1
|
Yu Y, Song X, Zeng Z, Wang L, Zhang L, Zhao H, Zheng Z. Amide proton transfer weighted MRI in differential diagnosis of ovarian masses with cystic components: A preliminary study. Magn Reson Imaging 2023; 103:216-223. [PMID: 37517767 DOI: 10.1016/j.mri.2023.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
RATIONALE AND OBJECTIVES To evaluate the performance of three-dimensional (3D) amide proton transfer-weighted (APTw) MRI in the differentiation between benign and malignant ovarian masses based on single-slice and all-slice analysis of cystic regions. MATERIALS AND METHODS Patients were consecutively recruited and underwent conventional pelvic MRI and APTw MRI. Two radiologists independently assessed ovarian masses blinded to the histopathological results. Three APTw SI values were generated from the cystic regions of the masses: (1) APTw SI of a single representative slice (RS); (2) average (AVE) of APTw SIs of all slices of the mass; (3) area-weighted (AW) average of APTw SIs of all slices of the mass. O-RADS MRI score of each mass was reported. Independent sample t-test and receiver operating characteristic (ROC) curve analysis were performed for comparison. Inter- and intra-observer reliability were assessed by the intraclass correlation coefficient (ICC) and quadratic kappa coefficient. RESULTS 46 ovarian masses were included for final analysis. The three APTw SI values were higher in cystic regions of malignant ovarian masses compared with benign lesions (p<0.0001). ROC curve analysis showed no significant difference in diagnostic performance among three APTw SI values and the O-RADS MRI score (AUC: RS-APTw SI, 0.930; AVE-APTw SI, 0.927; AW-APTw SI, 0.935; O-RADS score, 0.937). CONCLUSIONS APTw MRI may be used as a noninvasive tool for the differentiation of benign and malignant ovarian masses based on the analysis of the cystic regions.
Collapse
Affiliation(s)
- Yibei Yu
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 168 Litang Road, Changping District, Beijing 102218, China
| | - Xiaolei Song
- Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, 30 Shuangqing Road, Haidian District, Beijing 100084, China
| | - Zhen Zeng
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 168 Litang Road, Changping District, Beijing 102218, China
| | - Lixue Wang
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 168 Litang Road, Changping District, Beijing 102218, China
| | - Lei Zhang
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 168 Litang Road, Changping District, Beijing 102218, China
| | - Hongliang Zhao
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 168 Litang Road, Changping District, Beijing 102218, China
| | - Zhuozhao Zheng
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 168 Litang Road, Changping District, Beijing 102218, China.
| |
Collapse
|
2
|
Nunes SC, Sousa J, Silva F, Silveira M, Guimarães A, Serpa J, Félix A, Gonçalves LG. Peripheral Blood Serum NMR Metabolomics Is a Powerful Tool to Discriminate Benign and Malignant Ovarian Tumors. Metabolites 2023; 13:989. [PMID: 37755269 PMCID: PMC10537270 DOI: 10.3390/metabo13090989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
Ovarian cancer is the major cause of death from gynecological cancer and the third most common gynecological malignancy worldwide. Despite a slight improvement in the overall survival of ovarian carcinoma patients in recent decades, the cure rate has not improved. This is mainly due to late diagnosis and resistance to therapy. It is therefore urgent to develop effective methods for early detection and prognosis. We hypothesized that, besides being able to distinguish serum samples of patients with ovarian cancer from those of patients with benign ovarian tumors, 1H-NMR metabolomics analysis might be able to predict the malignant potential of tumors. For this, serum 1H-NMR metabolomics analyses were performed, including patients with malignant, benign and borderline ovarian tumors. The serum metabolic profiles were analyzed by multivariate statistical analysis, including principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) methods. A metabolic profile associated with ovarian malignant tumors was defined, in which lactate, 3-hydroxybutyrate and acetone were increased and acetate, histidine, valine and methanol were decreased. Our data support the use of 1H-NMR metabolomics analysis as a screening method for ovarian cancer detection and might be useful for predicting the malignant potential of borderline tumors.
Collapse
Affiliation(s)
- Sofia C. Nunes
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria 130, 1169-056 Lisboa, Portugal; (S.C.N.); (J.S.); (A.F.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - Joana Sousa
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Fernanda Silva
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria 130, 1169-056 Lisboa, Portugal; (S.C.N.); (J.S.); (A.F.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - Margarida Silveira
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - António Guimarães
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - Jacinta Serpa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria 130, 1169-056 Lisboa, Portugal; (S.C.N.); (J.S.); (A.F.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - Ana Félix
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria 130, 1169-056 Lisboa, Portugal; (S.C.N.); (J.S.); (A.F.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - Luís G. Gonçalves
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal
| |
Collapse
|
3
|
Stegelmeier AA, Santry LA, Guilleman MM, Matuszewska K, Minott JA, Yates JGE, Stevens BAY, Thomas SP, Vanderkamp S, Hanada K, Pei Y, Rghei AD, van Vloten JP, Pereira M, Thompson B, Major PP, Petrik JJ, Bridle BW, Wootton SK. AAV-Vectored Expression of the Vascular Normalizing Agents 3TSR and Fc3TSR, and the Anti-Angiogenic Bevacizumab Extends Survival in a Murine Model of End-Stage Epithelial Ovarian Carcinoma. Biomedicines 2022; 10:biomedicines10020362. [PMID: 35203573 PMCID: PMC8962366 DOI: 10.3390/biomedicines10020362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Epithelial ovarian cancer is the deadliest gynecological malignancy. The lack of effective treatments highlights the need for novel therapeutic interventions. The aim of this study was to investigate whether sustained adeno-associated virus (AAV) vector-mediated expression of vascular normalizing agents 3TSR and Fc3TSR and the antiangiogenic monoclonal antibody, Bevacizumab, with or without oncolytic virus treatment would improve survival in an orthotopic syngeneic mouse model of epithelial ovarian carcinoma. AAV vectors were administered 40 days post-tumor implantation and combined with oncolytic avian orthoavulavirus-1 (AOaV-1) 20 days later, at the peak of AAV-transgene expression, to ascertain whether survival could be extended. Flow cytometry conducted on blood samples, taken at an acute time point post-AOaV-1 administration (36 h), revealed a significant increase in activated NK cells in the blood of all mice that received AOaV-1. T cell analysis revealed a significant increase in CD8+ tumor specific T cells in the blood of AAV-Bevacizumab+AOaV-1 treated mice compared to control mice 10 days post AOaV-1 administration. Immunohistochemical staining of primary tumors harvested from a subset of mice euthanized 90 days post tumor implantation, when mice typically have large primary tumors, secondary peritoneal lesions, and extensive ascites fluid production, revealed that AAV-3TSR, AAV-Fc3TSR+AOaV-1, or AAV-Bevacizumab+AOaV-1 treated mice had significantly more tumor-infiltrating CD8+ T cells than PBS controls. Despite AAV-mediated transgene expression waning faster in tumor-bearing mice than in non-tumor bearing mice, all three of the AAV therapies significantly extended survival compared to control mice; with AAV-Bevacizumab performing the best in this model. However, combining AAV therapies with a single dose of AOaV-1 did not lead to significant extensions in survival compared to AAV therapies on their own, suggesting that additional doses of AOaV-1 may be required to improve efficacy in this model. These results suggest that vectorizing anti-angiogenic and vascular normalizing agents is a viable therapeutic option that warrants further investigation, including optimizing combination therapies.
Collapse
Affiliation(s)
- Ashley A. Stegelmeier
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Lisa A. Santry
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Matthew M. Guilleman
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Kathy Matuszewska
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (K.M.); (M.P.); (J.J.P.)
| | - Jessica A. Minott
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Jacob G. E. Yates
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Brenna A. Y. Stevens
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Sylvia P. Thomas
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Sierra Vanderkamp
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Kiersten Hanada
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Yanlong Pei
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Amira D. Rghei
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Jacob P. van Vloten
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Madison Pereira
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (K.M.); (M.P.); (J.J.P.)
| | | | - Pierre P. Major
- Juravinski Cancer Centre, 699 Concession Street, Hamilton, ON L8V 5C2, Canada;
| | - James J. Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (K.M.); (M.P.); (J.J.P.)
| | - Byram W. Bridle
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Sarah K. Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
- Correspondence: ; Tel.: +1-519-824-4210 (ext. 54729)
| |
Collapse
|
4
|
Belkić D, Belkić K. NMR spectroscopy at high magnetic fields: Derivative reconstructions of components from envelopes using encoded time signals. ADVANCES IN QUANTUM CHEMISTRY 2022. [DOI: 10.1016/bs.aiq.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
ADNEX Model-Based Diagnosis of Ovarian Cancer Using MRI Images. CONTRAST MEDIA & MOLECULAR IMAGING 2021; 2021:2146578. [PMID: 34497480 PMCID: PMC8387196 DOI: 10.1155/2021/2146578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/16/2021] [Accepted: 08/07/2021] [Indexed: 11/17/2022]
Abstract
This exploration aims to investigate the important role of magnetic resonance imaging (MRI) in the diagnosis of ovarian cancer under the ADNEX. From March 2017 to December 2019, 84 patients with ovarian cancer confirmed by pathological operation were selected as the research objects. The consistency of ADNEX, MRI, and ADNEX∗MRI in the diagnosis and staging of ovarian cancer was calculated separately. SPSS 26.0 statistical software was used to compare the accuracy, sensitivity, specificity, and diagnostic value of the two diagnostic methods. The results show that the accuracy and sensitivity of ADNEX are 78.6% and 93.2%, respectively. The accuracy and sensitivity of MRI are 81.2% and 89.4%, respectively. There is no significant difference between the two methods (p < 0.05). The overall consistency rates of ADNEX∗MRI, MRI diagnosis, and ADNEX for ovarian cancer staging are 94.2%, 74%, and 65.4%, respectively. There was a significant difference (p < 0.05). ADNEX∗MRI and MRI diagnosis were compared with each stage of ADNEX. There is a significant difference between the second and fourth stages (p < 0.05), and there is also a significant difference in the fourth stage (p < 0.017). It is concluded that MRI diagnosis of ovarian cancer based on ADNEX is superior to ADNEX and MRI examination alone, which provides a certain reference value for clinical staging of ovarian cancer.
Collapse
|
6
|
Sipos A, Ujlaki G, Mikó E, Maka E, Szabó J, Uray K, Krasznai Z, Bai P. The role of the microbiome in ovarian cancer: mechanistic insights into oncobiosis and to bacterial metabolite signaling. Mol Med 2021; 27:33. [PMID: 33794773 PMCID: PMC8017782 DOI: 10.1186/s10020-021-00295-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is characterized by dysbiosis, referred to as oncobiosis in neoplastic diseases. In ovarian cancer, oncobiosis was identified in numerous compartments, including the tumor tissue itself, the upper and lower female genital tract, serum, peritoneum, and the intestines. Colonization was linked to Gram-negative bacteria with high inflammatory potential. Local inflammation probably participates in the initiation and continuation of carcinogenesis. Furthermore, local bacterial colonies in the peritoneum may facilitate metastasis formation in ovarian cancer. Vaginal infections (e.g. Neisseria gonorrhoeae or Chlamydia trachomatis) increase the risk of developing ovarian cancer. Bacterial metabolites, produced by the healthy eubiome or the oncobiome, may exert autocrine, paracrine, and hormone-like effects, as was evidenced in breast cancer or pancreas adenocarcinoma. We discuss the possible involvement of lipopolysaccharides, lysophosphatides and tryptophan metabolites, as well as, short-chain fatty acids, secondary bile acids and polyamines in the carcinogenesis of ovarian cancer. We discuss the applicability of nutrients, antibiotics, and probiotics to harness the microbiome and support ovarian cancer therapy. The oncobiome and the most likely bacterial metabolites play vital roles in mediating the effectiveness of chemotherapy. Finally, we discuss the potential of oncobiotic changes as biomarkers for the diagnosis of ovarian cancer and microbial metabolites as possible adjuvant agents in therapy.
Collapse
Affiliation(s)
- Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Gyula Ujlaki
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Eszter Maka
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Judit Szabó
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Zoárd Krasznai
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary.
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
7
|
Ahmed-Salim Y, Galazis N, Bracewell-Milnes T, Phelps DL, Jones BP, Chan M, Munoz-Gonzales MD, Matsuzono T, Smith JR, Yazbek J, Krell J, Ghaem-Maghami S, Saso S. The application of metabolomics in ovarian cancer management: a systematic review. Int J Gynecol Cancer 2020; 31:754-774. [PMID: 33106272 DOI: 10.1136/ijgc-2020-001862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
Metabolomics, the global analysis of metabolites in a biological specimen, could potentially provide a fast method of biomarker identification for ovarian cancer. This systematic review aims to examine findings from studies that apply metabolomics to the diagnosis, prognosis, treatment, and recurrence of ovarian cancer. A systematic search of English language publications was conducted on PubMed, Science Direct, and SciFinder. It was augmented by a snowball strategy, whereby further relevant studies are identified from reference lists of included studies. Studies in humans with ovarian cancer which focus on metabolomics of biofluids and tumor tissue were included. No restriction was placed on the time of publication. A separate review of targeted metabolomic studies was conducted for completion. Qualitative data were summarized in a comprehensive table. The studies were assessed for quality and risk of bias using the ROBINS-I tool. 32 global studies were included in the main systematic review. Most studies applied metabolomics to diagnosing ovarian cancer, within which the most frequently reported metabolite changes were a down-regulation of phospholipids and amino acids: histidine, citrulline, alanine, and methionine. Dysregulated phospholipid metabolism was also reported in the separately reviewed 18 targeted studies. Generally, combinations of more than one significant metabolite as a panel, in different studies, achieved a higher sensitivity and specificity for diagnosis than a single metabolite; for example, combinations of different phospholipids. Widespread metabolite differences were observed in studies examining prognosis, treatment, and recurrence, and limited conclusions could be drawn. Cellular processes of proliferation and invasion may be reflected in metabolic changes present in poor prognosis and recurrence. For example, lower levels of lysine, with increased cell invasion as an underlying mechanism, or glutamine dependency of rapidly proliferating cancer cells. In conclusion, this review highlights potential metabolites and biochemical pathways which may aid the clinical care of ovarian cancer if further validated.
Collapse
Affiliation(s)
| | - Nicolas Galazis
- Department of Obstetrics and Gynaecology, Northwick Park Hospital, Harrow, UK
| | | | - David L Phelps
- Department of Gynaecological Oncology, Hammersmith Hospital Campus, Du Cane Road, Imperial College Healthcare NHS Trust, London, UK
| | - Benjamin P Jones
- Division of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, Du Cane Road, Imperial College London, London, UK
| | - Maxine Chan
- South Kensington Campus, Imperial College London Department of Materials, London, UK
| | | | - Tomoko Matsuzono
- Queen Elizabeth Hospital, Department of Obstetrics and Gynaecology, Hong Kong, Hong Kong
| | - James Richard Smith
- West London Gynaecological Cancer Centre, Queen Charlotte's Hospital, Hammersmith Hospital Campus, Du Cane Road, Imperial College Healthcare NHS Trust, London, UK
| | - Joseph Yazbek
- West London Gynaecological Cancer Centre, Queen Charlotte's Hospital, Hammersmith Hospital Campus, Du Cane Road, Imperial College Healthcare NHS Trust, London, UK
| | - Jonathan Krell
- West London Gynaecological Cancer Centre, Queen Charlotte's Hospital, Hammersmith Hospital Campus, Du Cane Road, Imperial College Healthcare NHS Trust, London, UK
| | - Sadaf Ghaem-Maghami
- Department of Gynaecological Oncology, West London Gynaecological Cancer Centre, Queen Charlotte's Hospital, Hammersmith Hospital Campus, Imperial College London and NHS Trust, Du Cane Road, Imperial College London, London, UK
| | - Srdjan Saso
- Division of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, Du Cane Road, Imperial College London, London, UK
| |
Collapse
|
8
|
Saorin A, Di Gregorio E, Miolo G, Steffan A, Corona G. Emerging Role of Metabolomics in Ovarian Cancer Diagnosis. Metabolites 2020; 10:E419. [PMID: 33086611 PMCID: PMC7603269 DOI: 10.3390/metabo10100419] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 01/20/2023] Open
Abstract
Ovarian cancer is considered a silent killer due to the lack of clear symptoms and efficient diagnostic tools that often lead to late diagnoses. Over recent years, the impelling need for proficient biomarkers has led researchers to consider metabolomics, an emerging omics science that deals with analyses of the entire set of small-molecules (≤1.5 kDa) present in biological systems. Metabolomics profiles, as a mirror of tumor-host interactions, have been found to be useful for the analysis and identification of specific cancer phenotypes. Cancer may cause significant metabolic alterations to sustain its growth, and metabolomics may highlight this, making it possible to detect cancer in an early phase of development. In the last decade, metabolomics has been widely applied to identify different metabolic signatures to improve ovarian cancer diagnosis. The aim of this review is to update the current status of the metabolomics research for the discovery of new diagnostic metabolomic biomarkers for ovarian cancer. The most promising metabolic alterations are discussed in view of their potential biological implications, underlying the issues that limit their effective clinical translation into ovarian cancer diagnostic tools.
Collapse
Affiliation(s)
- Asia Saorin
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (A.S.); (E.D.G.); (A.S.)
| | - Emanuela Di Gregorio
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (A.S.); (E.D.G.); (A.S.)
| | - Gianmaria Miolo
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (A.S.); (E.D.G.); (A.S.)
| | - Giuseppe Corona
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (A.S.); (E.D.G.); (A.S.)
| |
Collapse
|
9
|
Chen G, Wang Y, Li Y, Zhang L, Dong M. A novel hippocampus metabolite signature in diabetes mellitus rat model of diabetic encephalopathy. Metab Brain Dis 2020; 35:895-904. [PMID: 32367268 DOI: 10.1007/s11011-020-00541-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/30/2020] [Indexed: 12/30/2022]
Abstract
Diabetic encephalopathy (DE) is one of the chronic complications of diabetes. Even then, the molecular mechanism underlying DE remains unexplored. In this study, we have made an attempt to investigate the metabolic changes associated with the streptozocin (STZ)-induced cognitive dysfunction in the hippocampus of the rat model, a classical rodent model for DE, with the help of Gas Chromatography-Mass Spectrometry-based method. The STZ injections led to the rise of mean blood glucose levels in the diabetes mellitus (DM) group of rats as compared to the control (CON) group of rats throughout the experiment. However, we did not find any significant difference between the blood glucose levels of the DM & the CON groups of rats before the STZ injection. The results indicated a behavioral and morphological cognitive dysfunction in the DM groups of rats. The metabolomic investigation of these DE rats demonstrated a lower level of N-acetylaspartate and dihydroxyacetone phosphate accompanied by a higher level of homocysteine and glutamate as against the CON group of rats. The outcome of this study may unravel the underlying pathophysiological mechanism of DE. Also, the metabolomic data from this study may provide a platform for the development of DE biomarkers.
Collapse
Affiliation(s)
- Guanghui Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Yizhong Wang
- Xiangyang No.1 People' Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Yang Li
- Department of Pharmacy, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430071, China
| | - Lujun Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, 430071, No.99, Zhang zhi dong Road, Wuchang District, Wuhan, Hubei Province, China
| | - Meixue Dong
- Department of Neurology, Renmin Hospital of Wuhan University, 430071, No.99, Zhang zhi dong Road, Wuchang District, Wuhan, Hubei Province, China.
| |
Collapse
|
10
|
Zennaro L, Nicolè L, Vanzani P, Cappello F, Fassina A. 1H-NMR spectroscopy metabonomics of reactive, ovarian carcinoma and hepatocellular carcinoma ascites. Pleura Peritoneum 2020; 5:20200113. [PMID: 32566728 PMCID: PMC7292235 DOI: 10.1515/pp-2020-0113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/19/2020] [Indexed: 12/18/2022] Open
Abstract
Background Metabolomic profiling of human malignant effusion remain a field poorly investigated. Proton nuclear magnetic resonance (1H-NMR) spectroscopy is a rapid relatively low cost technique, and effusion is an optimal biospecimen suitable for metabonomic investigations. With this study we addressed metabolomic profiling of malignant ascitic effusion (mAE) from patients with high grade serous ovarian carcinoma (HGSOC), Hepatocellular carcinoma (HCC), and benign AEs (bAEs) from patients with reactive peritonitis. Methods Metabolic profiling with 1H-NMR was performed on 72 AEs (31 HGSOC, 16 HCC and 25 bAE) prospectively collected in our cytology service. Histological confirmation was requested for all malignant case. Multivariate analysis comprising PCA and PLS-DA was applied to discover metabolites suitable to differentiate effusions among the investigated groups. Results 1H-NMR metabonomic analysis showed clearly different spectra for malignant and benign AEs, as well as for HGSOC vs. HCC effusion. When compared with HCC effusions, the HGSOC effusion were enriched, among all, in alanine, lipids, N-acetyl groups and phenylalanine and depleted in glutamine. Conclusions Subject to validation in further larger studies, 1H-NMR metabonomics could be an effective and reliable ancillary tool for AE investigations and diagnosis particularly in acellular effusions.
Collapse
Affiliation(s)
- Lucio Zennaro
- Department of Molecular Medicine, University of Padova School of Medicine and Surgery, Padova, Italy
| | - Lorenzo Nicolè
- Department of Medicine, University of Padova School of Medicine and Surgery, Padova, Italy
| | - Paola Vanzani
- Department of Molecular Medicine, University of Padova School of Medicine and Surgery, Padova, Italy
| | - Filippo Cappello
- Department of Medicine, University of Padova School of Medicine and Surgery, Padova, Italy
| | - Ambrogio Fassina
- Department of Medicine, University of Padova School of Medicine and Surgery, Padova, Italy
| |
Collapse
|
11
|
Blood Metabolites Associate with Prognosis in Endometrial Cancer. Metabolites 2019; 9:metabo9120302. [PMID: 31847385 PMCID: PMC6949989 DOI: 10.3390/metabo9120302] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/18/2022] Open
Abstract
Endometrial cancer has a high prevalence among post-menopausal women in developed countries. We aimed to explore whether certain metabolic patterns could be related to the characteristics of aggressive disease and poorer survival among endometrial cancer patients in Western Norway. Patients with endometrial cancer with short survival (n = 20) were matched according to FIGO (International Federation of Gynecology and Obstetrics, 2009 criteria) stage, histology, and grade, with patients with long survival (n = 20). Plasma metabolites were measured on a multiplex system including 183 metabolites, which were subsequently determined using liquid chromatography-mass spectrometry. Partial least square discriminant analysis, together with hierarchical clustering, was used to identify patterns which distinguished short from long survival. A proposed signature of metabolites related to survival was suggested, and a multivariate receiver operating characteristic (ROC) analysis yielded an area under the curve (AUC) of 0.820–0.965 (p ≤ 0.001). Methionine sulfoxide seems to be particularly strongly associated with poor survival rates in these patients. In a subgroup with preoperative contrast-enhanced computed tomography data, selected metabolites correlated with the estimated abdominal fat distribution parameters. Metabolic signatures may predict prognosis and be promising supplements when evaluating phenotypes and exploring metabolic pathways related to the progression of endometrial cancer. In the future, this may serve as a useful tool in cancer management.
Collapse
|
12
|
Sun R, Xu K, Zhang Q, Jiang X, Man Z, Yin L, Zhang J, Pu Y. Plasma metabonomics investigation reveals involvement of fatty acid oxidation in hematotoxicity in Chinese benzene-exposed workers with low white blood cell count. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:32506-32514. [PMID: 30238259 DOI: 10.1007/s11356-018-3160-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Benzene is an environmental and occupational contaminant. Health hazards associated with occupational benzene exposure is a major public health problem in China. In this study, we analyzed metabolite profiles among plasma samples collected from benzene-exposed workers with low white blood cell count (BLWs) and healthy controls using high-performance liquid chromatography-time-of-flight mass spectrometry. To screen potential benzene hematotoxicity biomarkers and metabolic pathways, principal component analysis was used to examine metabolite profile changes in plasma samples. The alterations in fatty acid oxidation (FAO) pathway were consistent with our previous findings in a mouse model; hence, two key genes were selected and verified in WBC samples. A total of nine identified metabolites were significantly changed in BLWs, which were involved in glutathione metabolism, porphyrin metabolism, lipid metabolism pathway, and FAO metabolism. Furthermore, compared with healthy controls, the mRNA expressions of carnitine acyltransferase (CRAT) and ACADVL were significantly increased in BLWs. Particularly, WBC counts was negatively correlated with the expression of AVADVL in BLWs. These aberrant metabolites could act as potential biomarkers for benzene hematotoxicity. In addition, fatty acid oxidation pathway may play a critical role in the development of hematotoxicity caused by benzene.
Collapse
Affiliation(s)
- Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Kai Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Qiaoyun Zhang
- Jiangsu Province Center for Disease Prevention and Control, Nanjing, 210009, Jiangsu, China
| | - Xiaoyun Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Zhaodi Man
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
13
|
Giskeødegård GF, Madssen TS, Euceda LR, Tessem MB, Moestue SA, Bathen TF. NMR-based metabolomics of biofluids in cancer. NMR IN BIOMEDICINE 2018; 32:e3927. [PMID: 29672973 DOI: 10.1002/nbm.3927] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/13/2018] [Accepted: 03/07/2018] [Indexed: 06/08/2023]
Abstract
This review describes the current status of NMR-based metabolomics of biofluids with respect to cancer risk assessment, detection, disease characterization, prognosis, and treatment monitoring. While the metabolism of cancer cells is altered compared with that of non-proliferating cells, the metabolome of blood and urine reflects the entire organism. We conclude that many studies show impressive associations between biofluid metabolomics and cancer progression, but translation to clinical practice is currently hindered by lack of validation, difficulties in biological interpretation, and non-standardized analytical procedures.
Collapse
Affiliation(s)
- Guro F Giskeødegård
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology-NTNU, Trondheim, Norway
| | - Torfinn S Madssen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology-NTNU, Trondheim, Norway
| | - Leslie R Euceda
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology-NTNU, Trondheim, Norway
| | - May-Britt Tessem
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology-NTNU, Trondheim, Norway
| | - Siver A Moestue
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology-NTNU, Trondheim, Norway
- Department of Health Science, Nord University, Bodø, Norway
| | - Tone F Bathen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology-NTNU, Trondheim, Norway
| |
Collapse
|
14
|
Chen Y, Zhang J, Guo L, Liu L, Wen J, Xu L, Yan M, Li Z, Zhang X, Nan P, Jiang J, Ji J, Zhang J, Cai W, Zhuang H, Wang Y, Zhu Z, Yu Y. A characteristic biosignature for discrimination of gastric cancer from healthy population by high throughput GC-MS analysis. Oncotarget 2018; 7:87496-87510. [PMID: 27589838 PMCID: PMC5350005 DOI: 10.18632/oncotarget.11754] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/19/2016] [Indexed: 12/17/2022] Open
Abstract
Early diagnosis of gastric cancer is crucial to improve patient′ outcome. A good biomarker will function in early diagnosis for gastric cancer. In order to find practical and cost-effective biomarkers, we used gas chromatography combined mass spectrometer (GC-MS) to profile urinary metabolites on 293 urine samples. Ninety-four samples are taken as training set, others for validating study. Orthogonal partial least squares discriminant analysis (OPLS-DA), significance analysis of microarray (SAM) and Mann-Whitney U test are used for data analysis. The diagnostic value of urinary metabolites was evaluated by ROC curve. As results, Seventeen metabolites are significantly different between patients and healthy controls in training set. Among them, 14 metabolites show diagnostic value better than classic blood biomarkers by quantitative assay on validation set. Ten of them are amino acids and four are organic metabolites. Importantly, proline, p-cresol and 4-hydroxybenzoic acid disclose outcome-prediction value by means of survival analysis. Therefore, the examination of urinary metabolites is a promising noninvasive strategy for gastric cancer screening.
Collapse
Affiliation(s)
- Yinan Chen
- Department of Surgery of Ruijin Hospital, and Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Department of Surgery of Ruijin Hospital, and Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Guo
- Department of Surgery of Ruijin Hospital, and Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Liu
- Department of Surgery of Ruijin Hospital, and Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingran Wen
- Tongji University, School of Life Science and Technology, Shanghai, China
| | - Lu Xu
- Department of Surgery of Ruijin Hospital, and Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Yan
- Department of Surgery of Ruijin Hospital, and Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zuofeng Li
- Tongji University, School of Life Science and Technology, Shanghai, China
| | - Xiaoyan Zhang
- Tongji University, School of Life Science and Technology, Shanghai, China
| | - Peng Nan
- School of Life Sciences, Fudan University, Shanghai, China
| | - Jinling Jiang
- Department of Surgery of Ruijin Hospital, and Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Ji
- Department of Surgery of Ruijin Hospital, and Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianian Zhang
- Department of Surgery of Ruijin Hospital, and Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Cai
- Department of Surgery of Ruijin Hospital, and Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huisheng Zhuang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Wang
- College of Public Health, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Zhenggang Zhu
- Department of Surgery of Ruijin Hospital, and Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingyan Yu
- Department of Surgery of Ruijin Hospital, and Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Lee JH, Kim YH, Kim KH, Cho JY, Woo SM, Yoo BC, Kim SC. Profiling of Serum Metabolites Using MALDI-TOF and Triple-TOF Mass Spectrometry to Develop a Screen for Ovarian Cancer. Cancer Res Treat 2017; 50:883-893. [PMID: 28934848 PMCID: PMC6056971 DOI: 10.4143/crt.2017.275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/10/2017] [Indexed: 02/08/2023] Open
Abstract
Purpose We sought to develop a matrix assisted laser desorption ionization-time of flight (MALDI-TOF)-based, ovarian cancer (OVC), low-mass-ion discriminant equation (LOME) and to evaluate a possible supportive role for triple-TOF mass analysis in identifying metabolic biomarkers. Materials and Methods A total of 114 serum samples from patients with OVC and benign ovarian tumors were subjected to MALDI-TOF analysis and a total of 137 serum samples from healthy female individuals and patients with OVC, colorectal cancer, hepatobiliary cancer, and pancreatic cancer were subjected to triple-TOF analysis. An OVC LOME was constructed by reference to the peak intensity ratios of discriminatory low-mass ion (LMI) pairs. Triple-TOF analysiswas used to select and identify metabolic biomarkers for OVC screening. Results Three OVC LOMEs were finally constructed using discriminatory LMI pairs (137.1690 and 84.4119 m/z; 496.5022 and 709.7642 m/z; and 524.5614 and 709.7642 m/z); all afforded accuracies of > 90%. The LMIs at 496.5022 m/z and 524.5614 m/z were those of lysophosphatidylcholine (LPC) 16:0 and LPC 18:0. Triple-TOF analysis selected seven discriminative LMIs; each LMI had a specificity > 90%. Of the seven LMIs, fourwith a 137.0455 m/z ion atretention times of 2.04-3.14 minuteswere upregulated in sera from OVC patients; the ion was identified as that derived from hypoxanthine. Conclusion MALDI-TOF–based OVC LOMEs combined with triple-TOF–based OVC metabolic biomarkers allow reliable OVC screening; the techniques are mutually complementary both quantitatively and qualitatively.
Collapse
Affiliation(s)
- Jun Hwa Lee
- Biomarker Branch, Research Institute, National Cancer Center, Goyang, Korea
| | - Yun Hwan Kim
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Ewha Womans University Mokdong Hospital, Ewha Womans University School of Medicine, Seoul, Korea
| | - Kyung-Hee Kim
- Biomarker Branch, Research Institute, National Cancer Center, Goyang, Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Sang Myung Woo
- Biomarker Branch, Research Institute, National Cancer Center, Goyang, Korea
| | - Byong Chul Yoo
- Biomarker Branch, Research Institute, National Cancer Center, Goyang, Korea
| | - Seung Cheol Kim
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Ewha Womans University Mokdong Hospital, Ewha Womans University School of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Affiliation(s)
- G. A. Nagana Gowda
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine and
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine and
- Department of Chemistry, University of Washington, Seattle, Washington 98109, United States
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
| |
Collapse
|
17
|
Turkoglu O, Zeb A, Graham S, Szyperski T, Szender JB, Odunsi K, Bahado-Singh R. Metabolomics of biomarker discovery in ovarian cancer: a systematic review of the current literature. Metabolomics 2016; 12:60. [PMID: 28819352 PMCID: PMC5557039 DOI: 10.1007/s11306-016-0990-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Metabolomics is the emerging member of "omics" sciences advancing the understanding, diagnosis and treatment of many cancers, including ovarian cancer (OC). OBJECTIVES To systematically identify the metabolomic abnormalities in OC detection, and the dominant metabolic pathways associated with the observed alterations. METHODS An electronic literature search was performed, up to and including January 15th 2016, for studies evaluating the metabolomic profile of patients with OC compared to controls. QUADOMICS tool was used to assess the quality of the twenty-three studies included in this systematic review. RESULTS Biological samples utilized for metabolomic analysis include: serum/plasma (n = 13), urine (n = 4), cyst fluid (n = 3), tissue (n = 2) and ascitic fluid (n = 1). Metabolites related to cellular respiration, carbohydrate, lipid, protein and nucleotide metabolism were significantly altered in OC. Increased levels of tricarboxylic acid cycle intermediates and altered metabolites of the glycolytic pathway pointed to perturbations in cellular respiration. Alterations in lipid metabolism included enhanced fatty acid oxidation, abnormal levels of glycerolipids, sphingolipids and free fatty acids with common elevations of palmitate, oleate, and myristate. Increased levels of glutamine, glycine, cysteine and threonine were commonly reported while enhanced degradations of tryptophan, histidine and phenylalanine were found. N-acetylaspartate, a brain amino acid, was found elevated in primary and metastatic OC tissue and ovarian cyst fluid. Further, elevated levels of ketone bodies including 3-hydroxybutyrate were commonly reported. Increased levels of nucleotide metabolites and tocopherols were consistent through out the studies. CONCLUSION Metabolomics presents significant new opportunities for diagnostic biomarker development, elucidating previously unknown mechanisms of OC pathogenesis.
Collapse
Affiliation(s)
- Onur Turkoglu
- Department of Obstetrics and Gynecology, Beaumont Hospital, 3601 W. 13 Mile Rd., Royal Oak, MI 48073, USA
| | - Amna Zeb
- Department of Obstetrics and Gynecology, Beaumont Hospital, 3601 W. 13 Mile Rd., Royal Oak, MI 48073, USA
| | - Stewart Graham
- Department of Obstetrics and Gynecology, Beaumont Hospital, 3601 W. 13 Mile Rd., Royal Oak, MI 48073, USA
| | - Thomas Szyperski
- Department of Chemistry, College of Arts and Sciences, University at Buffalo, Buffalo, NY, USA
| | - J Brian Szender
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Kunle Odunsi
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Ray Bahado-Singh
- Department of Obstetrics and Gynecology, Beaumont Hospital, 3601 W. 13 Mile Rd., Royal Oak, MI 48073, USA
| |
Collapse
|