1
|
Jacobo Jacobo M, Donnella HJ, Sobti S, Kaushik S, Goga A, Bandyopadhyay S. An inflamed tumor cell subpopulation promotes chemotherapy resistance in triple negative breast cancer. Sci Rep 2024; 14:3694. [PMID: 38355954 PMCID: PMC10866903 DOI: 10.1038/s41598-024-53999-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
Individual cancers are composed of heterogeneous tumor cells with distinct phenotypes and genotypes, with triple negative breast cancers (TNBC) demonstrating the most heterogeneity among breast cancer types. Variability in transcriptional phenotypes could meaningfully limit the efficacy of monotherapies and fuel drug resistance, although to an unknown extent. To determine if transcriptional differences between tumor cells lead to differential drug responses we performed single cell RNA-seq on cell line and PDX models of breast cancer revealing cell subpopulations in states associated with resistance to standard-of-care therapies. We found that TNBC models contained a subpopulation in an inflamed cellular state, often also present in human breast cancer samples. Inflamed cells display evidence of heightened cGAS/STING signaling which we demonstrate is sufficient to cause tumor cell resistance to chemotherapy. Accordingly, inflamed cells were enriched in human tumors taken after neoadjuvant chemotherapy and associated with early recurrence, highlighting the potential for diverse tumor cell states to promote drug resistance.
Collapse
Affiliation(s)
- Mauricio Jacobo Jacobo
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Hayley J Donnella
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Sushil Sobti
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Swati Kaushik
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Andrei Goga
- Department of Cell & Tissue Biology, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Sourav Bandyopadhyay
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
2
|
Adam-Artigues A, Arenas EJ, Arribas J, Prat A, Cejalvo JM. AXL - a new player in resistance to HER2 blockade. Cancer Treat Rev 2023; 121:102639. [PMID: 37864955 DOI: 10.1016/j.ctrv.2023.102639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/23/2023]
Abstract
HER2 is a driver in solid tumors, mainly breast, oesophageal and gastric cancer, through activation of oncogenic signaling pathways such as PI3K or MAPK. HER2 overexpression associates with aggressive disease and poor prognosis. Despite targeted anti-HER2 therapy has improved outcomes and is the current standard of care, resistance emerge in some patients, requiring additional therapeutic strategies. Several mechanisms, including the upregulation of receptors tyrosine kinases such as AXL, are involved in resistance. AXL signaling leads to cancer cell proliferation, survival, migration, invasion and angiogenesis and correlates with poor prognosis. In addition, AXL overexpression accompanied by a mesenchymal phenotype result in resistance to chemotherapy and targeted therapies. Preclinical studies show that AXL drives anti-HER2 resistance and metastasis through dimerization with HER2 and activation of downstream pathways in breast cancer. Moreover, AXL inhibition restores response to HER2 blockade in vitro and in vivo. Limited data in gastric and oesophageal cancer also support these evidences. Furthermore, AXL shows a strong value as a prognostic and predictive biomarker in HER2+ breast cancer patients, adding a remarkable translational relevance. Therefore, current studies enforce the potential of co-targeting AXL and HER2 to overcome resistance and supports the use of AXL inhibitors in the clinic.
Collapse
Affiliation(s)
| | - Enrique J Arenas
- Josep Carreras Leukaemia Research Institute, Spain; Center for Biomedical Network Research on Cancer (CIBERONC), Spain.
| | - Joaquín Arribas
- Center for Biomedical Network Research on Cancer (CIBERONC), Spain; Preclinical Research Program, Vall d'Hebron Institute of Oncology (VHIO), Spain; Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), Spain; Department of Biochemistry and Molecular Biology, Universitat Autónoma de Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Spain.
| | - Aleix Prat
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Spain; Department of Medical Oncology, Hospital Clínic de Barcelona, Spain; SOLTI Breast Cancer Research Group, Spain.
| | - Juan Miguel Cejalvo
- INCLIVA Biomedical Research Institute, Spain; Preclinical Research Program, Vall d'Hebron Institute of Oncology (VHIO), Spain; Department of Medical Oncology, Hospital Clínico Universitario de València, Spain.
| |
Collapse
|
3
|
Gámez-Chiachio M, Sarrió D, Moreno-Bueno G. Novel Therapies and Strategies to Overcome Resistance to Anti-HER2-Targeted Drugs. Cancers (Basel) 2022; 14:4543. [PMID: 36139701 PMCID: PMC9496705 DOI: 10.3390/cancers14184543] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
The prognosis and quality of life of HER2 breast cancer patients have significantly improved due to the crucial clinical benefit of various anti-HER2 targeted therapies. However, HER2 tumors can possess or develop several resistance mechanisms to these treatments, thus leaving patients with a limited set of additional therapeutic options. Fortunately, to overcome this problem, in recent years, multiple different and complementary approaches have been developed (such as antibody-drug conjugates (ADCs)) that are in clinical or preclinical stages. In this review, we focus on emerging strategies other than on ADCs that are either aimed at directly target the HER2 receptor (i.e., novel tyrosine kinase inhibitors) or subsequent intracellular signaling (e.g., PI3K/AKT/mTOR, CDK4/6 inhibitors, etc.), as well as on innovative approaches designed to attack other potential tumor weaknesses (such as immunotherapy, autophagy blockade, or targeting of other genes within the HER2 amplicon). Moreover, relevant technical advances such as anti-HER2 nanotherapies and immunotoxins are also discussed. In brief, this review summarizes the impact of novel therapeutic approaches on current and future clinical management of aggressive HER2 breast tumors.
Collapse
Affiliation(s)
- Manuel Gámez-Chiachio
- Biochemistry Department, Medicine Faculty, Universidad Autónoma Madrid-CSIC, IdiPaz, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), 28029 Madrid, Spain
| | - David Sarrió
- Biochemistry Department, Medicine Faculty, Universidad Autónoma Madrid-CSIC, IdiPaz, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), 28029 Madrid, Spain
| | - Gema Moreno-Bueno
- Biochemistry Department, Medicine Faculty, Universidad Autónoma Madrid-CSIC, IdiPaz, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), 28029 Madrid, Spain
- MD Anderson International Foundation, 28033 Madrid, Spain
| |
Collapse
|
4
|
Evolution of HER2-positive mammary carcinoma: HER2 loss reveals claudin-low traits in cancer progression. Oncogenesis 2021; 10:77. [PMID: 34775465 PMCID: PMC8590694 DOI: 10.1038/s41389-021-00360-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/26/2021] [Accepted: 10/05/2021] [Indexed: 01/05/2023] Open
Abstract
HER2-positive breast cancers may lose HER2 expression in recurrences and metastases. In this work, we studied cell lines derived from two transgenic mammary tumors driven by human HER2 that showed different dynamics of HER2 status. MamBo89HER2stable cell line displayed high and stable HER2 expression, which was maintained upon in vivo passages, whereas MamBo43HER2labile cell line gave rise to HER2-negative tumors from which MamBo38HER2loss cell line was derived. Both low-density seeding and in vitro trastuzumab treatment of MamBo43HER2labile cells induced the loss of HER2 expression. MamBo38HER2loss cells showed a spindle-like morphology, high stemness and acquired in vivo malignancy. A comprehensive molecular profile confirmed the loss of addiction to HER2 signaling and acquisition of an EMT signature, together with increased angiogenesis and migration ability. We identified PDGFR-B among the newly expressed determinants of MamBo38HER2loss cell tumorigenic ability. Sunitinib inhibited MamBo38HER2loss tumor growth in vivo and reduced stemness and IL6 production in vitro. In conclusion, HER2-positive mammary tumors can evolve into tumors that display distinctive traits of claudin-low tumors. Our dynamic model of HER2 status can lead to the identification of new druggable targets, such as PDGFR-B, in order to counteract the resistance to HER2-targeted therapy that is caused by HER2 loss.
Collapse
|
5
|
Bloom J, Triantafyllidis A, Quaglieri A, Burton Ngov P, Infusini G, Webb A. Mass Dynamics 1.0: A Streamlined, Web-Based Environment for Analyzing, Sharing, and Integrating Label-Free Data. J Proteome Res 2021; 20:5180-5188. [PMID: 34647461 DOI: 10.1021/acs.jproteome.1c00683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Label-free quantification (LFQ) of shotgun proteomics data is a popular and robust method for the characterization of relative protein abundance between samples. Many analytical pipelines exist for the automation of this analysis, and some tools exist for the subsequent representation and inspection of the results of these pipelines. Mass Dynamics 1.0 (MD 1.0) is a web-based analysis environment that can analyze and visualize LFQ data produced by software such as MaxQuant. Unlike other tools, MD 1.0 utilizes a cloud-based architecture to enable researchers to store their data, enabling researchers to not only automatically process and visualize their LFQ data but also annotate and share their findings with collaborators and, if chosen, to easily publish results to the community. With a view toward increased reproducibility and standardization in proteomics data analysis and streamlining collaboration between researchers, MD 1.0 requires minimal parameter choices and automatically generates quality control reports to verify experiment integrity. Here, we demonstrate that MD 1.0 provides reliable results for protein expression quantification, emulating Perseus on benchmark datasets over a wide dynamic range. The MD 1.0 platform is available globally via: https://app.massdynamics.com/.
Collapse
Affiliation(s)
- Joseph Bloom
- Mass Dynamics, C/O Hub Southern Cross, Level 2, 696 Bourke Street, Melbourne, Victoria 3000, Australia
| | - Aaron Triantafyllidis
- Mass Dynamics, C/O Hub Southern Cross, Level 2, 696 Bourke Street, Melbourne, Victoria 3000, Australia
| | - Anna Quaglieri
- Mass Dynamics, C/O Hub Southern Cross, Level 2, 696 Bourke Street, Melbourne, Victoria 3000, Australia
| | - Paula Burton Ngov
- Mass Dynamics, C/O Hub Southern Cross, Level 2, 696 Bourke Street, Melbourne, Victoria 3000, Australia
| | - Giuseppe Infusini
- Mass Dynamics, C/O Hub Southern Cross, Level 2, 696 Bourke Street, Melbourne, Victoria 3000, Australia.,The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Andrew Webb
- Mass Dynamics, C/O Hub Southern Cross, Level 2, 696 Bourke Street, Melbourne, Victoria 3000, Australia.,The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
6
|
Wium M, Ajayi-Smith AF, Paccez JD, Zerbini LF. The Role of the Receptor Tyrosine Kinase Axl in Carcinogenesis and Development of Therapeutic Resistance: An Overview of Molecular Mechanisms and Future Applications. Cancers (Basel) 2021; 13:1521. [PMID: 33806258 PMCID: PMC8037968 DOI: 10.3390/cancers13071521] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 01/22/2023] Open
Abstract
Resistance to chemotherapeutic agents by cancer cells has remained a major obstacle in the successful treatment of various cancers. Numerous factors such as DNA damage repair, cell death inhibition, epithelial-mesenchymal transition, and evasion of apoptosis have all been implicated in the promotion of chemoresistance. The receptor tyrosine kinase Axl, a member of the TAM family (which includes TYRO3 and MER), plays an important role in the regulation of cellular processes such as proliferation, motility, survival, and immunologic response. The overexpression of Axl is reported in several solid and hematological malignancies, including non-small cell lung, prostate, breast, liver and gastric cancers, and acute myeloid leukaemia. The overexpression of Axl is associated with poor prognosis and the development of resistance to therapy. Reports show that Axl overexpression confers drug resistance in lung cancer and advances the emergence of tolerant cells. Axl is, therefore, an important candidate as a prognostic biomarker and target for anticancer therapies. In this review, we discuss the consequence of Axl upregulation in cancers, provide evidence for its role in cancer progression and the development of drug resistance. We will also discuss the therapeutic potential of Axl in the treatment of cancer.
Collapse
Affiliation(s)
- Martha Wium
- Cancer Genomics Group, International Centre for Genetic Engineering and Biotechnology, Cape Town 7925, South Africa; (M.W.); (A.F.A.-S.)
| | - Aderonke F. Ajayi-Smith
- Cancer Genomics Group, International Centre for Genetic Engineering and Biotechnology, Cape Town 7925, South Africa; (M.W.); (A.F.A.-S.)
| | - Juliano D. Paccez
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia 74690-900, Brazil
| | - Luiz F. Zerbini
- Cancer Genomics Group, International Centre for Genetic Engineering and Biotechnology, Cape Town 7925, South Africa; (M.W.); (A.F.A.-S.)
| |
Collapse
|
7
|
Lee RJ, Khandelwal G, Baenke F, Cannistraci A, Macleod K, Mundra P, Ashton G, Mandal A, Viros A, Gremel G, Galvani E, Smith M, Carragher N, Dhomen N, Miller C, Lorigan P, Marais R. Brain microenvironment-driven resistance to immune and targeted therapies in acral melanoma. ESMO Open 2020; 5:e000707. [PMID: 32817058 PMCID: PMC7437885 DOI: 10.1136/esmoopen-2020-000707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Combination treatments targeting the MEK-ERK pathway and checkpoint inhibitors have improved overall survival in melanoma. Resistance to treatment especially in the brain remains challenging, and rare disease subtypes such as acral melanoma are not typically included in trials. Here we present analyses from longitudinal sampling of a patient with metastatic acral melanoma that became resistant to successive immune and targeted therapies. METHODS We performed whole-exome sequencing and RNA sequencing on an acral melanoma that progressed on successive immune (nivolumab) and targeted (dabrafenib) therapy in the brain to identify resistance mechanisms. In addition, we performed growth inhibition assays, reverse phase protein arrays and immunoblotting on patient-derived cell lines using dabrafenib in the presence or absence of cerebrospinal fluid (CSF) in vitro. Patient-derived xenografts were also developed to analyse response to dabrafenib. RESULTS Immune escape following checkpoint blockade was not due to loss of tumour cell recognition by the immune system or low neoantigen burden, but was associated with distinct changes in the microenvironment. Similarly, resistance to targeted therapy was not associated with acquired mutations but upregulation of the AKT/phospho-inositide 3-kinase pathway in the presence of CSF. CONCLUSION Heterogeneous tumour interactions within the brain microenvironment enable progression on immune and targeted therapies and should be targeted in salvage treatments.
Collapse
Affiliation(s)
- Rebecca Jane Lee
- Molecular Oncology Group, CRUK Manchester Institute, The University of Manchester, Nether Alderley, Macclesfield, UK
| | - Garima Khandelwal
- RNA Biology Group, CRUK Manchester Institute, The University of Manchester, Nether Alderley, Macclesfield, UK
| | - Franziska Baenke
- Molecular Oncology Group, CRUK Manchester Institute, The University of Manchester, Nether Alderley, Macclesfield, UK
- Department of Visceral, Thoracic and Vascular Surgery, German Cancer Consortium (DKTK) German Cancer Research Centre, Dresden, Germany
| | - Alessio Cannistraci
- Molecular Oncology Group, CRUK Manchester Institute, The University of Manchester, Nether Alderley, Macclesfield, UK
| | | | - Piyushkumar Mundra
- Molecular Oncology Group, CRUK Manchester Institute, The University of Manchester, Nether Alderley, Macclesfield, UK
| | - Garry Ashton
- Histology Department, CRUK Manchester Institute, The University of Manchester, Nether Alderley, Macclesfield, UK
| | - Amit Mandal
- Molecular Oncology Group, CRUK Manchester Institute, The University of Manchester, Nether Alderley, Macclesfield, UK
| | - Amaya Viros
- Molecular Oncology Group, CRUK Manchester Institute, The University of Manchester, Nether Alderley, Macclesfield, UK
- Skin Cancer and Aging Group, CRUK Manchester Institute, The University of Manchester, Nether Alderley, Macclesfield, UK
| | - Gabriela Gremel
- Molecular Oncology Group, CRUK Manchester Institute, The University of Manchester, Nether Alderley, Macclesfield, UK
- Boehringer Ingelheim International GmbH, Ingelheim, Rheinland-Pfalz, Germany
| | - Elena Galvani
- Molecular Oncology Group, CRUK Manchester Institute, The University of Manchester, Nether Alderley, Macclesfield, UK
| | - Matthew Smith
- Molecular Oncology Group, CRUK Manchester Institute, The University of Manchester, Nether Alderley, Macclesfield, UK
| | | | - Nathalie Dhomen
- Molecular Oncology Group, CRUK Manchester Institute, The University of Manchester, Nether Alderley, Macclesfield, UK
| | - Crispin Miller
- RNA Biology Group, CRUK Manchester Institute, The University of Manchester, Nether Alderley, Macclesfield, UK
| | - Paul Lorigan
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Institute of Cancer Sciences, The University of Manchester, Manchester, UK
| | - Richard Marais
- Molecular Oncology Group, CRUK Manchester Institute, The University of Manchester, Nether Alderley, Macclesfield, UK
| |
Collapse
|
8
|
Zajac O, Leclere R, Nicolas A, Meseure D, Marchiò C, Vincent-Salomon A, Roman-Roman S, Schoumacher M, Dubois T. AXL Controls Directed Migration of Mesenchymal Triple-Negative Breast Cancer Cells. Cells 2020; 9:cells9010247. [PMID: 31963783 PMCID: PMC7016818 DOI: 10.3390/cells9010247] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 12/14/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer with high risk of relapse and metastasis. TNBC is a heterogeneous disease comprising different molecular subtypes including those with mesenchymal features. The tyrosine kinase AXL is expressed in mesenchymal cells and plays a role in drug resistance, migration and metastasis. We confirm that AXL is more expressed in mesenchymal TNBC cells compared to luminal breast cancer cells, and that its invalidation impairs cell migration while having no or little effect on cell viability. Here, we found that AXL controls directed migration. We observed that AXL displays a polarized localization at the Golgi apparatus and the leading edge of migratory mesenchymal TNBC cells. AXL co-localizes with F-actin at the front of the cells. In migratory polarized cells, the specific AXL inhibitor R428 displaces AXL and F-actin from the leading edge to a lateral area localized between the front and the rear of the cells where both are enriched in protrusions. In addition, R428 treatment disrupts the polarized localization of the Golgi apparatus towards the leading edge in migratory cells. Immunohistochemical analysis of aggressive chemo-resistant TNBC samples obtained before treatment reveals inter- and intra-tumor heterogeneity of the percentage of AXL expressing tumor cells, and a preference of these cells to be in contact with the stroma. Taken together, our study demonstrates that AXL controls directed cell migration most likely by regulating cell polarity.
Collapse
Affiliation(s)
- Olivier Zajac
- Breast Cancer Biology Group, Translational Research Department, Institut Curie, PSL Research University, 75005 Paris, France;
| | - Renaud Leclere
- Department of Pathology, Platform of Investigative Pathology, Institut Curie, PSL Research University, 75005 Paris, France; (R.L.); (A.N.); (D.M.)
| | - André Nicolas
- Department of Pathology, Platform of Investigative Pathology, Institut Curie, PSL Research University, 75005 Paris, France; (R.L.); (A.N.); (D.M.)
| | - Didier Meseure
- Department of Pathology, Platform of Investigative Pathology, Institut Curie, PSL Research University, 75005 Paris, France; (R.L.); (A.N.); (D.M.)
| | - Caterina Marchiò
- Department of Medical Sciences, University of Turin, Via Verdi 8, 10124 Torino TO, Italy;
- Department of Pathology, Institut Curie, PSL Research University, 75005 Paris, France;
| | - Anne Vincent-Salomon
- Department of Pathology, Institut Curie, PSL Research University, 75005 Paris, France;
| | - Sergio Roman-Roman
- Translational Research Department, Institut Curie, PSL Research University, 75005 Paris, France;
| | - Marie Schoumacher
- Center for Therapeutic Innovation Oncology, Institut de Recherches Internationales SERVIER, 92284 Suresnes, France;
| | - Thierry Dubois
- Breast Cancer Biology Group, Translational Research Department, Institut Curie, PSL Research University, 75005 Paris, France;
- Correspondence: ; Tel.: +33-156246250
| |
Collapse
|
9
|
Shah AD, Goode RJA, Huang C, Powell DR, Schittenhelm RB. LFQ-Analyst: An Easy-To-Use Interactive Web Platform To Analyze and Visualize Label-Free Proteomics Data Preprocessed with MaxQuant. J Proteome Res 2019; 19:204-211. [PMID: 31657565 DOI: 10.1021/acs.jproteome.9b00496] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Relative label-free quantification (LFQ) of shotgun proteomics data using precursor (MS1) signal intensities is one of the most commonly used applications to comprehensively and globally quantify proteins across biological samples and conditions. Due to the popularity of this technique, several software packages, such as the popular software suite MaxQuant, have been developed to extract, analyze, and compare spectral features and to report quantitative information of peptides, proteins, and even post-translationally modified sites. However, there is still a lack of accessible tools for the interpretation and downstream statistical analysis of these complex data sets, in particular for researchers and biologists with no or only limited experience in proteomics, bioinformatics, and statistics. We have therefore created LFQ-Analyst, which is an easy-to-use, interactive web application developed to perform differential expression analysis with "one click" and to visualize label-free quantitative proteomic data sets preprocessed with MaxQuant. LFQ-Analyst provides a wealth of user-analytic features and offers numerous publication-quality result graphics to facilitate statistical and exploratory analysis of label-free quantitative data sets. LFQ-Analyst, including an in-depth user manual, is freely available at https://bioinformatics.erc.monash.edu/apps/LFQ-Analyst .
Collapse
|
10
|
Proteomic Technology "Lens" for Epithelial-Mesenchymal Transition Process Identification in Oncology. Anal Cell Pathol (Amst) 2019; 2019:3565970. [PMID: 31781477 PMCID: PMC6855076 DOI: 10.1155/2019/3565970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/20/2019] [Accepted: 09/10/2019] [Indexed: 02/08/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a complex transformation process that induces local and distant progression of many malignant tumours. Due to its complex array of proteins that are dynamically over-/underexpressed during this process, proteomic technologies gained their place in the EMT research in the last years. Proteomics has identified new molecular pathways of this process and brought important insights to develop new therapy targets. Various proteomic tools and multiple combinations were developed in this area. Out of the proteomic technology armentarium, mass spectrometry and array technologies are the most used approaches. The main characteristics of the proteomic technology used in this domain are high throughput and detection of minute concentration in small samples. We present herein, using various proteomic technologies, the identification in cancer cell lines and in tumour tissue EMT-related proteins, proteins that are involved in the activation of different cellular pathways. Proteomics has brought besides standard EMT markers (e.g., cell-cell adhesion proteins and transcription factors) other future potential markers for improving diagnosis, monitoring evolution, and developing new therapy targets. Future will increase the proteomic role in clinical investigation and validation of EMT-related biomarkers.
Collapse
|
11
|
Preclinical Characteristics of the Irreversible Pan-HER Kinase Inhibitor Neratinib Compared with Lapatinib: Implications for the Treatment of HER2-Positive and HER2-Mutated Breast Cancer. Cancers (Basel) 2019; 11:cancers11060737. [PMID: 31141894 PMCID: PMC6628314 DOI: 10.3390/cancers11060737] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 12/13/2022] Open
Abstract
An estimated 15–20% of breast cancers overexpress human epidermal growth factor receptor 2 (HER2/ERBB2/neu). Two small-molecule tyrosine kinase inhibitors (TKIs), lapatinib and neratinib, have been approved for the treatment of HER2-positive (HER2+) breast cancer. Lapatinib, a reversible epidermal growth factor receptor (EGFR/ERBB1/HER1) and HER2 TKI, is used for the treatment of advanced HER2+ breast cancer in combination with capecitabine, in combination with trastuzumab in patients with hormone receptor-negative metastatic breast cancer, and in combination with an aromatase inhibitor for the first-line treatment of HER2+ breast cancer. Neratinib, a next-generation, irreversible pan-HER TKI, is used in the US for extended adjuvant treatment of adult patients with early-stage HER2+ breast cancer following 1 year of trastuzumab. In Europe, neratinib is used in the extended adjuvant treatment of adult patients with early-stage hormone receptor-positive HER2+ breast cancer who are less than 1 year from the completion of prior adjuvant trastuzumab-based therapy. Preclinical studies have shown that these agents have distinct properties that may impact their clinical activity. This review describes the preclinical characterization of lapatinib and neratinib, with a focus on the differences between these two agents that may have implications for patient management.
Collapse
|
12
|
Voutsadakis IA. HER2 in stemness and epithelial-mesenchymal plasticity of breast cancer. Clin Transl Oncol 2018; 21:539-555. [PMID: 30306401 DOI: 10.1007/s12094-018-1961-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023]
Abstract
Breast cancer had been the first non-hematologic malignancy where sub-types based on molecular characterization had entered clinical practice. HER2 over-expression, due to either gene amplification or protein up-regulation, defines one of these sub-types and is clinically exploited by addition of HER2-targeted treatments to the regimens of treatment. Nevertheless, in many occasions HER2-positive cancers are resistant or become refractory to these therapies. Several mechanisms, such as activation of alternative pathways or loss of expression of the receptor in cancer cells, have been proposed as the cause of these therapeutic failures. Cancer stem cells (CSCs, alternatively called tumor-initiating cells) comprise a small percentage of the tumor cells, but are capable of reconstituting and propagating tumors due to their superior intrinsic capacity for regeneration, survival and resistance to therapies. CSCs possess circuits enabling epigenetic plasticity which endow them with the ability to alternate between epithelial and mesenchymal states. This paper will discuss the expression and regulation of HER2 in CSCs of the different sub-types of breast cancer and relationships of the receptor with both the circuits of stemness and epithelial-mesenchymal plasticity. Therapeutic repercussions of the relationship of HER2-initiated signaling with stemness networks will also be proposed.
Collapse
Affiliation(s)
- I A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, 750 Great Northern Road, Sault Ste. Marie, ON, P6B 0A8, Canada. .,Section of Internal Medicine, Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, ON, Canada.
| |
Collapse
|
13
|
Wang M, Hu Y, Yu T, Ma X, Wei X, Wei Y. Pan-HER-targeted approach for cancer therapy: Mechanisms, recent advances and clinical prospect. Cancer Lett 2018; 439:113-130. [PMID: 30218688 DOI: 10.1016/j.canlet.2018.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/08/2018] [Accepted: 07/09/2018] [Indexed: 02/05/2023]
Abstract
The Human Epidermal Growth Factor Receptor family is composed of 4 structurally related receptor tyrosine kinases that are involved in many human cancers. The efficacy and safety of HER inhibitors have been compared in a wide range of clinical trials, suggesting the superior inhibitory ability of multiple- HER-targeting blockade compared with single receptor antagonists. However, many patients are currently resistant to current therapeutic treatment and novel strategies are warranted to conquer the resistance. Thus, we performed a critical review to summarize the molecular involvement of HER family receptors in tumour progression, recent anti-HER drug development based on clinical trials, and the potential resistance mechanisms of anti-HER therapy.
Collapse
Affiliation(s)
- Manni Wang
- Lab of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Yuzhu Hu
- Lab of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Ting Yu
- Lab of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Xuelei Ma
- Lab of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Xiawei Wei
- Lab of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China.
| | - Yuquan Wei
- Lab of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| |
Collapse
|
14
|
Cooperative targeting of melanoma heterogeneity with an AXL antibody-drug conjugate and BRAF/MEK inhibitors. Nat Med 2018; 24:203-212. [DOI: 10.1038/nm.4472] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 12/15/2017] [Indexed: 02/08/2023]
|
15
|
Zhou S, Sun X, Yu L, Zhou R, Li A, Li M, Yang W. Differential expression and clinical significance of epithelial-mesenchymal transition markers among different histological types of triple-negative breast cancer. J Cancer 2018; 9:604-613. [PMID: 29483966 PMCID: PMC5820928 DOI: 10.7150/jca.19190] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 08/20/2017] [Indexed: 01/08/2023] Open
Abstract
Background: Triple-negative breast cancer (TNBC) is a heterogeneous disease closely associated with epithelial-to-mesenchymal transition (EMT). This study aimed to investigate the role of EMT in metaplastic carcinoma. Methods: E-cadherin, Slug, Twist and Vimentin levels were detected by immunohistochemistry in 167 TNBC tumors, including 145 invasive carcinomas of no special type (ICONSTs), 14 spindle cell carcinomas (SpCCs) and 8 matrix-producing carcinomas (MPCs). Results: Nuclear Slug and Twist were more frequently detected in SpCC and MPC tumors than that in ICONST tumors (p<0.001). The rate of E-cadherin loss was much lower in the ICONST tumors than that in the SpCC and MPC tumors (p<0.001). Vimentin was expressed in all SpCC and MPC tumors. Furthermore, nuclear expression of Slug and Twist was positively associated with the cytoplasmic localization of Vimentin (p<0.001) and was inversely associated with membranous staining of E-cadherin (p<0.001). These trends were more apparent in the SpCC and MPC tumors than in the ICONST tumors. Follow-up data were available for 151 patients. The follow-up times ranged from 1 month to 11 years (mean: 74 m; median: 21 m). The median progression-free survival and overall survival times were 24 months (mean: 32 months) and 22 months (mean: 35 months), respectively. Tumor size, TNM stage and E-cadherin were found to be independent prognostic factors of TNBC. Conclusions: EMT may play an important role in TNBC, especially in MPC and SpCC. Further researches are needed to confirm this finding. The results of this study may facilitate the future development of targeted therapies based on alterations in the EMT and stem cell markers.
Collapse
Affiliation(s)
- Shuling Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Xiangjie Sun
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Lin Yu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Ruoji Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Anqi Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Ming Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Wentao Yang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| |
Collapse
|
16
|
Ohnishi Y, Yasui H, Nozaki M, Nakajima M. Molecularly-targeted therapy for the oral cancer stem cells. JAPANESE DENTAL SCIENCE REVIEW 2017; 54:88-103. [PMID: 29755619 PMCID: PMC5944082 DOI: 10.1016/j.jdsr.2017.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/23/2017] [Accepted: 11/14/2017] [Indexed: 01/12/2023] Open
Abstract
Human cancer tissues are heterogeneous in nature and become differentiated during expansion of cancer stem cells (CSCs). CSCs initiate tumorigenesis, and are involved in tumor recurrence and metastasis. Furthermore, data show that CSCs are highly resistant to anticancer drugs. Cetuximab, a specific anti-epidermal growth factor receptor (EGFR) monoclonal antibody, is used in cancer treatment. Although development of resistance to cetuximab is well recognized, the underlying mechanisms remain unclear. Lapatinib, a dual inhibitor of epidermal growth factor receptor (EGFR)/ErbB2, has antiproliferative effects and is used to treat patients with ErbB2-positive metastatic breast cancer. In this review, cetuximab and lapatinib-resistant oral squamous cell carcinoma (OSCC) cells proliferation and migration signal transduction passway is discussed by introducing our research.
Collapse
Affiliation(s)
- Yuichi Ohnishi
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Hirakata, Osaka 573-1121, Japan.,Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroki Yasui
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Masami Nozaki
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Nakajima
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| |
Collapse
|
17
|
Frisch SM, Farris JC, Pifer PM. Roles of Grainyhead-like transcription factors in cancer. Oncogene 2017; 36:6067-6073. [PMID: 28714958 DOI: 10.1038/onc.2017.178] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/12/2017] [Accepted: 05/04/2017] [Indexed: 12/18/2022]
Abstract
The mammalian homologs of the D. melanogaster Grainyhead gene, Grainyhead-like 1-3 (GRHL1, GRHL2 and GRHL3), are transcription factors implicated in wound healing, tubulogenesis and cancer. Their induced target genes encode diverse epithelial cell adhesion molecules, while mesenchymal genes involved in cell migration and invasion are repressed. Moreover, GRHL2 suppresses the oncogenic epithelial-mesencyhmal transition, thereby acting as a tumor suppressor. Mechanisms, some involving established cancer-related signaling/transcription factor pathways (for example, Wnt, TGF-β, mir200, ZEB1, OVOL2, p63 and p300) and translational implications of the Grainyhead proteins in cancer are discussed in this review article.
Collapse
Affiliation(s)
- S M Frisch
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA
| | - J C Farris
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA
| | - P M Pifer
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
18
|
Antony J, Huang RYJ. AXL-Driven EMT State as a Targetable Conduit in Cancer. Cancer Res 2017; 77:3725-3732. [PMID: 28667075 DOI: 10.1158/0008-5472.can-17-0392] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/19/2017] [Accepted: 05/22/2017] [Indexed: 12/14/2022]
Abstract
The receptor tyrosine kinase (RTK) AXL has been intrinsically linked to epithelial-mesenchymal transition (EMT) and promoting cell survival, anoikis resistance, invasion, and metastasis in several cancers. AXL signaling has been shown to directly affect the mesenchymal state and confer it with aggressive phenotype and drug resistance. Recently, the EMT gradient has also been shown to rewire the kinase signaling nodes that facilitate AXL-RTK cross-talk, protracted signaling, converging on ERK, and PI3K axes. The molecular mechanisms underplaying the regulation between the kinome and EMT require further elucidation to define targetable conduits. Therapeutically, as AXL inhibition has shown EMT reversal and resensitization to other tyrosine kinase inhibitors, mitotic inhibitors, and platinum-based therapy, there is a need to stratify patients based on AXL dependence. This review elucidates the role of AXL in EMT-mediated oncogenesis and highlights the reciprocal control between AXL signaling and the EMT state. In addition, we review the potential in inhibiting AXL for the development of different therapeutic strategies and inhibitors. Cancer Res; 77(14); 3725-32. ©2017 AACR.
Collapse
Affiliation(s)
- Jane Antony
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.,Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore. .,Department of Obstetrics and Gynecology, National University Health System, Singapore.,Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
19
|
Jin MH, Nam AR, Park JE, Bang JH, Bang YJ, Oh DY. Resistance Mechanism against Trastuzumab in HER2-Positive Cancer Cells and Its Negation by Src Inhibition. Mol Cancer Ther 2017; 16:1145-1154. [DOI: 10.1158/1535-7163.mct-16-0669] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/21/2016] [Accepted: 02/04/2017] [Indexed: 11/16/2022]
|
20
|
Shi H, Zhang W, Zhi Q, Jiang M. Lapatinib resistance in HER2+ cancers: latest findings and new concepts on molecular mechanisms. Tumour Biol 2016; 37:10.1007/s13277-016-5467-2. [PMID: 27726101 DOI: 10.1007/s13277-016-5467-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/23/2016] [Indexed: 12/12/2022] Open
Abstract
In the era of new and mostly effective molecular targeted therapies, human epidermal growth factor receptor 2 positive (HER2+) cancers are still intractable diseases. Lapatinib, a dual epidermal growth factor receptor (EGFR) and HER2 tyrosine kinase inhibitor, has greatly improved breast cancer prognosis in recent years after the initial introduction of trastuzumab (Herceptin). However, clinical evidence indicates the existence of both primary unresponsiveness and secondary lapatinib resistance, which leads to the failure of this agent in HER2+ cancer patients. It remains a major clinical challenge to target the oncogenic pathways with drugs having low resistance. Multiple pathways are involved in the occurrence of lapatinib resistance, including the pathways of receptor tyrosine kinase, non-receptor tyrosine kinase, autophagy, apoptosis, microRNA, cancer stem cell, tumor metabolism, cell cycle, and heat shock protein. Moreover, understanding the relationship among these mechanisms may contribute to future tumor combination therapies. Therefore, it is of urgent necessity to elucidate the precise mechanisms of lapatinib resistance and improve the therapeutic use of this agent in clinic. The present review, in the hope of providing further scientific support for molecular targeted therapies in HER2+ cancers, discusses about the latest findings and new concepts on molecular mechanisms underlying lapatinib resistance.
Collapse
Affiliation(s)
- Huiping Shi
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China
| | - Weili Zhang
- Department of Gastroenterology, Xiangcheng People's Hospital, Suzhou, Jiangsu Province, 215131, China
| | - Qiaoming Zhi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China.
| | - Min Jiang
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China.
| |
Collapse
|
21
|
Ohnishi Y, Yasui H, Kakudo K, Nozaki M. Lapatinib-resistant cancer cells possessing epithelial cancer stem cell properties develop sensitivity during sphere formation by activation of the ErbB/AKT/cyclin D2 pathway. Oncol Rep 2016; 36:3058-3064. [PMID: 27633099 DOI: 10.3892/or.2016.5073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/26/2016] [Indexed: 11/06/2022] Open
Abstract
Lapatinib, a dual inhibitor of epidermal growth factor receptor (EGFR)/ErbB2, has antiproliferative effects and is used to treat patients with ErbB2-positive metastatic breast cancer. In the present study, we examined the effects of lapatinib on growth of oral and prostate cancer cells. Oral squamous cell carcinoma (OSCC) cell lines HSC3, HSC4 and Ca9-22 were sensitive to the antiproliferative effects of lapatinib in anchorage-dependent culture, but the OSCC cell lines KB and SAS and the prostate cancer cell line DU145 were resistant to lapatinib. Phosphorylation levels of EGFR in all cell lines decreased during lapatinib treatment in anchorage‑dependent culture. Furthermore, the phosphorylation levels of ErbB2, ErbB3 and Akt and the protein levels of cyclin D1 were decreased by lapatinib treatment of HSC3, HSC4 and Ca9-22 cells. ErbB3 was not expressed and cyclin D1 protein levels were not altered by lapatinib treatment in KB, DU145 and SAS cells. The phosphorylation of ErbB2 and AKT was not affected by lapatinib in SAS cells and was not detected in KB and DU145 cells. Lapatinib-resistant cell lines exhibited sphere-forming ability, and SAS cells developed sensitivity to lapatinib during sphere formation. The phosphorylation levels of ErbB2 and AKT and protein levels of cyclin D2 increased during sphere formation of SAS cells and decreased with lapatinib treatment. In addition, sphere formation of SAS cells was inhibited by the AKT inhibitor MK2206. AKT phosphorylation and cyclin D2 levels in SAS spheres were decreased by MK2206 treatment. SAS cells expressed E-cadherin, but not vimentin and KB cells expressed vimentin, but not E-cadherin. DU145 cells expressed vimentin and E-cadherin. These results suggested that phosphorylation of EGFR and ErbB2 by cell detachment from the substratum induces the AKT pathway/cyclin D2-dependent sphere growth in SAS epithelial cancer stem-like cells, thereby rendering SAS spheres sensitive to lapatinib treatment.
Collapse
Affiliation(s)
- Yuichi Ohnishi
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroki Yasui
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kenji Kakudo
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Masami Nozaki
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
22
|
Emmons MF, Faião-Flores F, Smalley KSM. The role of phenotypic plasticity in the escape of cancer cells from targeted therapy. Biochem Pharmacol 2016; 122:1-9. [PMID: 27349985 DOI: 10.1016/j.bcp.2016.06.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/23/2016] [Indexed: 01/01/2023]
Abstract
Targeted therapy has proven to be beneficial at producing significant responses in patients with a wide variety of cancers. Despite initially impressive responses, most individuals ultimately fail these therapies and show signs of drug resistance. Very few patients are ever cured. Emerging evidence suggests that treatment of cancer cells with kinase inhibitors leads a minor population of cells to undergo a phenotypic switch to a more embryonic-like state. The adoption of this state, which is analogous to an epithelial-to-mesenchymal transition, is associated with drug resistance and increased tumor aggressiveness. In this commentary we will provide a comprehensive analysis of the mechanisms that underlie the embryonic reversion that occurs on targeted cancer therapy and will review potential novel therapeutic strategies designed to eradicate the escaping cells.
Collapse
Affiliation(s)
- Michael F Emmons
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Fernanda Faião-Flores
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA; The Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Keiran S M Smalley
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA; The Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA.
| |
Collapse
|
23
|
Fraser C, Dawson JC, Dowling R, Houston DR, Weiss JT, Munro AF, Muir M, Harrington L, Webster SP, Frame MC, Brunton VG, Patton EE, Carragher NO, Unciti-Broceta A. Rapid Discovery and Structure-Activity Relationships of Pyrazolopyrimidines That Potently Suppress Breast Cancer Cell Growth via SRC Kinase Inhibition with Exceptional Selectivity over ABL Kinase. J Med Chem 2016; 59:4697-710. [PMID: 27115835 PMCID: PMC4885109 DOI: 10.1021/acs.jmedchem.6b00065] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
Novel
pyrazolopyrimidines displaying high potency and selectivity
toward SRC family kinases have been developed by combining ligand-based
design and phenotypic screening in an iterative manner. Compounds
were derived from the promiscuous kinase inhibitor PP1 to search for
analogs that could potentially target a broad spectrum of kinases
involved in cancer. Phenotypic screening against MCF7 mammary adenocarcinoma
cells generated target-agnostic structure–activity relationships
that biased subsequent designs toward breast cancer treatment rather
than to a particular target. This strategy led to the discovery of
two potent antiproliferative leads with phenotypically distinct anticancer
mode of actions. Kinase profiling and further optimization resulted
in eCF506, the first small molecule with subnanomolar IC50 for SRC that requires 3 orders of magnitude greater concentration
to inhibit ABL. eCF506 exhibits excellent water solubility, an optimal
DMPK profile and oral bioavailability, halts SRC-associated neuromast
migration in zebrafish embryos without inducing life-threatening heart
defects, and inhibits SRC phosphorylation in tumor xenografts in mice.
Collapse
Affiliation(s)
| | | | | | - Douglas R Houston
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh , Edinburgh EH9 3BF, United Kingdom
| | | | | | | | - Lea Harrington
- Faculty of Medicine, University of Montreal, Institute for Research in Immunology and Cancer, Chemin de Polytechnique , Montreal, Quebec H3T 1J4, Canada
| | - Scott P Webster
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh , Edinburgh EH16 4TJ, United Kingdom
| | | | | | | | | | | |
Collapse
|