1
|
Zhang C, Yin W, Yuan LP, Xiao LJ, Yu J, Xiao WM, Luo G, Deng MM, Liu S, Lü MH. Circadian rhythm genes contribute to the prognosis prediction and potential therapeutic target in gastric cancer. Sci Rep 2024; 14:25426. [PMID: 39455662 PMCID: PMC11511820 DOI: 10.1038/s41598-024-76565-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
The role of circadian rhythm genes (CRGs) in gastric cancer (GC) is poorly understood. This study aimed to develop a CRG signature to improve understanding of prognosis and immunotherapy responses in GC patients. We integrated the The Cancer Genome Atlas-Stomach adenocarcinoma (TCGA-STAD) dataset with CRGs to develop a prognostic signature for GC. The signature's predictive ability was validated using Kaplan-Meier and ROC curves. The CIBERSORT algorithm evaluated immune cell proportions, and tumor immune dysfunction and exclusion score, as well as immune phenotype score, determined the response to immunotherapy for STAD patients. Finally, we assessed signature genes expression using real-time quantitative polymerase chain reaction. We developed a 4-CRG signature for STAD, demonstrating accurate prognostic ability. The low-risk group showed increased B cell memory and CD8 + T cells, and decreased M2 Macrophages compared to the high-risk group. Patients in the low-risk group had a higher likelihood of benefiting from immunotherapy. Additionally, gastric cancer tissues exhibited elevated expression of OPN3 and decreased expression of TP53 compared to adjacent tissue. This study successfully established a prognostic signature for CRGs, accurately predicting prognosis and immunotherapeutic response among STAD patients, providing insights for the development of personalized therapeutic strategies for these patients.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Lu Zhou, Sichuan province, China
| | - Wen Yin
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Lu Zhou, Sichuan province, China
| | - Li-Ping Yuan
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Lu Zhou, Sichuan province, China
| | - Li-Jun Xiao
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Lu Zhou, Sichuan province, China
| | - Jing Yu
- Department of Cardiothoracic Surgery, The Second People's Hospital of Yi Bin City, Yi Bin, Sichuan province, China
| | - Wan-Meng Xiao
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Lu Zhou, Sichuan province, China
| | - Gang Luo
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Lu Zhou, Sichuan province, China
| | - Ming-Ming Deng
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Lu Zhou, Sichuan province, China
| | - Sha Liu
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Lu Zhou, Sichuan province, China
| | - Mu-Han Lü
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Lu Zhou, Sichuan province, China.
| |
Collapse
|
2
|
Schafer RM, Giancotti LA, Chrivia JC, Li Y, Mufti F, Kufer TA, Zhang J, Doyle TM, Salvemini D. CARTp/GPR160 mediates behavioral hypersensitivities in mice through NOD2. Pain 2024:00006396-990000000-00725. [PMID: 39356206 DOI: 10.1097/j.pain.0000000000003418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/27/2024] [Indexed: 10/03/2024]
Abstract
ABSTRACT Neuropathic pain is a debilitating chronic condition that remains difficult to treat. More efficacious and safer therapeutics are needed. A potential target for therapeutic intervention recently identified by our group is the G-protein coupled receptor 160 (GPR160) and the cocaine- and amphetamine-regulated transcript peptide (CARTp) as a ligand for GPR160. Intrathecal administration of CARTp in rodents causes GPR160-dependent behavioral hypersensitivities. However, the molecular and biochemical mechanisms underpinning GPR160/CARTp-induced behavioral hypersensitivities in the spinal cord remain poorly understood. Therefore, we performed an unbiased RNA transcriptomics screen of dorsal horn spinal cord (DH-SC) tissues harvested at the time of peak CARTp-induced hypersensitivities and identified nucleotide-binding oligomerization domain-containing protein 2 (Nod2) as a gene that is significantly upregulated. Nucleotide-binding oligomerization domain-containing protein 2 is a cytosolic pattern-recognition receptor involved in activating the immune system in response to bacterial pathogens. While NOD2 is well studied under pathogenic conditions, the role of NOD2-mediated responses in nonpathogenic settings is still not well characterized. Genetic and pharmacological approaches reveal that CARTp-induced behavioral hypersensitivities are driven by NOD2, with co-immunoprecipitation studies indicating an interaction between GPR160 and NOD2. Cocaine- and amphetamine-regulated transcript peptide-induced behavioral hypersensitivities are independent of receptor-interacting protein kinase 2 (RIPK2), a common adaptor protein to NOD2. Immunofluorescence studies found NOD2 co-expressed with endothelial cells rather than glial cells, implicating potential roles for CARTp/NOD2 signaling in these cells. While these findings are based only on studies with male mice, our results identify a novel pathway by which CARTp causes behavioral hypersensitivities in the DH-SC through NOD2 and highlights the importance of NOD2-mediated responses in nonpathogenic settings.
Collapse
Affiliation(s)
- Rachel M Schafer
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Luigino A Giancotti
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - John C Chrivia
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Ying Li
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Fatma Mufti
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Jinsong Zhang
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Timothy M Doyle
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
3
|
Li X, Li C, Kang Y, Zhang R, Li P, Zheng Q, Wang H, Xiao H, Yuan L. G protein coupled receptor in apoptosis and apoptotic cell clearance. FASEB Bioadv 2024; 6:289-297. [PMID: 39399480 PMCID: PMC11467729 DOI: 10.1096/fba.2024-00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 10/15/2024] Open
Abstract
Apoptosis is a genetically programmed form of cell death that is substantially conserved across the evolutionary tree. Apoptotic cell elimination includes recognition, phagocytosis, and degradation. Failure to clear apoptotic cells can ultimately cause a series of human diseases, such as systemic lupus erythematosus, Alzheimer's disease, atherosclerosis, and cancer. Consequently, the timely and effective removal of apoptotic cells is crucial to maintaining the body's homeostasis. GPCRs belong to the largest membrane receptor family. Its intracellular domain exerts an effect on the trimer G protein. By combining with a variety of ligands, the extracellular domain of G protein initiates the dissociation of G protein trimers and progressively transmits signals downstream. Presently, numerous G protein-coupled receptors (GPCRs) have been identified as participants in the apoptosis signal transduction pathway and the apoptotic cell clearance pathway. Therefore, studies on the mechanism of GPCRs in the clearance of apoptotic cells is important for the development of GPCRs therapeutics.
Collapse
Affiliation(s)
- Xinyan Li
- College of Life Sciences, Shaanxi Normal University Xi'an China
| | - Chao Li
- College of Life Sciences, Shaanxi Normal University Xi'an China
| | - Yang Kang
- College of Life Sciences, Shaanxi Normal University Xi'an China
| | - Rui Zhang
- Emergency Department The Second Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - Peiyao Li
- College of Life Sciences, Shaanxi Normal University Xi'an China
| | - Qian Zheng
- College of Life Sciences, Shaanxi Normal University Xi'an China
| | - Hui Wang
- College of Life Sciences, Shaanxi Normal University Xi'an China
| | - Hui Xiao
- College of Life Sciences, Shaanxi Normal University Xi'an China
| | - Lei Yuan
- College of Life Sciences, Shaanxi Normal University Xi'an China
| |
Collapse
|
4
|
Zhu G, Wang X, Wang Y, Huang T, Zhang X, He J, Shi N, Chen J, Zhang J, Zhang M, Li J. Comparative transcriptomic study on the ovarian cancer between chicken and human. Poult Sci 2024; 103:104021. [PMID: 39002367 PMCID: PMC11298922 DOI: 10.1016/j.psj.2024.104021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 07/15/2024] Open
Abstract
The laying hen is the spontaneous model of ovarian tumor. A comprehensive comparison based on RNA-seq from hens and women may shed light on the molecular mechanisms of ovarian cancer. We performed next-generation sequencing of microRNA and mRNA expression profiles in 9 chicken ovarian cancers and 4 normal ovaries, which has been deposited in GSE246604. Together with 6 public datasets (GSE21706, GSE40376, GSE18520, GSE27651, GSE66957, TCGA-OV), we conducted a comparative transcriptomics study between chicken and human. In the present study, miR-451, miR-2188-5p, and miR-10b-5p were differentially expressed in normal ovaries, early- and late-stage ovarian cancers. We also disclosed 499 up-regulated genes and 1,061 down-regulated genes in chicken ovarian cancer. The molecular signals from 9 cancer hallmarks, 25 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and 369 Gene Ontology (GO) pathways exhibited abnormalities in ovarian cancer compared to normal ovaries via Gene Set Enrichment Analysis (GSEA). In the comparative analysis across species, we have uncovered the conservation of 5 KEGG and 76 GO pathways between chicken and human including the mismatch repair and ECM receptor interaction pathways. Moreover, a total of 174 genes contributed to the core enrichment for these KEGG and GO pathways were identified. Among these genes, the 22 genes were found to be associated with overall survival in patients with ovarian cancer. In general, we revealed the microRNA profiles of ovarian cancers in hens and updated the mRNA profiles previously derived from microarrays. And we also disclosed the molecular pathways and core genes of ovarian cancer shared between hens and women, which informs model animal studies and gene-targeted drug development.
Collapse
Affiliation(s)
- Guoqiang Zhu
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xinglong Wang
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yajun Wang
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Tianjiao Huang
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiao Zhang
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiliang He
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ningkun Shi
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Juntao Chen
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiannan Zhang
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mao Zhang
- Division of Vascular Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Juan Li
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Birgül Iyison N, Abboud C, Abboud D, Abdulrahman AO, Bondar AN, Dam J, Georgoussi Z, Giraldo J, Horvat A, Karoussiotis C, Paz-Castro A, Scarpa M, Schihada H, Scholz N, Güvenc Tuna B, Vardjan N. ERNEST COST action overview on the (patho)physiology of GPCRs and orphan GPCRs in the nervous system. Br J Pharmacol 2024. [PMID: 38825750 DOI: 10.1111/bph.16389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/09/2024] [Accepted: 02/24/2024] [Indexed: 06/04/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family of cell surface receptors that play a critical role in nervous system function by transmitting signals between cells and their environment. They are involved in many, if not all, nervous system processes, and their dysfunction has been linked to various neurological disorders representing important drug targets. This overview emphasises the GPCRs of the nervous system, which are the research focus of the members of ERNEST COST action (CA18133) working group 'Biological roles of signal transduction'. First, the (patho)physiological role of the nervous system GPCRs in the modulation of synapse function is discussed. We then debate the (patho)physiology and pharmacology of opioid, acetylcholine, chemokine, melatonin and adhesion GPCRs in the nervous system. Finally, we address the orphan GPCRs, their implication in the nervous system function and disease, and the challenges that need to be addressed to deorphanize them.
Collapse
Affiliation(s)
- Necla Birgül Iyison
- Department of Molecular Biology and Genetics, University of Bogazici, Istanbul, Turkey
| | - Clauda Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liege, Liege, Belgium
| | - Dayana Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liege, Liege, Belgium
| | | | - Ana-Nicoleta Bondar
- Faculty of Physics, University of Bucharest, Magurele, Romania
- Forschungszentrum Jülich, Institute for Computational Biomedicine (IAS-5/INM-9), Jülich, Germany
| | - Julie Dam
- Institut Cochin, CNRS, INSERM, Université Paris Cité, Paris, France
| | - Zafiroula Georgoussi
- Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anemari Horvat
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| | - Christos Karoussiotis
- Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Alba Paz-Castro
- Molecular Pharmacology of GPCRs research group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago, Spain
| | - Miriam Scarpa
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Schihada
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Bilge Güvenc Tuna
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Nina Vardjan
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
6
|
Ye C, Zhou Q, Lin S, Yang W, Cai X, Mai Y, Chen Y, Yang D, Wang MW. High expression of GPR160 in prostate cancer is unrelated to CARTp-mediated signaling pathways. Acta Pharm Sin B 2024; 14:1467-1471. [PMID: 38487007 PMCID: PMC10935005 DOI: 10.1016/j.apsb.2023.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/31/2023] [Accepted: 11/20/2023] [Indexed: 03/17/2024] Open
Affiliation(s)
- Chenyu Ye
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Research Center for Deepsea Bioresources, Sanya 572025, China
| | - Shi Lin
- Research Center for Deepsea Bioresources, Sanya 572025, China
| | - Wensheng Yang
- Department of Pharmacy, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Xiaoqing Cai
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yiting Mai
- Research Center for Deepsea Bioresources, Sanya 572025, China
| | - Yanyan Chen
- Research Center for Deepsea Bioresources, Sanya 572025, China
| | - Dehua Yang
- Research Center for Deepsea Bioresources, Sanya 572025, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Research Center for Deepsea Bioresources, Sanya 572025, China
- Department of Chemistry, School of Science, the University of Tokyo, Tokyo 113-0033, Japan
- School of Pharmacy, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
7
|
Owe-Larsson M, Pawłasek J, Piecha T, Sztokfisz-Ignasiak A, Pater M, Janiuk IR. The Role of Cocaine- and Amphetamine-Regulated Transcript (CART) in Cancer: A Systematic Review. Int J Mol Sci 2023; 24:9986. [PMID: 37373130 PMCID: PMC10297965 DOI: 10.3390/ijms24129986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The functions of cocaine- and amphetamine-regulated transcript (CART) neuropeptide encoded by the CARTPT gene vary from modifying behavior and pain sensitivity to being an antioxidant. Putative CART peptide receptor GPR160 was implicated recently in the pathogenesis of cancer. However, the exact role of CART protein in the development of neoplasms remains unclear. This systematic review includes articles retrieved from the Scopus, PubMed, Web of Science and Medline Complete databases. Nineteen publications that met the inclusion criteria and describe the association of CART and cancer were analyzed. CART is expressed in various types of cancer, e.g., in breast cancer and neuroendocrine tumors (NETs). The role of CART as a potential biomarker in breast cancer, stomach adenocarcinoma, glioma and some types of NETs was suggested. In various cancer cell lines, CARTPT acts an oncogene, enhancing cellular survival by the activation of the ERK pathway, the stimulation of other pro-survival molecules, the inhibition of apoptosis or the increase in cyclin D1 levels. In breast cancer, CART was reported to protect tumor cells from tamoxifen-mediated death. Taken together, these data support the role of CART activity in the pathogenesis of cancer, thus opening new diagnostic and therapeutic approaches in neoplastic disorders.
Collapse
Affiliation(s)
- Maja Owe-Larsson
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland; (M.O.-L.); (J.P.); (A.S.-I.); (M.P.)
| | - Jan Pawłasek
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland; (M.O.-L.); (J.P.); (A.S.-I.); (M.P.)
| | - Tomasz Piecha
- Department of General, Oncological and Functional Urology, Medical University of Warsaw, Lindleya 4, 02-005 Warsaw, Poland;
| | - Alicja Sztokfisz-Ignasiak
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland; (M.O.-L.); (J.P.); (A.S.-I.); (M.P.)
| | - Mikołaj Pater
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland; (M.O.-L.); (J.P.); (A.S.-I.); (M.P.)
| | - Izabela R. Janiuk
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland; (M.O.-L.); (J.P.); (A.S.-I.); (M.P.)
| |
Collapse
|
8
|
Li S, Chen J, Chen X, Yu J, Guo Y, Li M, Pu X. Therapeutic and prognostic potential of GPCRs in prostate cancer from multi-omics landscape. Front Pharmacol 2022; 13:997664. [PMID: 36110544 PMCID: PMC9468875 DOI: 10.3389/fphar.2022.997664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Prostate cancer (PRAD) is a common and fatal malignancy. It is difficult to manage clinically due to drug resistance and poor prognosis, thus creating an urgent need for novel therapeutic targets and prognostic biomarkers. Although G protein-coupled receptors (GPCRs) have been most attractive for drug development, there have been lack of an exhaustive assessment on GPCRs in PRAD like their molecular features, prognostic and therapeutic values. To close this gap, we herein systematically investigate multi-omics profiling for GPCRs in the primary PRAD by analyzing somatic mutations, somatic copy-number alterations (SCNAs), DNA methylation and mRNA expression. GPCRs exhibit low expression levels and mutation frequencies while SCNAs are more prevalent. 46 and 255 disease-related GPCRs are identified by the mRNA expression and DNA methylation analysis, respectively, complementing information lack in the genome analysis. In addition, the genomic alterations do not exhibit an observable correlation with the GPCR expression, reflecting the complex regulatory processes from DNA to RNA. Conversely, a tight association is observed between the DNA methylation and mRNA expression. The virtual screening and molecular dynamics simulation further identify four potential drugs in repositioning to PRAD. The combination of 3 clinical characteristics and 26 GPCR molecular features revealed by the transcriptome and genome exhibit good performance in predicting progression-free survival in patients with the primary PRAD, providing candidates as new biomarkers. These observations from the multi-omics analysis on GPCRs provide new insights into the underlying mechanism of primary PRAD and potential of GPCRs in developing therapeutic strategies on PRAD.
Collapse
Affiliation(s)
- Shiqi Li
- College of Chemistry, Sichuan University, Chengdu, China
| | - Jianfang Chen
- College of Chemistry, Sichuan University, Chengdu, China
| | - Xin Chen
- College of Chemistry, Sichuan University, Chengdu, China
| | - Jin Yu
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA, United States
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu, China
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu, China
- *Correspondence: Xuemei Pu, ; Menglong Li,
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu, China
- *Correspondence: Xuemei Pu, ; Menglong Li,
| |
Collapse
|
9
|
Abbas A, Jun P, Yuan JY, Sun L, Jiang J, Yuan S. Downregulation of GPR160 inhibits the progression of glioma through suppressing epithelial to mesenchymal transition (EMT) biomarkers. Basic Clin Pharmacol Toxicol 2022; 131:241-250. [PMID: 35771163 DOI: 10.1111/bcpt.13769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/27/2022] [Accepted: 06/24/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is one of the most fatal types of malignant tumors, the cause of which is mostly unknown. Orphan GPCRs (GPRs) have been previously implicated in tumor growth and metastasis. Therefore, these GPRs could prove to be alternative and promising therapeutic targets for cancer treatment. OBJECTIVE The role of GPR160 in GBM has not yet been assessed. This study aims to explore the association of GPR160 with glioma progression and investigate its role in epithelial-to-mesenchymal transition (EMT) and metastasis. METHODS Changes in protein expression were assessed using western blot analysis and immunofluorescent staining assays, while mRNA expression changes were evaluated using qRT-PCR. To detect the changes in progression and metastasis, MTT, EdU proliferation, wound healing, transwell migration, and flow cytometry assays were carried out in vitro. An epithelial to mesenchymal phenotypic analysis was performed to detect EMT. RESULTS We demonstrated that knockdown of GPR160 inhibited proliferation, colony formation, and cell viability and promoted apoptosis. Pro-apoptotic biomarkers were upregulated, while anti-apoptotic biomarkers were downregulated. Cell lines with GPR160 knockdown (GPR160 KD) showed a slowed migration rate and decreased invasion ability. EMT mesenchymal biomarkers were downregulated in GPR160 KD cell lines, while epithelial biomarkers were upregulated. CONCLUSION This study provides evidence that GPR160 is a potential therapeutic target in GBM for the first time. These findings can be used to discover in detail the molecular mechanism and pathways through which GPR160 promotes glioma progression.
Collapse
Affiliation(s)
- Azar Abbas
- Jiangsu key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, P. R China
| | - Peng Jun
- Jiangsu key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, P. R China
| | - Jiang Yuan Yuan
- Jiangsu key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, P. R China
| | - Li Sun
- Jiangsu key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, P. R China
| | - Jinwei Jiang
- Jiangsu key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, P. R China
| | - Shengtao Yuan
- Jiangsu key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, P. R China
| |
Collapse
|
10
|
Sakellakis M. Orphan receptors in prostate cancer. Prostate 2022; 82:1016-1024. [PMID: 35538397 DOI: 10.1002/pros.24370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/22/2022] [Accepted: 04/22/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND The identification of new cellular receptors has been increasing rapidly. A receptor is called "orphan" if an endogenous ligand has not been identified yet. METHODS Here we review receptors that contribute to prostate cancer and are considered orphan or partially orphan. This means that the full spectrum of their endogenous ligands remains unknown. RESULTS The orphan receptors are divided into two major families. The first group includes G protein-coupled receptors. Most are orphan olfactory receptors. OR51E1 inhibits cell proliferation and induces senescence in prostate cancer. OR51E2 inhibits prostate cancer growth, but promotes invasiveness and metastasis. GPR158, GPR110, and GPCR-X play significant roles in prostate cancer development and progression. However, GPR160 induces cell cycle arrest and apoptosis. The other major subset of orphan receptors are nuclear receptors. Receptor-related orphan receptor α (RORα) inhibits tumor growth, but RORγ stimulates androgen receptor signaling. PXR contributes to metabolic deactivation of androgens and inhibits cell proliferation. TLX has protumorigenic effects in prostate cancer, while its knockdown triggers cellular senescence and growth arrest. Estrogen-related receptor ERRγ can inhibit tumor growth but ERRα is protumorigenic. Dax1 and short heterodimeric partner are also inhibitory in prostate cancer. CONCLUSION There is a "zoo" of relatively underappreciated orphan receptors that play key roles in prostate cancer.
Collapse
Affiliation(s)
- Minas Sakellakis
- Fourth Oncology Department and Comprehensive Clinical Trials Center, Metropolitan Hospital, Athens, Greece
| |
Collapse
|
11
|
Marghani BH, Fehaid A, Ateya AI, Ezz MA, Saleh RM. Photothermal therapeutic potency of plasmonic silver nanoparticles for apoptosis and anti-angiogenesis in testosterone induced benign prostate hyperplasia in rats. Life Sci 2021; 291:120240. [PMID: 34942164 DOI: 10.1016/j.lfs.2021.120240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 12/11/2022]
Abstract
AIMS In this study, we used a near-infrared laser (NIR) to increase the potency of silver nanoparticles (AgNPs) to develop a novel, less invasive, and simple photothermal therapy technique for benign prostate hyperplasia (BPH). MATERIALS AND METHODS The shape, particle size, and zeta-potential of polyvinylpyrrolidone coated-AgNPs (PVP-AgNPs) were determined using transmission electron microscopy (TEM), Zeta-potential, and Particle size analyzer (ELSZ). To induce BPH, thirty-six male Sprague-Dawley (SD) rats were given intramuscular (i.m) injections of testosterone propionate (TP) at 5 mg/kg body weight (b.w)/day suspended in 0.1 ml of olive oil for 14 days. Photothermal therapy with AgNPs-NIR for 14 days was carried out. Prostate size, prostate index (PI), dihydrotestosterone (DHT), prostate-specific antigen (PSA), gross, hepatic, and renal toxicity, as well as antioxidant activity, apoptosis, and angiogenesis markers in prostatic tissues were measured. Histological examinations of prostates and biocompatibility of NIR-AgNPs on vital organs were also performed. KEY FINDINGS The aggregated spherical AgNPs with a mean size of 50-90 nm and a Zeta potential of -53.22 mV displayed high effectiveness in the NIR (532 nm-1 W) region by decreasing prostate size, PI, DHT, and PSA in BPH rats with no signs of gross, hepatic, or renal damage. As compared to alternative therapies, hyperthermia therapy increased antioxidant activities, induced apoptosis, inhibited angiogenesis, reduced histological alterations in the prostates of BPH rats, and improved biocompatibility of the vital organs. SIGNIFICANCE The current study demonstrated the effectiveness of plasmonic AgNPs photothermal therapy in the treatment of BPH.
Collapse
Affiliation(s)
- Basma H Marghani
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Alaa Fehaid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed I Ateya
- Department of Husbandry & Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Aboul Ezz
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Rasha M Saleh
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
12
|
An Insight into GPCR and G-Proteins as Cancer Drivers. Cells 2021; 10:cells10123288. [PMID: 34943797 PMCID: PMC8699078 DOI: 10.3390/cells10123288] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of cell surface signaling receptors known to play a crucial role in various physiological functions, including tumor growth and metastasis. Various molecules such as hormones, lipids, peptides, and neurotransmitters activate GPCRs that enable the coupling of these receptors to highly specialized transducer proteins, called G-proteins, and initiate multiple signaling pathways. Integration of these intricate networks of signaling cascades leads to numerous biochemical responses involved in diverse pathophysiological activities, including cancer development. While several studies indicate the role of GPCRs in controlling various aspects of cancer progression such as tumor growth, invasion, migration, survival, and metastasis through its aberrant overexpression, mutations, or increased release of agonists, the explicit mechanisms of the involvement of GPCRs in cancer progression is still puzzling. This review provides an insight into the various responses mediated by GPCRs in the development of cancers, the molecular mechanisms involved and the novel pharmacological approaches currently preferred for the treatment of cancer. Thus, these findings extend the knowledge of GPCRs in cancer cells and help in the identification of therapeutics for cancer patients.
Collapse
|
13
|
GPR160 is a potential biomarker associated with prostate cancer. Signal Transduct Target Ther 2021; 6:241. [PMID: 34168114 PMCID: PMC8225807 DOI: 10.1038/s41392-021-00583-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/02/2021] [Accepted: 03/24/2021] [Indexed: 11/08/2022] Open
|
14
|
Chen YJ, You GR, Lai MY, Lu LS, Chen CY, Ting LL, Lee HL, Kanno Y, Chiou JF, Cheng AJ. A Combined Systemic Strategy for Overcoming Cisplatin Resistance in Head and Neck Cancer: From Target Identification to Drug Discovery. Cancers (Basel) 2020; 12:cancers12113482. [PMID: 33238517 PMCID: PMC7700594 DOI: 10.3390/cancers12113482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/02/2020] [Accepted: 11/21/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The efficiency of cisplatin is limited by drug resistance in head–neck cancer (HNC) patients. In this study, we established a cisplatin resistance (CR) cell model, generated CR related transcriptome profiling, and combined application of bioinformatics methodology to discover a possible way to overcome CR. Analysis of the functional pathway revealed that mitotic division is a novel mechanism significantly contributing to CR. Spindle pole body component 25 (SPC25), a kinetochore protein, was overexpressed in CR cells and significantly correlated with worse HNC patient survival. The silencing of SPC25 increased cisplatin sensitivity and reduced cancer stemness property. Integration of CR transcriptome profiling and drug database discovered a natural extract compound, celastrol, possessing a potent cytotoxic effect in CR cells to reverse CR. Thus, we combined systemic strategies to demonstrated that a novel biological process (mitotic cell division), a hub gene (SPC25), and a natural compound (celastrol) as novel strategies for the treatment of refractory HNC. Abstract Cisplatin is the first-line chemotherapy agent for head and neck cancer (HNC), but its therapeutic effects are hampered by its resistance. In this study, we employed systemic strategies to overcome cisplatin resistance (CR) in HNC. CR cells derived from isogenic HNC cell lines were generated. The CR related hub genes, functional mechanisms, and the sensitizing candidates were globally investigated by transcriptomic and bioinformatic analyses. Clinically, the prognostic significance was assessed by the Kaplan–Meier method. Cellular and molecular techniques, including cell viability assay, tumorsphere formation assay, RT-qPCR, and immunoblot, were used. Results showed that these CR cells possessed highly invasive and stem-like properties. A total of 647 molecules was identified, and the mitotic division exhibited a novel functional mechanism significantly related to CR. A panel of signature molecules, MSRB3, RHEB, ULBP1, and spindle pole body component 25 (SPC25), was found to correlate with poor prognosis in HNC patients. SPC25 was further shown as a prominent molecule, which markedly suppressed cancer stemness and attenuated CR after silencing. Celastrol, a nature extract compound, was demonstrated to effectively inhibit SPC25 expression and reverse CR phenotype. In conclusion, the development of SPC25 inhibitors, such as the application of celastrol, maybe a novel strategy to sensitize cisplatin for the treatment of refractory HNC.
Collapse
Affiliation(s)
- Yin-Ju Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Y.-J.C.); (L.-S.L.)
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 11031, Taiwan; (L.-L.T.); (H.-L.L.); (J.-F.C.)
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Guo-Rung You
- Department of Medical Biotechnology, Medical College, Chang Gung University, Taoyuan 33302, Taiwan; (G.-R.Y.); (M.-Y.L.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Meng-Yu Lai
- Department of Medical Biotechnology, Medical College, Chang Gung University, Taoyuan 33302, Taiwan; (G.-R.Y.); (M.-Y.L.)
| | - Long-Sheng Lu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Y.-J.C.); (L.-S.L.)
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 11031, Taiwan; (L.-L.T.); (H.-L.L.); (J.-F.C.)
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chang-Yu Chen
- Division of Molecular Regulation of Inflammatory and Immune Disease, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan; (C.-Y.C.); (Y.K.)
- Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Lai-Lei Ting
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 11031, Taiwan; (L.-L.T.); (H.-L.L.); (J.-F.C.)
| | - Hsin-Lun Lee
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 11031, Taiwan; (L.-L.T.); (H.-L.L.); (J.-F.C.)
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
| | - Yuzuka Kanno
- Division of Molecular Regulation of Inflammatory and Immune Disease, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan; (C.-Y.C.); (Y.K.)
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
| | - Jeng-Fong Chiou
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 11031, Taiwan; (L.-L.T.); (H.-L.L.); (J.-F.C.)
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
| | - Ann-Joy Cheng
- Department of Medical Biotechnology, Medical College, Chang Gung University, Taoyuan 33302, Taiwan; (G.-R.Y.); (M.-Y.L.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Radiation Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
- Correspondence: ; Tel.: +886-3-211-8800
| |
Collapse
|
15
|
Koohi Hosseinabadi O, Behnam MA, Khoradmehr A, Emami F, Sobhani Z, Dehghanian AR, Dehghani Firoozabadi A, Rahmanifar F, Vafaei H, Tamadon AD, Tanideh N, Tamadon A. Benign prostatic hyperplasia treatment using plasmonic nanoparticles irradiated by laser in a rat model. Biomed Pharmacother 2020; 127:110118. [PMID: 32244195 DOI: 10.1016/j.biopha.2020.110118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/12/2020] [Accepted: 03/19/2020] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE In the current study we have stimulated the efficacy of plasmonic nanoparticles (NPs) by laser hyperthermia to achieve a less invasive method for tumor photothermal therapy of benign prostatic hyperplasia (BPH). METHODS The levels of apoptosis on induced BPH in rats were assessed after treatment and revealed and recorded by various assayed. Moreover, the expression of caspases was considered to demonstrate the apoptotic pathways due to laser induced plasmonic NPs. RESULTS In the Laser + NPs group prostate size of induced BPH decreased. Laser + NPs also decreased prostate specific antigen in comparison with the BPH groups. Furthermore, Laser + NPs attenuated BPH histopathologic indices in the rats. Laser + NPs induced apoptosis in prostatic epithelial cells via caspase-1 pathway. CONCLUSIONS Altogether, the approach and findings from this study can be applied to introduce the laser irritated NPs method as a novel and less invasive therapy for patients suffering from BPH.
Collapse
Affiliation(s)
- Omid Koohi Hosseinabadi
- Laparoscopy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Ali Behnam
- Nano-Opto-Electronic Research Center, Electrical and Electronics Engineering Department, Shiraz University of Technology, Shiraz, Iran.
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Farzin Emami
- Nano-Opto-Electronic Research Center, Electrical and Electronics Engineering Department, Shiraz University of Technology, Shiraz, Iran.
| | - Zahra Sobhani
- Quality Control of Drug Products Department, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | - Ali Dehghani Firoozabadi
- Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Farhad Rahmanifar
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Homeira Vafaei
- Maternal-Fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Aryan-Dokht Tamadon
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amin Tamadon
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
16
|
Usman S, Khawer M, Rafique S, Naz Z, Saleem K. The current status of anti-GPCR drugs against different cancers. J Pharm Anal 2020; 10:517-521. [PMID: 33425448 PMCID: PMC7775845 DOI: 10.1016/j.jpha.2020.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/23/2022] Open
Abstract
G protein coupled receptors (GPCRs) have emerged as the most potential target for a number of drug discovery programs ranging from control of blood pressure, diabetes, cure for genetic diseases to treatment of cancer. A panel of different ligands including hormones, peptides, ions and small molecules is responsible for activation of these receptors. Molecular genetics has identified key GPCRs, whose mutations or altered expressions are linked with tumorgenicity. In this review, we discussed recent advances regarding the involvement of GPCRs in the development of cancers and approaches to manipulating the mechanism behind GPCRs involved tumor growth and metastasis to treat different types of human cancer. This review provides an insight into the current scenario of GPCR-targeted therapy, progress to date and the challenges in the development of anticancer drugs.
Collapse
Affiliation(s)
- Sana Usman
- Centre for Applied Molecular Biology, 87-West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
| | - Maria Khawer
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Shazia Rafique
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Zara Naz
- Centre for Applied Molecular Biology, 87-West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
| | - Komal Saleem
- Centre for Applied Molecular Biology, 87-West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
17
|
Ghayour-Mobarhan M, Ferns GA, Moghbeli M. Genetic and molecular determinants of prostate cancer among Iranian patients: An update. Crit Rev Clin Lab Sci 2020; 57:37-53. [PMID: 31895010 DOI: 10.1080/10408363.2019.1657061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prostate cancer (PCa) is one of the most common age-related cancers among men. Various environmental and genetic factors are involved in the development and progression of PCa. In most cases, the primary symptoms of disease are not severe. Therefore, it is common for patients to be referred with severe clinical manifestations at advanced stages of disease. Since this malignancy is age related and Iran will face a significant increase in the number of seniors, it is expected that the prevalence of PCa among Iranian men will rise. PCa progression has been observed to be associated with genetic and ethnic factors. It may therefore be clinically useful to determine a panel of genetic markers, in addition to routine diagnostic methods, to detect tumors in the early stages. In the present review, we have summarized the reported genetic markers in PCa Iranian patients to pave the way for the determination of an ethnic specific genetic marker panel for the early detection of PCa. To understand the genetic and molecular biology of PCa among Iranians, we have categorized these genetic markers based on their cellular functions.
Collapse
Affiliation(s)
- Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, UK
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Zhang ZW, Zhang HL, Yu YH, Ouyang YM, Chen ZC, He XS, He ZM. Carboxyl terminal activating region 3 of latent membrane protein 1 encoded by the Epstein‑Barr virus regulates cell proliferation and protein expression in NP69 cells. Mol Med Rep 2019; 21:720-730. [PMID: 31974609 PMCID: PMC6947836 DOI: 10.3892/mmr.2019.10859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/23/2018] [Indexed: 01/14/2023] Open
Abstract
In the present study, the mechanism by which carboxyl terminal activating region 3 (CTAR3) of latent membrane protein 1 (LMP1), encoded by the Epstein-Barr virus, regulated cell proliferation and protein expression was investigated in the nasopharyngeal epithelial cell line NP69. The deletion mutant LMP1 (LMP1Δ232-351; amino acid residues including 232–351 codons in CTAR3 deleted) was generated by polymerase chain reaction. An NP69-LMP1Δ232-351 cell line was established by retroviral infection. Finally, cell proliferation and protein expression of NP69 cells expressing LMP1Δ232-351 were examined using a cell growth curve and western blot analysis. The results demonstrated: i) The proliferation of NP69-LMP1Δ232-351 cells was significantly decreased compared with cells expressing wild type LMP1 (LMP1WT; n=3; P<0.05); ii) 17 proteins exhibited differential protein expression (>2-fold change) in NP69-LMP1Δ232-351 cells compared with NP69-LMP1WT cells; and iii) LMP1WT was involved in activating the Janus kinase 3 (JAK3) promoter and regulating the expression of JAK3 protein, while LMP1Δ232-351 was almost defective in ability to activate the JAK promoter. These results suggested that LMP1-CTAR3 may be an important functional domain for regulating cell proliferation and protein expression in nasopharyngeal epithelial cells.
Collapse
Affiliation(s)
- Zhi-Wei Zhang
- Cancer Research Institute of Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan, Hengyang, Hunan 421001, P.R. China
| | - He-Liang Zhang
- Cancer Research Institute of Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan, Hengyang, Hunan 421001, P.R. China
| | - Yan-Hui Yu
- Cancer Research Institute, Central South University, Xiangya School of Medicine, Changsha, Hunan 410078, P.R. China
| | - Yong-Mei Ouyang
- Cancer Research Institute, Central South University, Xiangya School of Medicine, Changsha, Hunan 410078, P.R. China
| | - Zhu-Chu Chen
- Cancer Research Institute, Central South University, Xiangya School of Medicine, Changsha, Hunan 410078, P.R. China
| | - Xiu-Sheng He
- Cancer Research Institute of Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan, Hengyang, Hunan 421001, P.R. China
| | - Zhi-Min He
- Cancer Research Institute, Central South University, Xiangya School of Medicine, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
19
|
Sriram K, Moyung K, Corriden R, Carter H, Insel PA. GPCRs show widespread differential mRNA expression and frequent mutation and copy number variation in solid tumors. PLoS Biol 2019; 17:e3000434. [PMID: 31765370 PMCID: PMC6901242 DOI: 10.1371/journal.pbio.3000434] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 12/09/2019] [Accepted: 10/24/2019] [Indexed: 01/22/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the most widely targeted gene family for Food and Drug Administration (FDA)-approved drugs. To assess possible roles for GPCRs in cancer, we analyzed The Cancer Genome Atlas (TCGA) data for mRNA expression, mutations, and copy number variation (CNV) in 20 categories and 45 subtypes of solid tumors and quantified differential expression (DE) of GPCRs by comparing tumors against normal tissue from the Gene Tissue Expression Project (GTEx) database. GPCRs are overrepresented among coding genes with elevated expression in solid tumors. This analysis reveals that most tumor types differentially express >50 GPCRs, including many targets for approved drugs, hitherto largely unrecognized as targets of interest in cancer. GPCR mRNA signatures characterize specific tumor types and correlate with expression of cancer-related pathways. Tumor GPCR mRNA signatures have prognostic relevance for survival and correlate with expression of numerous cancer-related genes and pathways. GPCR expression in tumors is largely independent of staging, grading, metastasis, and/or driver mutations. GPCRs expressed in cancer cell lines largely parallel GPCR expression in tumors. Certain GPCRs are frequently mutated and appear to be hotspots, serving as bellwethers of accumulated genomic damage. CNV of GPCRs is common but does not generally correlate with mRNA expression. Our results suggest a previously underappreciated role for GPCRs in cancer, perhaps as functional oncogenes, biomarkers, surface antigens, and pharmacological targets.
Collapse
Affiliation(s)
- Krishna Sriram
- Department of Pharmacology, University of California, San Diego, California, United States of America
| | - Kevin Moyung
- Department of Pharmacology, University of California, San Diego, California, United States of America
| | - Ross Corriden
- Department of Pharmacology, University of California, San Diego, California, United States of America
| | - Hannah Carter
- Department of Medicine, University of California, San Diego, California, United States of America
| | - Paul A. Insel
- Department of Pharmacology, University of California, San Diego, California, United States of America
- Department of Medicine, University of California, San Diego, California, United States of America
| |
Collapse
|
20
|
Wang Y, Li H, Ma J, Fang T, Li X, Liu J, Afewerky HK, Li X, Gao Q. Integrated Bioinformatics Data Analysis Reveals Prognostic Significance Of SIDT1 In Triple-Negative Breast Cancer. Onco Targets Ther 2019; 12:8401-8410. [PMID: 31632087 PMCID: PMC6792947 DOI: 10.2147/ott.s215898] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/14/2019] [Indexed: 12/24/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) is a heterogeneous disease with a worse prognosis. However, current therapies have rarely improved the outcome of patients with TNBC. Here we sought to identify novel biomarkers or targets for TNBC. Materials and methods Patients GSE76275 clinic traits and their corresponding mRNA profiles for 198 TNBC and 67 non-TNBC were obtained from the GEO database. Weighted gene co-expression network analysis (WGCNA) of the GSE76275 keyed out hub genes, and the differentially expressed genes (DEGs) were identified with the cut-off of adjusted P (adj. P) <0.01 and |log2 fold-change (FC)| > 1.5. The hub - DEGs overlapping genes, as key genes, were considered for further study using Kaplan-Meier plotter online analysis. Subsequently, Breast Cancer Gene-Expression Miner v4.0 and tissue microarray analysis were applied to determine the transcriptional and translational levels of every key gene. Following plasmid transfection for overexpression, the proliferation of TNBC cells was determined by CCK8 and colony formation assay. Moreover, xenograft tumor models were canvassed to investigate their effect upon in vivo tumor growth. Results Four genes (SIDT1, ANKRD30A, GPR160, and CA12) were found to be associated with relapse-free survival (RFS) in TNBC through WGCNA and DEGs integrated analysis. Patients with a higher level of SIDT1 had significantly better RFS compared to those with lower levels. The transcriptional and translational levels of SIDT1 were validated as downregulated in patients with triple-negative status, negative estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Furthermore, SIDT1 inhibited proliferation of breast cancer cells (MDA-MB-231 and MDA-MB-468) and xenograft studies demonstrated that SIDT1 can suppress tumor growth in vivo. Conclusion This study suggests that SIDT1 may play a crucial role in TNBC progression and has the potential as a prognostic biomarker of TNBC.
Collapse
Affiliation(s)
- Ya Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hanning Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jingjing Ma
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Tian Fang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaoting Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jiahao Liu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Henok Kessete Afewerky
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiong Li
- Department of Gynecology and Obstetrics, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qinglei Gao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
21
|
Sawada Y, Kikugawa T, Iio H, Sakakibara I, Yoshida S, Ikedo A, Yanagihara Y, Saeki N, Győrffy B, Kishida T, Okubo Y, Nakamura Y, Miyagi Y, Saika T, Imai Y. GPRC5A facilitates cell proliferation through cell cycle regulation and correlates with bone metastasis in prostate cancer. Int J Cancer 2019; 146:1369-1382. [PMID: 31276604 DOI: 10.1002/ijc.32554] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/07/2019] [Accepted: 06/24/2019] [Indexed: 12/29/2022]
Abstract
The prognosis of patients with progressive prostate cancers that are hormone refractory and/or have bone metastasis is poor. Multiple therapeutic targets to improve prostate cancer patient survival have been investigated, including orphan GPCRs. In our study, we identified G Protein-Coupled Receptor Class C Group 5 Member A (GPRC5A) as a candidate therapeutic molecule using integrative gene expression analyses of registered data sets for prostate cancer cell lines. Kaplan-Meier analysis of TCGA data sets revealed that patients who have high GPRC5A expression had significantly shorter overall survival. PC3 prostate cancer cells with CRISPR/Cas9-mediated GPRC5A knockout exhibited significantly reduced cell proliferation both in vitro and in vivo. RNA-seq revealed that GPRC5A KO PC3 cells had dysregulated expression of cell cycle-related genes, leading to cell cycle arrest at the G2/M phase. Furthermore, the registered gene expression profile data set showed that the expression level of GPRC5A in original lesions of prostate cancer patients with bone metastasis was higher than that without bone metastasis. In fact, GPRC5A KO PC3 cells failed to establish bone metastasis in xenograft mice models. In addition, our clinical study revealed that GPRC5A expression levels in prostate cancer patient samples were significantly correlated with bone metastasis as well as the patient's Gleason score (GS). Combined assessment with the immunoreactivity of GPRC5A and GS displayed higher specificity for predicting the occurrence of bone metastasis. Together, our findings indicate that GPRC5A can be a possible therapeutic target and prognostic marker molecule for progressive prostate cancer.
Collapse
Affiliation(s)
- Yuichiro Sawada
- Department of Urology, Ehime University Graduate School of Medicine, Toon, Japan.,Department of Pathophysiology, Ehime University Graduate School of Medicine, Toon, Japan.,Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Tadahiko Kikugawa
- Department of Urology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Hiroyuki Iio
- Department of Urology, Ehime University Graduate School of Medicine, Toon, Japan.,Department of Pathophysiology, Ehime University Graduate School of Medicine, Toon, Japan.,Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Iori Sakakibara
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Shuhei Yoshida
- Department of Pathophysiology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Aoi Ikedo
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Yuta Yanagihara
- Department of Pathophysiology, Ehime University Graduate School of Medicine, Toon, Japan.,Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Japan.,Division of Laboratory Animal Research, Advanced Research Support Center, Ehime University, Toon, Japan
| | - Noritaka Saeki
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Japan.,Division of Laboratory Animal Research, Advanced Research Support Center, Ehime University, Toon, Japan
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary.,Semmelweis University 2nd Dept. of Pediatrics, Budapest, Hungary
| | - Takeshi Kishida
- Department of Urology, Kanagawa Cancer Center, Yokohama, Japan
| | - Yoichiro Okubo
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Japan
| | - Yoshiyasu Nakamura
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Takashi Saika
- Department of Urology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Yuuki Imai
- Department of Pathophysiology, Ehime University Graduate School of Medicine, Toon, Japan.,Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Japan.,Division of Laboratory Animal Research, Advanced Research Support Center, Ehime University, Toon, Japan
| |
Collapse
|
22
|
Opportunities for therapeutic antibodies directed at G-protein-coupled receptors. Nat Rev Drug Discov 2017; 16:787-810. [PMID: 28706220 DOI: 10.1038/nrd.2017.91] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
G-protein-coupled receptors (GPCRs) are activated by a diverse range of ligands, from large proteins and proteases to small peptides, metabolites, neurotransmitters and ions. They are expressed on all cells in the body and have key roles in physiology and homeostasis. As such, GPCRs are one of the most important target classes for therapeutic drug discovery. The development of drugs targeting GPCRs has therapeutic value across a wide range of diseases, including cancer, immune and inflammatory disorders as well as neurological and metabolic diseases. The progress made by targeting GPCRs with antibody-based therapeutics, as well as technical hurdles to overcome, are presented and discussed in this Review. Antibody therapeutics targeting C-C chemokine receptor type 4 (CCR4), CCR5 and calcitonin gene-related peptide (CGRP) are used as illustrative clinical case studies.
Collapse
|
23
|
Bai Y, Xiao Y, Dai Y, Chen X, Li D, Tan X, Zhang X. Stanniocalcin 1 promotes cell proliferation via cyclin E1/cyclin‑dependent kinase 2 in human prostate carcinoma. Oncol Rep 2017; 37:2465-2471. [PMID: 28350121 DOI: 10.3892/or.2017.5501] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/23/2016] [Indexed: 11/06/2022] Open
Abstract
Stanniocalcin 1 (STC1) is a glycoprotein hormone that is involved in calcium/phosphate homeostasis. Increasing evidence suggests that STC1 is involved in carcinogenesis; however, few studies have defined the mechanisms and functional roles of STC1 activity in prostate carcinogenesis. In the present study, MTT, flow cytometry and colony formation assays, and small interfering RNA (siRNA) and overexpression in multiple cell lines were used to investigate the function of STC1 in prostate carcinoma in vivo and in vivo. Knockdown of endogenous STC1 using a siRNA decreased the proliferation of DU145 and LNCaP2 cells. These results were consistent with the changes in the protein levels of cyclin E1 and cyclin‑dependent kinase 2. By contrast, increased expression of STC1 in RWPE-1 cells led to increased cell proliferation, suggesting that STC1 promotes prostate carcinoma cell proliferation. In summary, the present study investigated the impact of STC1 on the proliferation and growth of prostate cancer in an effort to evaluate STC1 as a predictive biomarker and as a potential target for therapy.
Collapse
Affiliation(s)
- Yao Bai
- International Medical Center, Xiang Ya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yichen Xiao
- The Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yuanqing Dai
- Department of Geriatric Medicine, Xiang Ya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiong Chen
- International Medical Center, Xiang Ya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Dongjie Li
- International Medical Center, Xiang Ya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xinji Tan
- International Medical Center, Xiang Ya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiaobo Zhang
- International Medical Center, Xiang Ya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
24
|
Kumar N, Gupta S, Dabral S, Singh S, Sehrawat S. Role of exchange protein directly activated by cAMP (EPAC1) in breast cancer cell migration and apoptosis. Mol Cell Biochem 2017; 430:115-125. [PMID: 28210903 DOI: 10.1007/s11010-017-2959-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 01/28/2017] [Indexed: 11/27/2022]
Abstract
Despite the current progress in cancer research and therapy, breast cancer remains the leading cause of mortality among half a million women worldwide. Migration and invasion of cancer cells are associated with prevalent tumor metastasis as well as high mortality. Extensive studies have powerfully established the role of prototypic second messenger cAMP and its two ubiquitously expressed intracellular cAMP receptors namely the classic protein kinaseA/cAMP-dependent protein kinase (PKA) and the more recently discovered exchange protein directly activated by cAMP/cAMP-regulated guanine nucleotide exchange factor (EPAC/cAMP-GEF) in cell migration, cell cycle regulation, and cell death. Herein, we performed the analysis of the Cancer Genome Atlas (TCGA) dataset to evaluate the essential role of cAMP molecular network in breast cancer. We report that EPAC1, PKA, and AKAP9 along with other molecular partners are amplified in breast cancer patients, indicating the importance of this signaling network. To evaluate the functional role of few of these proteins, we used pharmacological modulators and analyzed their effect on cell migration and cell death in breast cancer cells. Hence, we report that inhibition of EPAC1 activity using pharmacological modulators leads to inhibition of cell migration and induces cell death. Additionally, we also observed that the inhibition of EPAC1 resulted in disruption of its association with the microtubule cytoskeleton and delocalization of AKAP9 from the centrosome as analyzed by in vitro imaging. Finally, this study suggests for the first time the mechanistic insights of mode of action of a primary cAMP-dependent sensor, Exchange protein activated by cAMP 1 (EPAC1), via its interaction with A-kinase anchoring protein 9 (AKAP9). This study provides a new cell signaling cAMP-EPAC1-AKAP9 direction to the development of additional biotherapeutics for breast cancer.
Collapse
Affiliation(s)
- Naveen Kumar
- Brain Metastasis and NeuroVascular Disease Modeling Lab, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NCR, India
| | - Sonal Gupta
- Host Pathogen Interactions and Disease Modeling Group, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NCR, India.,Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Surbhi Dabral
- International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Shailja Singh
- Host Pathogen Interactions and Disease Modeling Group, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NCR, India. .,Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| | - Seema Sehrawat
- Brain Metastasis and NeuroVascular Disease Modeling Lab, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NCR, India. .,Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|