1
|
Shen Y, Gao Y, Yang G, Zhao Z, Zhao Y, Gao L, Zhao L, Li S. Transformation of Ginsenosides by Lactiplantibacillus plantarum MB11 Fermentation: Minor Ginsenosides Conversion and Enhancement of Anti-Colorectal Cancer Activity. Molecules 2023; 29:27. [PMID: 38202610 PMCID: PMC10780060 DOI: 10.3390/molecules29010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The present study aimed to increase the content of minor ginsenosides and enhance the anti-colorectal cancer activity of ginsenosides via biotransformation by Lactiplantibacillus plantarum MB11 screened from fermented foods. A subcutaneous transplantation tumor model of murine colorectal cancer CT26 cells was established in mice to study the anticarcinogenic activities and mechanism of fermented total ginsenosides (FTGs). The results showed that L. plantarum MB11 fermentation increased the content of minor ginsenosides and decreased that of major ginsenosides. FTGs reduced the tumor weight and size compared with the model group. Immunofluorescence and TdT-mediated dUTP nick end labeling (TUNEL) analysis showed that FTGs significantly increase the number of caspase-3 cells in tumor tissue and induce cell apoptosis. Mechanically, FTGs activate AMPK/mTOR autophagy pathway and regulate JAK2/STAT3 and Bax/Bcl-2/caspase-3 apoptosis pathway. Overall, fermentation with L. plantarum MB11 enhanced minor ginsenosides in total ginsenosides, and FTGs induced subcutaneous transplantation tumor autophagy and apoptosis in mice.
Collapse
Affiliation(s)
- Yunjiao Shen
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences (Northeast Agriculture Research Center of China), Changchun 130033, China; (Y.S.); (Y.G.); (G.Y.); (Z.Z.); (Y.Z.); (L.G.)
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Yansong Gao
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences (Northeast Agriculture Research Center of China), Changchun 130033, China; (Y.S.); (Y.G.); (G.Y.); (Z.Z.); (Y.Z.); (L.G.)
| | - Ge Yang
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences (Northeast Agriculture Research Center of China), Changchun 130033, China; (Y.S.); (Y.G.); (G.Y.); (Z.Z.); (Y.Z.); (L.G.)
| | - Zijian Zhao
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences (Northeast Agriculture Research Center of China), Changchun 130033, China; (Y.S.); (Y.G.); (G.Y.); (Z.Z.); (Y.Z.); (L.G.)
| | - Yujuan Zhao
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences (Northeast Agriculture Research Center of China), Changchun 130033, China; (Y.S.); (Y.G.); (G.Y.); (Z.Z.); (Y.Z.); (L.G.)
| | - Lei Gao
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences (Northeast Agriculture Research Center of China), Changchun 130033, China; (Y.S.); (Y.G.); (G.Y.); (Z.Z.); (Y.Z.); (L.G.)
| | - Lei Zhao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Shengyu Li
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences (Northeast Agriculture Research Center of China), Changchun 130033, China; (Y.S.); (Y.G.); (G.Y.); (Z.Z.); (Y.Z.); (L.G.)
| |
Collapse
|
2
|
Peter RM, Chou PJ, Shannar A, Patel K, Pan Y, Dave PD, Xu J, Sarwar MS, Kong ANT. An Update on Potential Molecular Biomarkers of Dietary Phytochemicals Targeting Lung Cancer Interception and Prevention. Pharm Res 2023; 40:2699-2714. [PMID: 37726406 DOI: 10.1007/s11095-023-03595-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023]
Abstract
Since ancient times, dietary phytochemicals are known for their medicinal properties. They are broadly classified into polyphenols, terpenoids, alkaloids, phytosterols, and organosulfur compounds. Currently, there is considerable interest in their potential health effects against various diseases, including lung cancer. Lung cancer is the leading cause of cancer deaths with an average of five-year survival rate of lung cancer patients limited to just 14%. Identifying potential early molecular biomarkers of pre-malignant lung cancer cells may provide a strong basis to develop early cancer detection and interception methods. In this review, we will discuss molecular changes, including genetic alterations, inflammation, signal transduction pathways, redox imbalance, epigenetic and proteomic signatures associated with initiation and progression of lung carcinoma. We will also highlight molecular targets of phytochemicals during lung cancer development. These targets mainly consist of cellular signaling pathways, epigenetic regulators and metabolic reprogramming. With growing interest in natural products research, translation of these compounds into new cancer prevention approaches to medical care will be urgently needed. In this context, we will also discuss the overall pharmacokinetic challenges of phytochemicals in translating to humans. Lastly, we will discuss clinical trials of phytochemicals in lung cancer patients.
Collapse
Affiliation(s)
- Rebecca Mary Peter
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Pochung Jordan Chou
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ahmad Shannar
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Komal Patel
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Yuxin Pan
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Parv Dushyant Dave
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Jiawei Xu
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Md Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
3
|
Ginsenosides in cancer: A focus on the regulation of cell metabolism. Biomed Pharmacother 2022; 156:113756. [DOI: 10.1016/j.biopha.2022.113756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/17/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
|
4
|
Abstract
As a steroid skeleton-based saponin, ginsenoside Rh2 (G-Rh2) is one of the major bioactive ginsenosides from the plants of genus Panax L. Many studies have reported the notable pharmacological activities of G-Rh2 such as anticancer, antiinflammatory, antiviral, antiallergic, antidiabetic, and anti-Alzheimer's activities. Numerous preclinical studies have demonstrated the great potential of G-Rh2 in the treatment of a wide range of carcinomatous diseases in vitro and in vivo. G-Rh2 is able to inhibit proliferation, induce apoptosis and cell cycle arrest, retard metastasis, promote differentiation, enhance chemotherapy and reverse multi-drug resistance against multiple tumor cells. The present review mainly summarizes the anticancer effects and related mechanisms of G-Rh2 in various models as well as the recent advances in G-Rh2 delivery systems and structural modification to ameliorate its anticancer activity and pharmacokinetics characteristics.
Collapse
|
5
|
Zhao L, Zhang Y, Li Y, Li C, Shi K, Zhang K, Liu N. Therapeutic effects of ginseng and ginsenosides on colorectal cancer. Food Funct 2022; 13:6450-6466. [PMID: 35661189 DOI: 10.1039/d2fo00899h] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is among the most common malignant diseases with high morbidity and mortality rates. Ginseng and its major extracts, ginsenosides, have been used in medical fields for thousands of years. In particular, their huge anti-cancer potential has drawn a great deal of attention in recent years. There is a large body of evidence that has shown that ginseng and its extracts could significantly inhibit tumor development and progression by suppressing cell proliferation, tumor growth, invasion and metastasis, inducing tumor cell apoptosis, regulating tumor-associated immune responses, and improving the therapeutic effect of chemotherapy. Notably, different subtypes of ginsenosides, even those extracted from the same ginseng, have exhibited distinct anti-cancer functions through different mechanisms. Over the past few years, a large number of studies have focused on how ginseng or various ginsenosides influence CRC development. Therefore, the roles and the potential of ginseng and ginsenosides in the treatment of CRC are summarized in this review. In addition, the biochemical properties of ginseng and ginsenosides are also briefly described.
Collapse
Affiliation(s)
- Linxian Zhao
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China.
| | - Yueming Zhang
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, China
| | - Yajuan Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, China
| | - Chen Li
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, Jilin, 130062, China
| | - Kai Shi
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, Jilin, 130062, China
| | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China.
| | - Ning Liu
- Department of Central Laboratory, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China.
| |
Collapse
|
6
|
Tong Y, Song X, Zhang Y, Xu Y, Liu Q. Insight on structural modification, biological activity, structure-activity relationship of PPD-type ginsenoside derivatives. Fitoterapia 2022; 158:105135. [PMID: 35101587 DOI: 10.1016/j.fitote.2022.105135] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/22/2022] [Accepted: 01/22/2022] [Indexed: 11/25/2022]
Abstract
Ginsenosides, characterized by triterpenoid, are one of the active components of ginseng. Among them, PPD-type ginsenosides have potent and diverse pharmacological activities, while the effective applications and clinical studies are limited by the poor stability, water solubility and oral bioavailability. In this review, we have attempted to demonstrate the structural-activity relationship of chemical modifications on the dammarane-type skeleton and the C-17 side chain, noting that certain structurally modified derivatives exhibit satisfactory pharmacological activity. This review will provide ideas for the design and synthesis of novel PPD derivatives, and valuable help for the further study of PPD derivatives to make it realize clinical application.
Collapse
Affiliation(s)
- Yangliu Tong
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Xiaoping Song
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Biotech. & Biomed. Research Institute, School of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
| | - Yanxin Zhang
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Ying Xu
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Qingchao Liu
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
| |
Collapse
|
7
|
Qu B, Cao T, Wang M, Wang S, Li W, Li H. Ginsenosides Rd monomer inhibits proinflammatory cytokines production and alleviates DSS-colitis by NF-κB and P38MAPK pathways in mice. Immunopharmacol Immunotoxicol 2021; 44:110-118. [PMID: 34898349 DOI: 10.1080/08923973.2021.2012482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Ulcerative colitis (UC) is dramatically increasing worldwide, cannot be thoroughly cured, and reduces patients' quality of life. Excessive activation of macrophages and over-production of cytokines play an important role in the pathogenesis of UC. Therefore, for its treatment, inhibiting macrophages' hyperactivation would be effective to develop new treatment approaches. Ginsenosides, extracted from ginseng, show an anti-inflammatory effect on the immunologic process. Our study used ginsenosides Rd monomer (GRd) to intervene in DSS-induced colitis mouse models and tested the immunological effect of macrophages. METHOD We observed body weights, weights of colons, colonic lengths, and inflammatory scores, as well as histological changes of DSS/DSS-GRd mice. We also isolated intestinal and peritoneal macrophages, performed qRT-PCR and ELISA to detect cytokines production by macrophages, and screened possible involved pathways by Western blotting. RESULTS Administering 20 mg/Kg GRd to DSS mice for 7-14 days reduced colonic inflammation. Moreover, both in vivo and in vitro, levels of TNF-α, IFN-γ, IL-6, IL-12/23p40, and IL-17A were all inhibited by GRd at 14 days in intestinal macrophages, and 20 μmol/L GRd at 12 h in peritoneal macrophages, respectively, but longer time made no more benefit. Western blotting showed GRd could decrease expression of pJNK, p-p38, pIκBα, and P65 in nuclear. CONCLUSIONS Our data indicate that GRd could down-regulate cytokines production in macrophages and alleviate DSS-colitis in mice, which may be related to NF-κB and P38MAPK pathways. These results suggest that GRd has an anti-inflammatory effect on experimental colitis and may have potential efficacy in the treatment of UC alone or in combination.
Collapse
Affiliation(s)
- Bo Qu
- Digestive Department, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ting Cao
- Digestive Department, The 3rd Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Miao Wang
- Digestive Department, Yiwu Central Hospital, Yiwu, China
| | - Shuang Wang
- Digestive Department, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wanying Li
- Digestive Department, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui Li
- Digestive Department, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
8
|
Qiao G, Wu A, Chen X, Tian Y, Lin X. Enolase 1, a Moonlighting Protein, as a Potential Target for Cancer Treatment. Int J Biol Sci 2021; 17:3981-3992. [PMID: 34671213 PMCID: PMC8495383 DOI: 10.7150/ijbs.63556] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
Enolase 1 (ENO1) is a moonlighting protein, function as a glycolysis enzyme, a plasminogen receptor and a DNA binding protein. ENO1 play an important role in the process of cancer development. The transcription, translation, post-translational modifying activities and the immunoregulatory role of ENO1 at the cancer development is receiving increasing attention. Some function model studies have shown that ENO1 is a potential target for cancer treatment. In this review, we provide a comprehensive overview of the characterization, function, related transduction cascades of ENO1 and its roles in the pathophysiology of cancers, which is a consequence of ENO1 signaling dysregulation. And the development of novels anticancer agents that targets ENO1 may provide a more attractive option for the treatment of cancers. The data of sarcoma and functional cancer models indicates that ENO1 may become a new potential target for anticancer therapy.
Collapse
Affiliation(s)
- Gan Qiao
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China (Q.G, ).,School of Pharmacy, Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.,Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou, 646000, China
| | - Xiaoliang Chen
- Schools of Medicine; Shanxi Datong University, Datong, Shanxi, 037009, China
| | - Ye Tian
- The Eighth Affiliated Hospital Sun Yat-sen University,Shenzhen, Guangdong, China
| | - Xiukun Lin
- College of Life Sci., Shandong University of Technology, Zibo, Shandong, China
| |
Collapse
|
9
|
Fu Y, Wei J, Li B, Gao L, Xia P, Wen Y, Xu S. CGA ameliorates cognitive decline by regulating the PI3K/AKT signaling pathway and neurotransmitter systems in rats with multi-infarct dementia. Exp Ther Med 2020; 20:70. [PMID: 32963600 PMCID: PMC7490799 DOI: 10.3892/etm.2020.9198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 02/13/2020] [Indexed: 12/26/2022] Open
Abstract
Multi infarct dementia (MID) is a form of dementia that is preventable and treatable. However, at present, the drugs used in MID treatment were developed for Alzheimer's disease. While only a limited range of drugs is available, the incidence of MID is increasing year on year. The present study aimed to investigate the effect and underlying mechanisms of a combination of ginsenosides and astragalosides (CGA) on cognitive decline in rats with MID. A rat model of MID was established using micro-thromboembolism, and the behavioral changes in the rats were evaluated using the Morris water maze and open field tests at 60 days post-CGA intervention. The pathological morphology of the hippocampal CA1 area was observed using hematoxylin and eosin staining. The contents of ATP, ADP and AMP were determined using high-performance liquid chromatography. Mitochondrial swelling and changes in the membrane potential in the hippocampus were detected using flow cytometry, and the changes in insulin, glutamate and γ-aminobutyric acid (GABA) content were detected using ELISA. Additionally, the expression of PI3K and AKT proteins was detected using western blot analysis. In a rat model of MID, CGA shortened the escape latency, increased the frequency of platform crossing, improved the disordered vertebral cell arrangement and reduced the cell number in the hippocampal CA1 area. CGA also reduced the degree of mitochondrial swelling, increased the mitochondrial membrane potential, and elevated the energy load and ATP content in the brain of rats with MID. Furthermore, CGA increased the insulin content and upregulated the expression of PI3K and AKT in the brain of rats with MID. In addition, in the rat model of MID, CGA also enhanced the movement time and the frequency of standing, and decreased the concentration of glutamate and GABA in the brain tissue. Amelioration of the cognitive decline in rats with MID by CGA was associated with its regulatory effect on the PI3K/AKT signaling pathway and neurotransmitter systems.
Collapse
Affiliation(s)
- Ying Fu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China.,Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Jiangping Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China.,Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Bin Li
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China.,Geriatrics Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Lijuan Gao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China.,Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Peng Xia
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China.,Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Yueqiang Wen
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China.,School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Shijun Xu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China.,Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| |
Collapse
|
10
|
Huang Q, Zhang H, Bai LP, Law BYK, Xiong H, Zhou X, Xiao R, Qu YQ, Mok SWF, Liu L, Wong VKW. Novel ginsenoside derivative 20(S)-Rh2E2 suppresses tumor growth and metastasis in vivo and in vitro via intervention of cancer cell energy metabolism. Cell Death Dis 2020; 11:621. [PMID: 32796841 PMCID: PMC7427995 DOI: 10.1038/s41419-020-02881-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 02/08/2023]
Abstract
Increased energy metabolism is responsible for supporting the abnormally upregulated proliferation and biosynthesis of cancer cells. The key cellular energy sensor AMP-activated protein kinase (AMPK) and the glycolytic enzyme alpha-enolase (α-enolase) have been identified as the targets for active components of ginseng. Accordingly, ginseng or ginsenosides have been demonstrated with their potential values for the treatment and/or prevention of cancer via the regulation of energy balance. Notably, our previous study demonstrated that the R-form derivative of 20(R)-Rh2, 20(R)-Rh2E2 exhibits specific and potent anti-tumor effect via suppression of cancer energy metabolism. However, the uncertain pharmacological effect of S-form derivative, 20(S)-Rh2E2, the by-product during the synthesis of 20(R)-Rh2E2 from parental compound 20(R/S)-Rh2 (with both R- and S-form), retarded the industrialized production, research and development of this novel effective candidate drug. In this study, 20(S)-Rh2E2 was structurally modified from pure 20(S)-Rh2, and this novel compound was directly compared with 20(R)-Rh2E2 for their in vitro and in vivo antitumor efficacy. Results showed that 20(S)-Rh2E2 effectively inhibited tumor growth and metastasis in a lung xenograft mouse model. Most importantly, animal administrated with 20(S)-Rh2E2 up to 320 mg/kg/day survived with no significant body weight lost or observable toxicity upon 7-day treatment. In addition, we revealed that 20(S)-Rh2E2 specifically suppressed cancer cell energy metabolism via the downregulation of metabolic enzyme α-enolase, leading to the reduction of lactate, acetyl-coenzyme (acetyl CoA) and adenosine triphosphate (ATP) production in Lewis lung cancer cells (LLC-1), but not normal cells. These findings are consistent to the results obtained from previous studies using a similar isomer 20(R)-Rh2E2. Collectively, current results suggested that 20(R/S)-Rh2E2 isomers could be the new and safe anti-metabolic agents by acting as the tumor metabolic suppressors, which could be generated from 20(R/S)-Rh2 in industrialized scale with low cost.
Collapse
Affiliation(s)
- Qi Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Hui Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Li Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Haoming Xiong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xiaobo Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Riping Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yuan Qing Qu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Simon Wing Fai Mok
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
11
|
Qi Z, Li W, Tan J, Wang C, Lin H, Zhou B, Liu J, Li P. Effect of ginsenoside Rh 2 on renal apoptosis in cisplatin-induced nephrotoxicity in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 61:152862. [PMID: 31048124 DOI: 10.1016/j.phymed.2019.152862] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Ginsenoside Rh2 (Rh2), an important ingredient from Panax ginseng, has received much attention due to a range of pharmacological actions. PURPOSE The aim of the study was to investigate the therapeutic potential Rh2 on cisplatin (CDDP)-induced nephrotoxicity and to elucidate involved mechanisms. STUDY DESIGN An in vivo mice model of CDDP-induced nephrotoxicity was established by a single intraperitoneal injection of CDDP (20 mg/kg) to assess the effects of Rh2 on renal biochemical parameter, oxidative stress, inflammation tubular cell apoptosis and serum metabolic profiles. RESULTS Rh2 protected against CDDP-induced renal dysfunction and ameliorated CDDP-induced oxidative stress, histopathological damage, inflammation and tubular cell apoptosis in kidney. Rh2 treatment had significantly increased expression of Bcl-2 and decreased expression of p53, Bax, cytochrome c, caspase-8, caspase-9, and caspase-3 in kidney tissues. Metabolomic analysis identified 29 altered serum metabolites in Rh2 treatment mice. CONCLUSION These results suggest that Rh2 protects against CDDP-induced nephrotoxicity via action on caspase-mediated pathway.
Collapse
Affiliation(s)
- Zeng Qi
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jing Tan
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Hongqiang Lin
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Baisong Zhou
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
12
|
Fan XX, Pan HD, Li Y, Guo RJ, Leung ELH, Liu L. Novel therapeutic strategy for cancer and autoimmune conditions: Modulating cell metabolism and redox capacity. Pharmacol Ther 2018; 191:148-161. [PMID: 29953901 DOI: 10.1016/j.pharmthera.2018.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dysregulation of cell metabolism and redox balance is implicated in the pathogenesis and progression of cancer and autoimmune diseases. Because the cell proliferation and apoptotic regulatory pathways are interconnected with metabolic and redox signalling pathways, the current mono-target treatment is ineffective, and multi-drug resistance remains common. Complex diseases are often implicated in a network-based context of pathology; therefore, a new holistic intervention approach is required to block multi-crosstalk in such complicated circumstances. The use of therapeutic agents isolated from herbs to holistically modulate metabolism and redox state has been shown to relieve carcinoma growth and the inflammatory response in autoimmune disorders. Multiple clinically applied or novel herbal chemicals with metabolic and redox modulatory capacity as well as low toxicity have recently been identified. Moreover, new metabolic targets and mechanisms of drug action have been discovered, leading to the exploration of new pathways for drug repositioning, clinical biomarker spectra, clinical treatment strategies and drug development. Taken together with multiple supporting examples, the modulation of cell metabolism and the redox capacity using herbal chemicals is emerging as a new, alternative strategy for the holistic treatment of cancer and autoimmune disorders. In the future, the development of new diagnostic tools based on the detection of metabolic and redox biomarkers, reformulation of optimized herbal compositions using artificial intelligence, and the combination of herbs with mono-targeting drugs will reveal new potential for clinical application.
Collapse
Affiliation(s)
- Xing-Xing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, China
| | - Hu-Dan Pan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, China
| | - Ying Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, China
| | - Rui-Jin Guo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, China; Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Hubei, China; Department of Thoracic Surgery, Guangzhou Institute of Respiratory Health and State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, China.
| |
Collapse
|
13
|
Tseng CH. Metformin and lung cancer risk in patients with type 2 diabetes mellitus. Oncotarget 2018; 8:41132-41142. [PMID: 28456789 PMCID: PMC5522244 DOI: 10.18632/oncotarget.17066] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/22/2017] [Indexed: 02/07/2023] Open
Abstract
This study evaluated whether metformin might reduce lung cancer risk. The reimbursement database of the Taiwan's National Health Insurance was used. A sample of 15414 never users and 280159 ever users of metformin (original sample) and a 1:1 matched-pairs of ever and never users (n=15414 in each group, matched sample) were recruited from patients with newly diagnosed type 2 diabetes mellitus during 1999-2005. They were followed until December 31, 2011. Cox regression incorporated with the inverse probability of treatment weighting using propensity score was used to estimate hazard ratios. Results showed that the respective incidence of lung cancer in ever and never users was 173.36 and 292.65 per 100000 person-years in the original sample; and was 211.71 and 292.65, respectively, in the matched sample. The overall hazard ratios (95% confidence intervals) of 0.586 (0.509-0.674) in the original sample and 0.717 (0.584-0.881) in the matched sample suggested a significantly lower risk among metformin users. Hazard ratios comparing the first (<22.60 months), second (22.60-46.67 months) and third (>46.67 months) tertile of cumulative duration of metformin use to never users was 1.163 (1.005-1.348), 0.612 (0.526-0.711) and 0.176 (0.148-0.210), respectively, in the original sample; and was 1.465 (1.131-1.897), 0.758 (0.566-1.016) and 0.228 (1.460-0.357) in the respective tertile of the matched sample. Sensitivity analyses after excluding patients with certain risk factors of cancer and subgroup analyses supported a favorable effect of metformin. In conclusion, metformin use may reduce lung cancer risk in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Chin-Hsiao Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Division of Environmental Health and Occupational Medicine of the National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
14
|
Zare-Zardini H, Taheri-Kafrani A, Amiri A, Bordbar AK. New generation of drug delivery systems based on ginsenoside Rh2-, Lysine- and Arginine-treated highly porous graphene for improving anticancer activity. Sci Rep 2018; 8:586. [PMID: 29330486 PMCID: PMC5766508 DOI: 10.1038/s41598-017-18938-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/11/2017] [Indexed: 12/20/2022] Open
Abstract
In this study, Rh2-treated graphene oxide (GO-Rh2), lysine-treated highly porous graphene (Gr-Lys), arginine-treated Gr (Gr-Arg), Rh2-treated Gr-Lys (Gr-Lys-Rh2) and Rh2-treated Gr-Arg (Gr-Arg-Rh2) were synthesized. MTT assay was used for evaluation of cytotoxicity of samples on ovarian cancer (OVCAR3), breast cancer (MDA-MB), Human melanoma (A375) and human mesenchymal stem cells (MSCs) cell lines. The percentage of apoptotic cells was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. The hemolysis and blood coagulation activity of nanostructures were performed. Interestingly, Gr-Arg, Gr-Lys, Gr-Arg-Rh2, and Gr-Lys-Rh2 were more active against cancer cell lines in comparison with their cytotoxic activity against normal cell lines (MSCs) with IC50 values higher than 100 μg/ml. The results of TUNEL assay indicates a significant increase in the rates of TUNEL positive cells by increasing the concentrations of nanomaterials. Results were also shown that aggregation and changes of RBCs morphology were occurred in the presence of GO, GO-Rh2, Gr-Arg, Gr-Lys, Gr-Arg-Rh2, and Gr-Lys-Rh2. Note that all the samples had effect on blood coagulation system, especially on PTT. All nanostrucure act as antitumor drug so that binding of drugs to a nostructures is irresolvable and the whole structure enter to the cell as a drug.
Collapse
Affiliation(s)
- Hadi Zare-Zardini
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Asghar Taheri-Kafrani
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, 81746-73441, Iran.
| | - Ahmad Amiri
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | | |
Collapse
|
15
|
Tseng CH. Metformin and esophageal cancer risk in Taiwanese patients with type 2 diabetes mellitus. Oncotarget 2017; 8:18802-18810. [PMID: 27861146 PMCID: PMC5386648 DOI: 10.18632/oncotarget.13390] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/09/2016] [Indexed: 12/13/2022] Open
Abstract
This study evaluated whether metformin might reduce esophageal cancer risk. Patients with type 2 diabetes mellitus diagnosed during 1999–2005 were recruited from the reimbursement database of Taiwan's National Health Insurance. Those newly treated with metformin (n = 288013, “ever users of metformin”) or other antidiabetic drugs (n = 16216, “never users of metformin”) were followed until December 31, 2011. Sensitivity analyses were conducted in a matched-pair sample of 16216 never users and 16216 ever users. Hazard ratios were estimated by Cox regression incorporated with the inverse probability of treatment weighting using propensity score. The risk associated with infection of Helicobacter pylori, Epstein-Barr virus, hepatitis B virus and hepatitis C virus was also evaluated. Results showed that the incidence of esophageal cancer in ever and never users was 25.03 and 50.87 per 100,000 person-years, respectively. The overall hazard ratio (95% confidence intervals) of 0.487 (0.347–0.684) suggested a significantly lower risk among metformin users. Hazard ratios comparing the first (< 21.47 months), second (21.47–46.00 months) and third (> 46.00 months) tertile of cumulative duration of metformin use to never users was 1.184 (0.834–1.680), 0.403 (0.276–0.588) and 0.113 (0.071–0.179), respectively. Infection of Helicobacter pylori (but not the other viral infections) significantly increased the risk, which could be ameliorated by metformin. Analyses in the matched sample consistently supported a protective role of metformin. In conclusion, metformin reduces esophageal cancer risk when the cumulative duration is more than approximately 2 years.
Collapse
Affiliation(s)
- Chin-Hsiao Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Division of Environmental Health and Occupational Medicine of The National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
16
|
Tseng CH. Metformin is associated with a lower risk of colorectal cancer in Taiwanese patients with type 2 diabetes: A retrospective cohort analysis. DIABETES & METABOLISM 2017; 43:438-445. [DOI: 10.1016/j.diabet.2017.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/11/2017] [Accepted: 03/22/2017] [Indexed: 02/06/2023]
|
17
|
Law BYK, Qu YQ, Mok SWF, Liu H, Zeng W, Han Y, Gordillo-Martinez F, Chan WK, Wong KMC, Wong VKW. New perspectives of cobalt tris(bipyridine) system: anti-cancer effect and its collateral sensitivity towards multidrug-resistant (MDR) cancers. Oncotarget 2017; 8:55003-55021. [PMID: 28903398 PMCID: PMC5589637 DOI: 10.18632/oncotarget.18991] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/16/2017] [Indexed: 01/08/2023] Open
Abstract
Platinating compounds including cisplatin, carboplatin, and oxaliplatin are common chemotherapeutic agents, however, patients developed resistance to these clinical agents after initial therapeutic treatments. Therefore, different approaches have been applied to identify novel therapeutic agents, molecular mechanisms, and targets for overcoming drug resistance. In this study, we have identified a panel of cobalt complexes that were able to specifically induce collateral sensitivity in taxol-resistant and p53-deficient cancer cells. Consistently, our reported anti-cancer functions of cobalt complexes 1-6 towards multidrug-resistant cancers have suggested the protective and non-toxic properties of cobalt metal-ions based compounds in anti-cancer therapies. As demonstrated in xenograft mouse model, our results also confirmed the identified cobalt complex 2 was able to suppress tumor growth in vivo. The anti-cancer effect of the cobalt complex 2 was further demonstrated to be exerted via the induction of autophagy, cell cycle arrest, and inhibition of cell invasion and P-glycoprotein (P-gp) activity. These data have provided alternative metal ion compounds for targeting drug resistance cancers in chemotherapies.
Collapse
Affiliation(s)
- Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Yuan Qing Qu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Simon Wing Fai Mok
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Hauwei Liu
- Department of Chemistry, South University of Science and Technology of China, Tangchang Boulevard, Nanshan District, Shenzhen, P.R. China
| | - Wu Zeng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Yu Han
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Flora Gordillo-Martinez
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Wai-Kit Chan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Keith Man-Chung Wong
- Department of Chemistry, South University of Science and Technology of China, Tangchang Boulevard, Nanshan District, Shenzhen, P.R. China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| |
Collapse
|