of HIST2H2BE, HSPB1, RPL30, and ALDOB and the regulation of miR-21 and miR-122, and the hepatocarcinogenesis through PBC&PSC was induced through DNA methylation of RPL23A, HIST2H2BE, TIMP1, IGF2, RPL30, and ALDOB and the regulation of miR-29a, miR-21, and miR-122. The genetic and epigenetic changes in the pathogenesis and hepatocarcinogenesis potentially serve as potential diagnostic biomarkers and/or therapeutic targets.
Collapse
|
12
|
García-Hernández V, Sánchez-Bernal C, Schvartz D, Calvo JJ, Sanchez JC, Sánchez-Yagüe J. A tandem mass tag (TMT) proteomic analysis during the early phase of experimental pancreatitis reveals new insights in the disease pathogenesis. J Proteomics 2018; 181:190-200. [PMID: 29678717 DOI: 10.1016/j.jprot.2018.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/08/2018] [Accepted: 04/13/2018] [Indexed: 01/15/2023]
Abstract
Changes in the protein expression occurring within the initiation phase of acute pancreatitis (AP) might be vital in the development of this complex disease. However, the exact mechanisms involved in the onset of AP remains elusive and most of our knowledge about the pathobiology of AP comes from animal models. We performed in a rat pancreatitic model a high-throughput shotgun proteomic profiling of the soluble and whole membrane fractions from the pancreas during the early phase of cerulein (Cer)-induced AP. We identified 997 proteins, of which 353 were significantly different (22, 276 or 55 in both, the soluble or the membrane fractions, respectively). Gene Ontology and KEGG PATHWAY analyses revealed that these proteins were implicated in molecular mechanisms relevant to AP pathogenesis, including vesicle-mediated and protein transport, lysosomal and mitochondrial impairment or proteolysis. Numerous metabolic processes were downregulated apparently to reduce energy consumption, and a remarkable increase in inflammatory and stress responses was also highlighted. The proteomic data were verified by immunoblotting of 11 and 7 different soluble or membrane-associated proteins, either novel (VPS29 and MCTS1) or known factors in AP. Also, our first observation of the imbalance of some COP proteins during AP early phase deserves further characterization. BIOLOGICAL SIGNIFICANCE AP is one of the most important pathological inflammatory states of the exocrine pancreas but its pathophysiology remains incompletely understood, especially the early acinar events. Proteomic analysis of pancreatic subcellular fractions simplifies protein maps and helps in the identification of new protein alterations and biomarkers characterizing pancreatic tissue damage. Our shotgun approach has not been previously used to profile the early proteomic alterations of the disease, which are considered crucial for its development and for the founding of clinical procedures. Furthermore, our subcellular fractionation protocol allowed us to detect changes in membrane proteins so far overlooked in the proteomic study of AP. Accordingly, using TMT proteomics and bioinformatic tools, we were able to detect significant changes in protein expression related to many pathobiological pathways of acute pancreatitis as from the early phase of the disease. To our knowledge, some of these changes, such as the imbalance of some COP proteins, have never been described in this disease.
Collapse
Affiliation(s)
- Violeta García-Hernández
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca 37007, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca 37007, Spain
| | - Carmen Sánchez-Bernal
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca 37007, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca 37007, Spain
| | - Domitille Schvartz
- Translational Biomarker Group, Department of Human Protein Sciences, University Medical Center, 1211 Geneva, Switzerland
| | - José J Calvo
- Department of Physiology and Pharmacology, University of Salamanca, Salamanca 37007, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca 37007, Spain
| | - Jean-Charles Sanchez
- Translational Biomarker Group, Department of Human Protein Sciences, University Medical Center, 1211 Geneva, Switzerland
| | - Jesús Sánchez-Yagüe
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca 37007, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca 37007, Spain.
| |
Collapse
|
13
|
Li X, Yu X, Dai D, Song X, Xu W. The altered glucose metabolism in tumor and a tumor acidic microenvironment associated with extracellular matrix metalloproteinase inducer and monocarboxylate transporters. Oncotarget 2018; 7:23141-55. [PMID: 27009812 PMCID: PMC5029616 DOI: 10.18632/oncotarget.8153] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/13/2016] [Indexed: 02/06/2023] Open
Abstract
Extracellular matrix metalloproteinase inducer, also knowns as cluster of differentiation 147 (CD147) or basigin, is a widely distributed cell surface glycoprotein that is involved in numerous physiological and pathological functions, especially in tumor invasion and metastasis. Monocarboxylate transporters (MCTs) catalyze the proton-linked transport of monocarboxylates such as L-lactate across the plasma membrane to preserve the intracellular pH and maintain cell homeostasis. As a chaperone to some MCT isoforms, CD147 overexpression significantly contributes to the metabolic transformation of tumor. This overexpression is characterized by accelerated aerobic glycolysis and lactate efflux, and it eventually provides the tumor cells with a metabolic advantage and an invasive phenotype in the acidic tumor microenvironment. This review highlights the roles of CD147 and MCTs in tumor cell metabolism and the associated molecular mechanisms. The regulation of CD147 and MCTs may prove to be with a therapeutic potential for tumors through the metabolic modification of the tumor microenvironment.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xiaozhou Yu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Dong Dai
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xiuyu Song
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
14
|
Tseng HY, Chen YA, Jen J, Shen PC, Chen LM, Lin TD, Wang YC, Hsu HL. Oncogenic MCT-1 activation promotes YY1-EGFR-MnSOD signaling and tumor progression. Oncogenesis 2017; 6:e313. [PMID: 28394354 PMCID: PMC5520490 DOI: 10.1038/oncsis.2017.13] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/10/2017] [Accepted: 02/10/2017] [Indexed: 12/20/2022] Open
Abstract
Tumor cells often produce high levels of reactive oxygen species (ROS) and display an increased ROS scavenging system. However, the molecular mechanism that balances antioxidative and oxidative stress in cancer cells is unclear. Here, we determined that oncogenic multiple copies in T-cell malignancy 1 (MCT-1) activity promotes the generation of intracellular ROS and mitochondrial superoxide. Overexpression of MCT-1 suppresses p53 accumulation but elevates the manganese-dependent superoxide dismutase (MnSOD) level via the YY1-EGFR signaling cascade, which protects cells against oxidative damage. Conversely, restricting ROS generation and/or targeting YY1 in lung cancer cells effectively inhibits the EGFR-MnSOD signaling pathway and cell invasiveness induced by MCT-1. Significantly, MCT-1 overexpression in lung cancer cells promotes tumor progression, necrosis and angiogenesis, and increases the number of tumor-promoting M2 macrophages and cancer-associated fibroblasts in the microenvironment. Clinical evidence further confirms that high expression of MCT-1 is associated with an increase in YY1, EGFR and MnSOD expression, accompanied by tumor recurrence, poor overall survival and EGFR mutation status in patients with lung cancers. Together, these data indicate that the MCT-1 oncogenic pathway is implicated in oxidative metabolism and lung carcinogenesis.
Collapse
Affiliation(s)
- H-Y Tseng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Y-A Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - J Jen
- Department of Pharmacology, National Cheng Kung University, Tainan, Taiwan
| | - P-C Shen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - L-M Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - T-D Lin
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Y-C Wang
- Department of Pharmacology, National Cheng Kung University, Tainan, Taiwan
| | - H-L Hsu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| |
Collapse
|
15
|
Alfarouk KO. Tumor metabolism, cancer cell transporters, and microenvironmental resistance. J Enzyme Inhib Med Chem 2016; 31:859-66. [PMID: 26864256 DOI: 10.3109/14756366.2016.1140753] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cancer cells reprogram their metabolic machineries to enter into permanent glycolytic pathways. The full reason for such reprogramming takes place is unclear. However, this metabolic switch is not made in vain for the lactate that is generated and exported outside cells is reused by other cells. This results in the generation of a pH gradient between the low extracellular pH that is acidic (pHe) and the higher cytosolic alkaline or near neutral pH (pHi) environments that are tightly regulated by the overexpression of several pumps and ion channels (e.g. NHE-1, MCT-1, V-ATPase, CA9, and CA12). The generation of this unique pH gradient serves as a determining factor in defining "tumor fitness". Tumor fitness is the capacity of the tumor to invade and metastasize due to its ability to reduce the efficiency of the immune system and confer resistance to chemotherapy. In this article, we highlight the importance of tumor microenvironment in mediating the failure of chemotherapeutic agents.
Collapse
Affiliation(s)
- Khalid O Alfarouk
- a Department of Pharmacology , Faculty of Pharmacy, AL-Neelain University , Khartoum , Sudan
| |
Collapse
|
16
|
Ruffalo M, Koyutürk M, Sharan R. Network-Based Integration of Disparate Omic Data To Identify "Silent Players" in Cancer. PLoS Comput Biol 2015; 11:e1004595. [PMID: 26683094 PMCID: PMC4684294 DOI: 10.1371/journal.pcbi.1004595] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 10/12/2015] [Indexed: 11/18/2022] Open
Abstract
Development of high-throughput monitoring technologies enables interrogation of cancer samples at various levels of cellular activity. Capitalizing on these developments, various public efforts such as The Cancer Genome Atlas (TCGA) generate disparate omic data for large patient cohorts. As demonstrated by recent studies, these heterogeneous data sources provide the opportunity to gain insights into the molecular changes that drive cancer pathogenesis and progression. However, these insights are limited by the vast search space and as a result low statistical power to make new discoveries. In this paper, we propose methods for integrating disparate omic data using molecular interaction networks, with a view to gaining mechanistic insights into the relationship between molecular changes at different levels of cellular activity. Namely, we hypothesize that genes that play a role in cancer development and progression may be implicated by neither frequent mutation nor differential expression, and that network-based integration of mutation and differential expression data can reveal these “silent players”. For this purpose, we utilize network-propagation algorithms to simulate the information flow in the cell at a sample-specific resolution. We then use the propagated mutation and expression signals to identify genes that are not necessarily mutated or differentially expressed genes, but have an essential role in tumor development and patient outcome. We test the proposed method on breast cancer and glioblastoma multiforme data obtained from TCGA. Our results show that the proposed method can identify important proteins that are not readily revealed by molecular data, providing insights beyond what can be gleaned by analyzing different types of molecular data in isolation. Identification of cancer-related genes is an important task, made more difficult by heterogeneity between samples and even within individual patients. Methods for identifying disease-related genes typically focus on individual data sets such as mutational and differential expression data, and therefore are limited to genes that are implicated by each data set in isolation. In this work we propose a method that uses protein interaction network information to integrate mutational and differential expression data on a sample-specific level, and combine this information across samples in ways that respect the commonalities and differences between distinct mutation and differential expression profiles. We use this information to identify genes that are associated with cancer but not readily identifiable by mutations or differential expression alone. Our method highlights the features that significantly predict a gene’s association with cancer, shows improved predictive power in recovering cancer-related genes in known pathways, and identifies genes that are neither frequently mutated nor differentially expressed but show significant association with survival.
Collapse
Affiliation(s)
- Matthew Ruffalo
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Mehmet Koyutürk
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, Ohio, United States of America
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail: (MK); (RS)
| | - Roded Sharan
- School of Computer Science, Tel Aviv University, Tel Aviv, Israel
- * E-mail: (MK); (RS)
| |
Collapse
|
17
|
Holcik M. Could the eIF2α-Independent Translation Be the Achilles Heel of Cancer? Front Oncol 2015; 5:264. [PMID: 26636041 PMCID: PMC4659918 DOI: 10.3389/fonc.2015.00264] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/12/2015] [Indexed: 12/24/2022] Open
Abstract
Eukaryotic initiation factor eIF2 is a key component of the ternary complex whose role is to deliver initiator tRNA into the ribosome. A variety of stimuli, both physiologic and pathophysiologic activate eIF2 kinases that phosphorylate the α subunit of eIF2, preventing it from forming the ternary complex, thus attenuating cellular protein synthesis. Paradoxically, in cancer cells, the phosphorylation of eIF2α is associated with activation of survival pathways. This review explores the recently emerged novel mechanism of eIF2α-independent translation initiation. This mechanism, which appears to be shared by some RNA viruses and Internal Ribosome Entry Site-containing cellular mRNAs and utilizes auxiliary proteins, such as eIF5B, eIF2D, and MCT-1, is responsible for the selective translation of cancer-associated genes and could represent a weak point amenable to specific targeting for the treatment of cancer.
Collapse
Affiliation(s)
- Martin Holcik
- Department of Pediatrics, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa , Ottawa, ON , Canada
| |
Collapse
|
18
|
SHC1 sensitizes cancer cells to the 8-Cl-cAMP treatment. Biochem Biophys Res Commun 2015; 463:673-8. [PMID: 26043699 DOI: 10.1016/j.bbrc.2015.05.123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 05/30/2015] [Indexed: 02/01/2023]
Abstract
8-Chloro-cyclic AMP (8-Cl-cAMP) is a cyclic AMP analog that induces growth inhibition and apoptosis in a broad spectrum of cancer cells. Previously, we found that 8-Cl-cAMP-induced growth inhibition is mediated by AMP-activated protein kinase (AMPK) as well as p38 mitogen-activated protein kinase (p38 MAPK). To identify downstream mediators of the 8-Cl-cAMP signaling, we performed co-immunoprecipitation combined with mass spectrometry using the anti-AMPK or p38 MAPK antibodies. Through this approach, SHC1 was identified as one of the binding partners of p38 MAPK. SHC1 phosphorylation was suppressed by 8-Cl-cAMP in HeLa and MCF7 cancer cells, which was mediated by its metabolites, 8-Cl-adenosine and 8-Cl-ATP; however, 8-Cl-cAMP showed no effect on SHC1 phosphorylation in normal human fibroblasts. SHC1 siRNA induced AMPK and p38 MAPK phosphorylation and growth inhibition in cancer cells, and SHC1 overexpression re-sensitized human foreskin fibroblasts to the 8-Cl-cAMP treatment. SHC1 phosphorylation was unaffected by Compound C (an AMPK inhibitor) and SB203580 (a p38 MAPK inhibitor), which suggests that SHC1 is upstream of AMPK and p38 MAPK in the 8-Cl-cAMP-stimulated signaling cascade. On the basis of these findings, we conclude that SHC1 functions as a sensor during the 8-Cl-cAMP-induced growth inhibition in SHC1-overexpressing cancer cells.
Collapse
|
19
|
Yang Y, Zhou QJ, Chen XQ, Yan BL, Guo XL, Zhang HL, Du AF. Profiling of differentially expressed genes in sheep T lymphocytes response to an artificial primary Haemonchus contortus infection. Parasit Vectors 2015; 8:235. [PMID: 25903558 PMCID: PMC4406218 DOI: 10.1186/s13071-015-0844-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/06/2015] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Haemonchus contortus is a common bloodsucking nematode causing widespread economic loss in agriculture. Upon H. contortus infection, a series of host responses is elicited, especially those related to T lymphocyte immunity. Existing studies mainly focus on the general immune responses of sheep T lymphocyte to H. contortus, lacking investigations at the molecular level. The objective of this study was to obtain a systematic transcriptional profiling of the T lymphocytes in H. contortus primary-infected sheep. METHODS Nematode-free sheep were orally infected once with H. contortus L3s. T lymphocyte samples were collected from the peripheral blood of 0, 3, 30 and 60 days post infection (dpi) infected sheep. Microarrays were used to compare gene transcription levels between samples. Quantitative RT-PCR was employed to validate the microarray data. Gene Ontology and KEGG pathway analysis were utilized for the annotation of differentially expressed genes. RESULTS Our microarray data was consistent with qPCR results. From microarrays, 853, 242 and 42 differentially expressed genes were obtained in the 3d vs. 0d, 30d vs. 0d and 60d vs. 0d comparison groups, respectively. Gene Ontology and KEGG pathway analysis indicated that these genes were involved in metabolism, signaling, cell growth and immune system processes. Functional analysis of significant differentially expressed genes, such as SLC9A3R2, ABCB9, COMMD4, SUGT1, FCER1G, GSK3A, PAK4 and FCER2, revealed a crucial association with cellular homeostasis maintenance and immune response. Our data suggested that maintaining both effective immunological response and natural cellular activity are important for T lymphocytes in fighting against H. contortus infection. CONCLUSIONS Our results provide a substantial list of candidate genes in sheep T lymphocytes response to H. contortus infection, and contribute novel insights into a general immune response upon infection.
Collapse
Affiliation(s)
- Yi Yang
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Qian-Jin Zhou
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Faculty of Life Science and Biotechnology, Ningbo University, Ningbo, 315211, China.
| | - Xue-Qiu Chen
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Bao-Long Yan
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Wenzhou Medical University, Wenzhou, 325035, China.
| | - Xiao-Lu Guo
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Hong-Li Zhang
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang center for animal disease control and prevention, Hangzhou, 310000, China.
| | - Ai-Fang Du
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
20
|
Chapiro J, Sur S, Savic LJ, Ganapathy-Kanniappan S, Reyes J, Duran R, Thiruganasambandam SC, Moats CR, Lin M, Luo W, Tran PT, Herman JM, Semenza GL, Ewald AJ, Vogelstein B, Geschwind JF. Systemic delivery of microencapsulated 3-bromopyruvate for the therapy of pancreatic cancer. Clin Cancer Res 2014; 20:6406-17. [PMID: 25326230 DOI: 10.1158/1078-0432.ccr-14-1271] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE This study characterized the therapeutic efficacy of a systemically administered formulation of 3-bromopyruvate (3-BrPA), microencapsulated in a complex with β-cyclodextrin (β-CD), using an orthotopic xenograft mouse model of pancreatic ductal adenocarcinoma (PDAC). EXPERIMENTAL DESIGN The presence of the β-CD-3-BrPA complex was confirmed using nuclear magnetic resonance spectroscopy. Monolayer as well as three-dimensional organotypic cell culture was used to determine the half-maximal inhibitory concentrations (IC50) of β-CD-3-BrPA, free 3-BrPA, β-CD (control), and gemcitabine in MiaPaCa-2 and Suit-2 cell lines, both in normoxia and hypoxia. Phase-contrast microscopy, bioluminescence imaging (BLI), as well as zymography and Matrigel assays were used to characterize the effects of the drug in vitro. An orthotopic lucMiaPaCa-2 xenograft tumor model was used to investigate the in vivo efficacy. RESULTS β-CD-3-BrPA and free 3-BrPA demonstrated an almost identical IC50 profile in both PDAC cell lines with higher sensitivity in hypoxia. Using the Matrigel invasion assay as well as zymography, 3-BrPA showed anti-invasive effects in sublethal drug concentrations. In vivo, animals treated with β-CD-3-BrPA demonstrated minimal or no tumor progression as evident by the BLI signal as opposed to animals treated with gemcitabine or the β-CD (60-fold and 140-fold signal increase, respectively). In contrast to animals treated with free 3-BrPA, no lethal toxicity was observed for β-CD-3-BrPA. CONCLUSION The microencapsulation of 3-BrPA represents a promising step towards achieving the goal of systemically deliverable antiglycolytic tumor therapy. The strong anticancer effects of β-CD-3-BrPA combined with its favorable toxicity profile suggest that clinical trials, particularly in patients with PDAC, should be considered.
Collapse
Affiliation(s)
- Julius Chapiro
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Vascular and Interventional Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Surojit Sur
- Ludwig Center and Howard Hughes Medical Institute at the Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland
| | - Lynn Jeanette Savic
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Vascular and Interventional Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Shanmugasundaram Ganapathy-Kanniappan
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Vascular and Interventional Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Juvenal Reyes
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rafael Duran
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Vascular and Interventional Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Cassandra Rae Moats
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - MingDe Lin
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Vascular and Interventional Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Weibo Luo
- Vascular Program, Institute for Cell Engineering and Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Phuoc T Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joseph M Herman
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gregg L Semenza
- Vascular Program, Institute for Cell Engineering and Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrew J Ewald
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bert Vogelstein
- Ludwig Center and Howard Hughes Medical Institute at the Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland
| | - Jean-François Geschwind
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Vascular and Interventional Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
21
|
Wu MH, Chen YA, Chen HH, Chang KW, Chang IS, Wang LH, Hsu HL. MCT-1 expression and PTEN deficiency synergistically promote neoplastic multinucleation through the Src/p190B signaling activation. Oncogene 2014; 33:5109-20. [PMID: 24858043 PMCID: PMC4287651 DOI: 10.1038/onc.2014.125] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 03/20/2014] [Accepted: 04/03/2014] [Indexed: 12/18/2022]
Abstract
Multinucleation is associated with malignant neoplasms; however, the molecular mechanism underlying the nuclear abnormality remains unclear. Loss or mutation of PTEN promotes the development of malignant tumors. We now demonstrate that increased expression of the oncogene MCT-1 (multiple copies in T-cell malignancy 1) antagonizes PTEN gene presentation, PTEN protein stability and PTEN functional activity, thereby further promoting phosphoinositide 3 kinase/AKT signaling, survival rate and malignancies of the PTEN-deficient cells. In the PTEN-null cancer cells, MCT-1 interacts with p190B and Src in vivo, supporting that they are in proximity of the signaling complexes. MCT-1 overexpression and PTEN loss synergistically augments the Src/p190B signaling function that leads to inhibition of RhoA activity. Under such a condition, the incidence of mitotic catastrophes including spindle multipolarity and cytokinesis failure is enhanced, driving an Src/p190B/RhoA-dependent neoplastic multinucleation. Targeting MCT-1 by the short hairpin RNA markedly represses the Src/p190B function, improves nuclear structures and suppresses xenograft tumorigenicity of the PTEN-null breast cancer cells. Consistent with the oncogenic effects in vitro, clinical evidence has confirmed that MCT-1 gene stimulation is correlated with p190B gene promotion and PTEN gene suppression in human breast cancer. Accordingly, MCT-1 gene induction is recognized as a potential biomarker of breast tumor development. Abrogating MCT-1 function may be a promising stratagem for management of breast cancer involving Src hyperactivation and/or PTEN dysfunction.
Collapse
Affiliation(s)
- M-H Wu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Taiwan, ROC
| | - Y-A Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Taiwan, ROC
| | - H-H Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Taiwan, ROC
| | - K-W Chang
- Institute of Population Health Science, National Health Research Institutes, Taiwan, ROC
| | - I-S Chang
- National Institute of Cancer Research and Division of Biostatistics and Bioinformatics, National Health Research Institutes, Taiwan, ROC
| | - L-H Wang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Taiwan, ROC
| | - H-L Hsu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Taiwan, ROC
| |
Collapse
|
22
|
Abstract
Recent groundbreaking discoveries have revealed that IGF-1, Ras, MEK, AMPK, TSC1/2, FOXO, PI3K, mTOR, S6K, and NFκB are involved in the aging process. This is remarkable because the same signaling molecules, oncoproteins and tumor suppressors, are well-known targets for cancer therapy. Furthermore, anti-cancer drugs aimed at some of these targets have been already developed. This arsenal could be potentially employed for anti-aging interventions (given that similar signaling molecules are involved in both cancer and aging). In cancer, intrinsic and acquired resistance, tumor heterogeneity, adaptation, and genetic instability of cancer cells all hinder cancer-directed therapy. But for anti-aging applications, these hurdles are irrelevant. For example, since anti-aging interventions should be aimed at normal postmitotic cells, no selection for resistance is expected. At low doses, certain agents may decelerate aging and age-related diseases. Importantly, deceleration of aging can in turn postpone cancer, which is an age-related disease.
Collapse
|
23
|
McCubrey JA, Steelman LS, Chappell WH, Sun L, Davis NM, Abrams SL, Franklin RA, Cocco L, Evangelisti C, Chiarini F, Martelli AM, Libra M, Candido S, Ligresti G, Malaponte G, Mazzarino MC, Fagone P, Donia M, Nicoletti F, Polesel J, Talamini R, Bäsecke J, Mijatovic S, Maksimovic-Ivanic D, Michele M, Tafuri A, Dulińska-Litewka J, Laidler P, D'Assoro AB, Drobot L, Umezawa D, Montalto G, Cervello M, Demidenko ZN. Advances in targeting signal transduction pathways. Oncotarget 2012; 3:1505-21. [PMID: 23455493 PMCID: PMC3681490 DOI: 10.18632/oncotarget.802] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 12/28/2012] [Indexed: 02/07/2023] Open
Abstract
Over the past few years, significant advances have occurred in both our understanding of the complexity of signal transduction pathways as well as the isolation of specific inhibitors which target key components in those pathways. Furthermore critical information is being accrued regarding how genetic mutations can affect the sensitivity of various types of patients to targeted therapy. Finally, genetic mechanisms responsible for the development of resistance after targeted therapy are being discovered which may allow the creation of alternative therapies to overcome resistance. This review will discuss some of the highlights over the past few years on the roles of key signaling pathways in various diseases, the targeting of signal transduction pathways and the genetic mechanisms governing sensitivity and resistance to targeted therapies.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|