1
|
Qiao J, Liu J, Jacobson JC, Clark RA, Lee S, Liu L, An Z, Zhang N, Chung DH. Anti-GRP-R monoclonal antibody antitumor therapy against neuroblastoma. PLoS One 2022; 17:e0277956. [PMID: 36525420 PMCID: PMC9757561 DOI: 10.1371/journal.pone.0277956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 11/07/2022] [Indexed: 12/23/2022] Open
Abstract
Standard treatment for patients with high-risk neuroblastoma remains multimodal therapy including chemoradiation, surgical resection, and autologous stem cell rescue. Immunotherapy has demonstrated success in treating many types of cancers; however, its use in pediatric solid tumors has been limited by low tumor mutation burdens. Gastrin-releasing peptide receptor (GRP-R) is overexpressed in numerous malignancies, including poorly-differentiated neuroblastoma. Monoclonal antibodies (mAbs) to GRP-R have yet to be developed but could serve as a potential novel immunotherapy. This preclinical study aims to evaluate the efficacy of a novel GRP-R mAb immunotherapy against neuroblastoma. We established four candidate anti-GRP-R mAbs by screening a single-chain variable fragment (scFv) library. GRP-R mAb-1 demonstrated the highest efficacy with the lowest EC50 at 4.607 ng/ml against GRP-R expressing neuroblastoma cells, blocked the GRP-ligand activation of GRP-R and its downstream PI3K/AKT signaling. This resulted in functional inhibition of cell proliferation and anchorage-independent growth, indicating that mAb-1 has an antagonist inhibitory role on GRP-R. To examine the antibody-dependent cellular cytotoxicity (ADCC) of GRP-R mAb-1 on neuroblastoma, we co-cultured neuroblastoma cells with natural killer (NK) cells versus GRP-R mAb-1 treatment alone. GRP-R mAb-1 mediated ADCC effects on neuroblastoma cells and induced release of IFNγ by NK cells under co-culture conditions in vitro. The cytotoxic effects of mAb-1 were confirmed with the secretion of cytotoxic granzyme B from NK cells and the reduction of mitotic tumor cells in vivo using a murine tumor xenograft model. In summary, GRP-R mAb-1 demonstrated efficacious anti-tumor effects on neuroblastoma cells in preclinical models. Importantly, GRP-R mAb-1 may be an efficacious, novel immunotherapy in the treatment of high-risk neuroblastoma patients.
Collapse
Affiliation(s)
- Jingbo Qiao
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Junquan Liu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Jillian C. Jacobson
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Rachael A. Clark
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Sora Lee
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Li Liu
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Dai H. Chung
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Surgery, Children’s Health, Dallas, Texas, United States of America
| |
Collapse
|
2
|
Bownes LV, Marayati R, Quinn CH, Hutchins SC, Stewart JE, Anderson JC, Willey CD, Datta PK, Beierle EA. Serine-Threonine Kinase Receptor Associate Protein (STRAP) confers an aggressive phenotype in neuroblastoma via regulation of Focal Adhesion Kinase (FAK). J Pediatr Surg 2022; 57:1026-1032. [PMID: 35272839 PMCID: PMC9119921 DOI: 10.1016/j.jpedsurg.2022.01.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Serine-threonine kinase receptor associated protein (STRAP), a scaffolding protein, is upregulated in many solid tumors. As such, we hypothesized that STRAP may be overexpressed in neuroblastoma tumors and may play a role in neuroblastoma tumor progression. METHODS We examined two publicly available neuroblastoma patient databases, GSE49710 (n = 498) and GSE49711 (n = 498), to investigate STRAP expression in human specimens. SK-N-AS and SK-N-BE(2) human neuroblastoma cell lines were stably transfected with STRAP overexpression (OE) plasmid, and their resulting phenotype studied. PamChip® kinomic peptide microarray evaluated the effects of STRAP overexpression on kinase activation. RESULTS In human specimens, higher STRAP expression correlated with high-risk disease, unfavorable histology, and decreased overall neuroblastoma patient survival. STRAP OE in neuroblastoma cell lines led to increased proliferation, growth, supported a stem-like phenotype and activated downstream FAK targets. When FAK was targeted with the small molecule FAK inhibitor, PF-573,228, STRAP OE neuroblastoma cells had significantly decreased growth compared to control empty vector cells. CONCLUSION Increased STRAP expression in neuroblastoma was associated with unfavorable tumor characteristics. STRAP OE resulted in increased kinomic activity of FAK. These findings suggest that the poorer outcomes in neuroblastoma tumors associated with STRAP overexpression may be secondary to FAK activation.
Collapse
Affiliation(s)
- Laura V Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Colin H Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Sara C Hutchins
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Jerry E Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Joshua C Anderson
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Christopher D Willey
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Pran K Datta
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Elizabeth A Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America.
| |
Collapse
|
3
|
An Insight into GPCR and G-Proteins as Cancer Drivers. Cells 2021; 10:cells10123288. [PMID: 34943797 PMCID: PMC8699078 DOI: 10.3390/cells10123288] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of cell surface signaling receptors known to play a crucial role in various physiological functions, including tumor growth and metastasis. Various molecules such as hormones, lipids, peptides, and neurotransmitters activate GPCRs that enable the coupling of these receptors to highly specialized transducer proteins, called G-proteins, and initiate multiple signaling pathways. Integration of these intricate networks of signaling cascades leads to numerous biochemical responses involved in diverse pathophysiological activities, including cancer development. While several studies indicate the role of GPCRs in controlling various aspects of cancer progression such as tumor growth, invasion, migration, survival, and metastasis through its aberrant overexpression, mutations, or increased release of agonists, the explicit mechanisms of the involvement of GPCRs in cancer progression is still puzzling. This review provides an insight into the various responses mediated by GPCRs in the development of cancers, the molecular mechanisms involved and the novel pharmacological approaches currently preferred for the treatment of cancer. Thus, these findings extend the knowledge of GPCRs in cancer cells and help in the identification of therapeutics for cancer patients.
Collapse
|
4
|
Bownes LV, Williams AP, Marayati R, Stafman LL, Markert H, Quinn CH, Wadhwani N, Aye JM, Stewart JE, Yoon KJ, Mroczek-Musulman E, Beierle EA. EZH2 inhibition decreases neuroblastoma proliferation and in vivo tumor growth. PLoS One 2021; 16:e0246244. [PMID: 33690617 PMCID: PMC7942994 DOI: 10.1371/journal.pone.0246244] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/17/2021] [Indexed: 02/07/2023] Open
Abstract
Investigation of the mechanisms responsible for aggressive neuroblastoma and its poor prognosis is critical to identify novel therapeutic targets and improve survival. Enhancer of Zeste Homolog 2 (EZH2) is known to play a key role in supporting the malignant phenotype in several cancer types and knockdown of EZH2 has been shown to decrease tumorigenesis in neuroblastoma cells. We hypothesized that the EZH2 inhibitor, GSK343, would affect cell proliferation and viability in human neuroblastoma. We utilized four long-term passage neuroblastoma cell lines and two patient-derived xenolines (PDX) to investigate the effects of the EZH2 inhibitor, GSK343, on viability, motility, stemness and in vivo tumor growth. Immunoblotting confirmed target knockdown. Treatment with GSK343 led to significantly decreased neuroblastoma cell viability, migration and invasion, and stemness. GSK343 treatment of mice bearing SK-N-BE(2) neuroblastoma tumors resulted in a significant decrease in tumor growth compared to vehicle-treated animals. GSK343 decreased viability, and motility in long-term passage neuroblastoma cell lines and decreased stemness in neuroblastoma PDX cells. These data demonstrate that further investigation into the mechanisms responsible for the anti-tumor effects seen with EZH2 inhibitors in neuroblastoma cells is warranted.
Collapse
Affiliation(s)
- Laura V. Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Adele P. Williams
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Laura L. Stafman
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Hooper Markert
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Colin H. Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Nikita Wadhwani
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jamie M. Aye
- Division of Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jerry E. Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Karina J. Yoon
- Division of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | | | - Elizabeth A. Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
5
|
Moody TW, Lee L, Ramos-Alvarez I, Iordanskaia T, Mantey SA, Jensen RT. Bombesin Receptor Family Activation and CNS/Neural Tumors: Review of Evidence Supporting Possible Role for Novel Targeted Therapy. Front Endocrinol (Lausanne) 2021; 12:728088. [PMID: 34539578 PMCID: PMC8441013 DOI: 10.3389/fendo.2021.728088] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are increasingly being considered as possible therapeutic targets in cancers. Activation of GPCR on tumors can have prominent growth effects, and GPCRs are frequently over-/ectopically expressed on tumors and thus can be used for targeted therapy. CNS/neural tumors are receiving increasing attention using this approach. Gliomas are the most frequent primary malignant brain/CNS tumor with glioblastoma having a 10-year survival <1%; neuroblastomas are the most common extracranial solid tumor in children with long-term survival<40%, and medulloblastomas are less common, but one subgroup has a 5-year survival <60%. Thus, there is an increased need for more effective treatments of these tumors. The Bombesin-receptor family (BnRs) is one of the GPCRs that are most frequently over/ectopically expressed by common tumors and is receiving particular attention as a possible therapeutic target in several tumors, particularly in prostate, breast, and lung cancer. We review in this paper evidence suggesting why a similar approach in some CNS/neural tumors (gliomas, neuroblastomas, medulloblastomas) should also be considered.
Collapse
Affiliation(s)
- Terry W. Moody
- Department of Health and Human Services, National Cancer Institute, Center for Cancer Training, Office of the Director, Bethesda, MD, United States
| | - Lingaku Lee
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
- Department of Gastroenterology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Irene Ramos-Alvarez
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Tatiana Iordanskaia
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Samuel A. Mantey
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Robert T. Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Robert T. Jensen,
| |
Collapse
|
6
|
Abstract
Informative and realistic mouse models of high-risk neuroblastoma are central to understanding mechanisms of tumour initiation, progression, and metastasis. They also play vital roles in validating tumour drivers and drug targets, as platforms for assessment of new therapies and in the generation of drug sensitivity data that can inform treatment decisions for individual patients. This review will describe genetically engineered mouse models of specific subsets of high-risk neuroblastoma, the development of patient-derived xenograft models that more broadly represent the diversity and heterogeneity of the disease, and models of primary and metastatic disease. We discuss the research applications, advantages, and limitations of each model type, the importance of model repositories and data standards for supporting reproducible, high-quality research, and potential future directions for neuroblastoma mouse models.
Collapse
Affiliation(s)
- Alvin Kamili
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
| | - Caroline Atkinson
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
| | - Toby N Trahair
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia.,Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Jamie I Fletcher
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia. .,School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia.
| |
Collapse
|
7
|
Niu QL, Sun H, Liu C, Li J, Liang CX, Zhang RR, Ge FR, Liu W. Croton tiglium essential oil compounds have anti-proliferative and pro-apoptotic effects in A549 lung cancer cell lines. PLoS One 2020; 15:e0231437. [PMID: 32357169 PMCID: PMC7194401 DOI: 10.1371/journal.pone.0231437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/16/2020] [Indexed: 01/22/2023] Open
Abstract
As a traditional Chinese medicine, Croton tiglium has the characteristics of laxative, analgesic, antibacterial and swelling. This study aimed to analyze the chemical composition of C. tiglium essential oil (CTEO) extracted from the seeds of C. tiglium and its cytotoxicity and antitumor effect in vitro. Supercritical CO2 fluid extraction technology was used to extract CTEO and the chemical constituents of the essential oil were identified by comparing the retention indices and mass spectra data taken from the NIST library with those calculated based on the C7-C40 n-alkanes standard. In vitro cytotoxicity of the CTEO was assessed against cancer cell lines (A549) and the human normal bronchial epithelial cells (HBE) using the CCK-8 assay. Proliferation was detected by colony formation experiments. Wound scratch and cell invasion assays were used to detect cell migration and invasion. Levels of apoptotic markers, signaling molecules, and cell cycle regulators expression were characterized by Western blot analysis. As the results, twenty-eight compounds representing 92.39% of the total oil were identified in CTEO. The CTEO has significant antitumor activity on A549 cancer cells (IC50 48.38 μg/mL). In vitro antitumor experiments showed that CTEO treatment significantly inhibited the proliferation and migration of A549 cells, disrupted the cell cycle process, and reduced the expression levels of cyclin A, cyclin B and CDK1. CTEO can also reduce mitochondrial membrane potential, activate caspase-dependent apoptosis pathway, and finally induce apoptosis. CTEO may become an effective anti-cancer drug and will be further developed for cancer treatment.
Collapse
Affiliation(s)
- Qing-lin Niu
- Shandong Provincial Key Laboratory of Fruit Tree Biotechnology Breeding, Shandong Institute of Pomology, Tai’an, Shandong, China
- * E-mail: (Q-lN); (HS)
| | - Hui Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- * E-mail: (Q-lN); (HS)
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Juan Li
- Taian Traditional Chinese Medicine Hospital, Tai’an, Shandong, China
| | - Chang-xu Liang
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong, China
| | - Rui-rui Zhang
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Fu-rong Ge
- Shandong Provincial Key Laboratory of Fruit Tree Biotechnology Breeding, Shandong Institute of Pomology, Tai’an, Shandong, China
| | - Wei Liu
- Shandong Provincial Key Laboratory of Fruit Tree Biotechnology Breeding, Shandong Institute of Pomology, Tai’an, Shandong, China
| |
Collapse
|
8
|
Bergmann S, Elbahesh H. Targeting the proviral host kinase, FAK, limits influenza a virus pathogenesis and NFkB-regulated pro-inflammatory responses. Virology 2019; 534:54-63. [PMID: 31176924 DOI: 10.1016/j.virol.2019.05.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 01/08/2023]
Abstract
Influenza A virus (IAV) infections result in ∼500,000 global deaths annually. Host kinases link multiple signaling pathways at various stages of infection and are attractive therapeutic target. Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, regulates several cellular processes including NFkB and antiviral responses. We investigated how FAK kinase activity regulates IAV pathogenesis. Using a severe infection model, we infected IAV-susceptible DBA/2 J mice with a lethal dose of H1N1 IAV. We observed reduced viral load and pro-inflammatory cytokines, delayed mortality, and increased survival in FAK inhibitor (Y15) treated mice. In vitro IAV-induced NFkB-promoter activity was reduced by Y15 or a dominant negative kinase-dead FAK mutant (FAK-KD) independently of the viral immune modulator, NS1. Finally, we observed reduced IAV-induced nuclear localization of NFkB in FAK-KD expressing cells. Our data suggest a novel mechanism where IAV hijacks FAK to promote viral replication and limit its ability to contribute to innate immune responses.
Collapse
Affiliation(s)
- Silke Bergmann
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Husni Elbahesh
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
9
|
Al-Ghabkari A, Qasrawi DO, Alshehri M, Narendran A. Focal adhesion kinase (FAK) phosphorylation is a key regulator of embryonal rhabdomyosarcoma (ERMS) cell viability and migration. J Cancer Res Clin Oncol 2019; 145:1461-1469. [PMID: 31006845 DOI: 10.1007/s00432-019-02913-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma in children. Pathogenesis of RMS is associated with aggressive growth pattern and increased risk of morbidity and mortality. There are two main subtypes or RMS: embryonal and alveolar. The embryonal type is characterized by distinct molecular aberrations, including alterations in the activity of certain protein kinases. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that plays a vital role in focal adhesion (FA) assembly to promote cytoskeleton dynamics and regulation of cell motility. It is regulated by multiple phosphorylation sites: tyrosine 397, Tyr 576/577, and Tyr 925. Tyrosine 397 is the autophosphorylation site that regulates FAK localization at the cell periphery to facilitate the assembly and formation of the FA complex. The kinase activity of FAK is mediated by the phosphorylation of Tyr 576/577 within the kinase domain activation loop. Aberrations of FAK phosphorylation have been linked to the pathogenesis of different types of cancers. In this regard, pY397 upregulation is linked to increase ERMS cell motility, invasion, and tumorigenesis. METHODS In this study, we have used an established human embryonal muscle rhabdomyosarcoma cell line RD as a model to examine FAK phosphorylation profiles to characterize its role in the pathogenies of RMS. RESULTS Our findings revealed a significant increase of FAK phosphorylation at pY397 in RD cells compared to control cells (hTERT). On the other hand, Tyr 576/577 phosphorylation levels in RD cells displayed a pronounced reduction. Our data showed that Y925 residue exhibited no detectable change. The in vitro analysis showed that the FAK inhibitor, PF-562271 led to G1 cell-cycle arrest induced cell death (IC50, ~ 12 µM) compared to controls. Importantly, immunostaining analyses displayed a noticeable reduction of Y397 phosphorylation following PF-562271 treatment. Our data also showed that PF-562271 suppressed RD cell migration in a dose-dependent manner associated with a reduction in Y397 phosphorylation. CONCLUSIONS The data presented herein indicate that targeting FAK phosphorylation at distinct sites is a promising strategy in future treatment approaches for defined subgroups of rhabdomyosarcoma.
Collapse
Affiliation(s)
- Abdulhameed Al-Ghabkari
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada.
| | - Deema O Qasrawi
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Mana Alshehri
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Aru Narendran
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| |
Collapse
|
10
|
Esposito MR, Binatti A, Pantile M, Coppe A, Mazzocco K, Longo L, Capasso M, Lasorsa VA, Luksch R, Bortoluzzi S, Tonini GP. Somatic mutations in specific and connected subpathways are associated with short neuroblastoma patients' survival and indicate proteins targetable at onset of disease. Int J Cancer 2018; 143:2525-2536. [PMID: 29992558 DOI: 10.1002/ijc.31748] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 05/24/2018] [Accepted: 06/21/2018] [Indexed: 12/29/2022]
Abstract
Neuroblastoma (NB) is an embryonic malignancy of the sympathetic nervous system with heterogeneous biological, morphological, genetic and clinical characteristics. Although genomic studies revealed the specific biological features of NB pathogenesis useful for new therapeutic approaches, the improvement of high-risk (HR)-NB patients overall survival remains unsatisfactory. To further clarify the biological basis of disease aggressiveness, we used whole-exome sequencing to examine the genomic landscape of HR-NB patients at stage M with short survival (SS) and long survival (LS). Only a few genes, including SMARCA4, SMO, ZNF44 and CHD2, were recurrently and specifically mutated in the SS group, confirming the low recurrence of common mutations in this tumor. A systems biology approach revealed that in the two patient groups, mutations occurred in different pathways. Mutated genes (ARHGEF11, CACNA1G, FGF4, PTPRA, PTK2, ANK3, SMO, NTNG2, VCL and NID2) regulate the MAPK pathway associated with the organization of the extracellular matrix, cell motility through PTK2 signaling and matrix metalloproteinase activity. Moreover, we detected mutations in LAMA2, PTK2, LAMA4, and MMP14 genes, impairing MET signaling, in SFI1 and CHD2 involved in centrosome maturation and chromosome remodeling, in AK7 and SPTLC2, which regulate the metabolism of nucleotides and lipoproteins, and in NALCN, SLC12A1, SLC9A9, which are involved in the transport of small molecules. Notably, connected networks of somatically mutated genes specific for SS patients were identified. The detection of mutated genes present at the onset of disease may help to address an early treatment of HR-NB patients using FDA-approved compounds targeting the deregulated pathways.
Collapse
Affiliation(s)
- Maria Rosaria Esposito
- Neuroblastoma Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Andrea Binatti
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Marcella Pantile
- Neuroblastoma Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Alessandro Coppe
- Department of Women's and Children's Health, University of Padova, Padua, Italy
| | - Katia Mazzocco
- Translational Research Department, Laboratory Medicine, Diagnostics and Services U.O.C. Pathological Anatomy, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Luca Longo
- U.O.C. Bioterapie, Ospedale Policlinico San Martino, Genoa, Italy
| | - Mario Capasso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy.,IRCCS SDN, Istituto di Ricerca Diagnostica e Nucleare, Naples, Italy
| | | | - Roberto Luksch
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Gian Paolo Tonini
- Neuroblastoma Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| |
Collapse
|
11
|
Hou CH, Yang RS, Tsao YT. Connective tissue growth factor stimulates osteosarcoma cell migration and induces osteosarcoma metastasis by upregulating VCAM-1 expression. Biochem Pharmacol 2018; 155:71-81. [PMID: 29909077 DOI: 10.1016/j.bcp.2018.06.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/13/2018] [Indexed: 12/22/2022]
Abstract
Osteosarcoma is the most common bone malignancy that occurs in the young population. After osteosarcoma cells metastasize to the lung, prognosis is very poor owing to difficulties in early diagnosis and effective treatment. Recently, connective tissue growth factor (CTGF) was reported to be a critical contributor to osteosarcoma metastasis. However, the detailed mechanism associated with CTGF-directed migration in bone neoplasms is still mostly unknown. Through the in vivo and in vitro examination of osteosarcoma cells, this study suggests that VCAM-1 up-regulation and increased osteosarcoma cell migration are involved in this process. Antagonizing αvβ3 integrin inhibited cell migration. Moreover, FAK, PI3K, Akt and NF-κB activation were also shown to be involved in CTGF-mediated osteosarcoma metastasis. Taken together, CTGF promotes VCAM-1 production and further induces osteosarcoma metastasis via the αvβ3 integrin/FAK/PI3K/Akt/NF-κB signaling pathway, which could represent a promising clinical target to improve patient outcome.
Collapse
Affiliation(s)
- Chun-Han Hou
- Department of Orthopedic Surgery, National Taiwan University Hospital, NO 1, Jen-Ai Road, Taipei 100, Taiwan.
| | - Rong-Sen Yang
- Department of Orthopedic Surgery, National Taiwan University Hospital, NO 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Ya-Ting Tsao
- Department of Orthopedic Surgery, National Taiwan University Hospital, NO 1, Jen-Ai Road, Taipei 100, Taiwan
| |
Collapse
|
12
|
Zhuo B, Li Y, Gu F, Li Z, Sun Q, Shi Y, Shen Y, Zhang F, Wang R, Wang X. Overexpression of CD155 relates to metastasis and invasion in osteosarcoma. Oncol Lett 2018; 15:7312-7318. [PMID: 29725446 DOI: 10.3892/ol.2018.8228] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 11/20/2017] [Indexed: 11/06/2022] Open
Abstract
The rapid development of metastatic lesions remains the leading cause of mortality for patients with osteosarcoma. CD155 serves a key role in cancer cell migration, invasion and metastasis. However, the function and mechanism of CD155 has not been explored in osteosarcoma metastasis. In the present study, we found that CD155 was significantly upregulated in lung metastatic tissue and the highly metastatic cell line K7M2-WT (K7M2) of osteosarcoma. Overexpression of CD155 in K7M2 cells enhanced lung metastasis, while inhibition of CD155 by an anti-CD155 monoclonal antibody reduced metastasis. Blocking of CD155 also decreased migration and invasion of K7M2 cells in vitro. A western blot analysis revealed that blocking of CD155 inhibits metastasis by downregulating focal adhesion kinase (FAK) and phosphorylated FAK (pFAK) in osteosarcoma. The results revealed that CD155 serves a crucial role in the metastasis of osteosarcoma by regulating FAK and may provide a novel molecular target for therapeutic intervention in metastatic osteosarcoma.
Collapse
Affiliation(s)
- Baobiao Zhuo
- Department of Surgery, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China.,Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Yuan Li
- Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Feng Gu
- Department of Laboratory Medicine, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Zhengwei Li
- Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Qingzeng Sun
- Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Yingchun Shi
- Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Yang Shen
- Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Fengfei Zhang
- Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Rong Wang
- Department of Ultrasound, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Xiaodong Wang
- Department of Surgery, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| |
Collapse
|
13
|
Lasorsa VA, Formicola D, Pignataro P, Cimmino F, Calabrese FM, Mora J, Esposito MR, Pantile M, Zanon C, De Mariano M, Longo L, Hogarty MD, de Torres C, Tonini GP, Iolascon A, Capasso M. Exome and deep sequencing of clinically aggressive neuroblastoma reveal somatic mutations that affect key pathways involved in cancer progression. Oncotarget 2017; 7:21840-52. [PMID: 27009842 PMCID: PMC5008327 DOI: 10.18632/oncotarget.8187] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/09/2016] [Indexed: 02/04/2023] Open
Abstract
The spectrum of somatic mutation of the most aggressive forms of neuroblastoma is not completely determined. We sought to identify potential cancer drivers in clinically aggressive neuroblastoma. Whole exome sequencing was conducted on 17 germline and tumor DNA samples from high-risk patients with adverse events within 36 months from diagnosis (HR-Event3) to identify somatic mutations and deep targeted sequencing of 134 genes selected from the initial screening in additional 48 germline and tumor pairs (62.5% HR-Event3 and high-risk patients), 17 HR-Event3 tumors and 17 human-derived neuroblastoma cell lines. We revealed 22 significantly mutated genes, many of which implicated in cancer progression. Fifteen genes (68.2%) were highly expressed in neuroblastoma supporting their involvement in the disease. CHD9, a cancer driver gene, was the most significantly altered (4.0% of cases) after ALK. Other genes (PTK2, NAV3, NAV1, FZD1 and ATRX), expressed in neuroblastoma and involved in cell invasion and migration were mutated at frequency ranged from 4% to 2%. Focal adhesion and regulation of actin cytoskeleton pathways, were frequently disrupted (14.1% of cases) thus suggesting potential novel therapeutic strategies to prevent disease progression. Notably BARD1, CHEK2 and AXIN2 were enriched in rare, potentially pathogenic, germline variants. In summary, whole exome and deep targeted sequencing identified novel cancer genes of clinically aggressive neuroblastoma. Our analyses show pathway-level implications of infrequently mutated genes in leading neuroblastoma progression.
Collapse
Affiliation(s)
- Vito Alessandro Lasorsa
- University of Naples Federico II, Department of Molecular Medicine and Medical Biotechnology, Naples, Italy.,CEINGE Biotecnolgie Avanzate, Naples, Italy
| | - Daniela Formicola
- University of Naples Federico II, Department of Molecular Medicine and Medical Biotechnology, Naples, Italy.,CEINGE Biotecnolgie Avanzate, Naples, Italy
| | - Piero Pignataro
- University of Naples Federico II, Department of Molecular Medicine and Medical Biotechnology, Naples, Italy.,CEINGE Biotecnolgie Avanzate, Naples, Italy
| | - Flora Cimmino
- University of Naples Federico II, Department of Molecular Medicine and Medical Biotechnology, Naples, Italy.,CEINGE Biotecnolgie Avanzate, Naples, Italy
| | | | - Jaume Mora
- Hospital Sant Joan de Déu, Developmental Tumor Biology Laboratory and Department of Oncology, Esplugues de Llobregat, Barcelona, Spain
| | - Maria Rosaria Esposito
- Pediatric Research Institute (IRP), Fondazione Città della Speranza, Neuroblastoma Laboratory, Padua, Italy
| | - Marcella Pantile
- Pediatric Research Institute (IRP), Fondazione Città della Speranza, Neuroblastoma Laboratory, Padua, Italy
| | - Carlo Zanon
- Pediatric Research Institute (IRP), Fondazione Città della Speranza, Neuroblastoma Laboratory, Padua, Italy
| | - Marilena De Mariano
- U.O.C. Bioterapie, IRCCS AOU San Martino-IST, National Cancer Research Institute, Genoa, Italy
| | - Luca Longo
- U.O.C. Bioterapie, IRCCS AOU San Martino-IST, National Cancer Research Institute, Genoa, Italy
| | - Michael D Hogarty
- Children's Hospital of Philadelphia, Division of Oncology, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Carmen de Torres
- Hospital Sant Joan de Déu, Developmental Tumor Biology Laboratory and Department of Oncology, Esplugues de Llobregat, Barcelona, Spain
| | - Gian Paolo Tonini
- Pediatric Research Institute (IRP), Fondazione Città della Speranza, Neuroblastoma Laboratory, Padua, Italy
| | - Achille Iolascon
- University of Naples Federico II, Department of Molecular Medicine and Medical Biotechnology, Naples, Italy.,CEINGE Biotecnolgie Avanzate, Naples, Italy
| | - Mario Capasso
- University of Naples Federico II, Department of Molecular Medicine and Medical Biotechnology, Naples, Italy.,CEINGE Biotecnolgie Avanzate, Naples, Italy.,IRCCS SDN, Istituto di Ricerca Diagnostica e Nucleare, Naples, Italy
| |
Collapse
|
14
|
The TRPM7 interactome defines a cytoskeletal complex linked to neuroblastoma progression. Eur J Cell Biol 2016; 95:465-474. [DOI: 10.1016/j.ejcb.2016.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/16/2016] [Accepted: 06/23/2016] [Indexed: 01/27/2023] Open
|
15
|
Ren K, Lu X, Yao N, Chen Y, Yang A, Chen H, Zhang J, Wu S, Shi X, Wang C, Sun X. Focal adhesion kinase overexpression and its impact on human osteosarcoma. Oncotarget 2016; 6:31085-103. [PMID: 26393679 PMCID: PMC4741590 DOI: 10.18632/oncotarget.5044] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 08/24/2015] [Indexed: 11/25/2022] Open
Abstract
Focal adhesion kinase (FAK) has been implicated in tumorigenesis in various malignancies. We sought to examine the expression patterns of FAK and the activated form, phosphorylated FAK (pFAK), in human osteosarcoma and to investigate the correlation of FAK expression with clinicopathologic parameters and prognosis. In addition, the functional consequence of manipulating the FAK protein level was investigated in human osteosarcoma cell lines. Immunohistochemical staining was used to detect FAK and pFAK in pathologic archived materials from 113 patients with primary osteosarcoma. Kaplan-Meier survival and Cox regression analyses were performed to evaluate the prognoses. The role of FAK in the cytological behavior of MG63 and 143B human osteosarcoma cell lines was studied via FAK protein knock down with siRNA. Cell proliferation, migration, invasiveness and apoptosis were assessed using the CCK8, Transwell and Annexin V/PI staining methods. Both FAK and pFAK were overexpressed in osteosarcoma. There were significant differences in overall survival between the FAK-/pFAK- and FAK+/pFAK- groups (P = 0.016), the FAK+/pFAK- and FAK+/pFAK+ groups (P = 0.012) and the FAK-/pFAK- and FAK+/pFAK+ groups (P < 0.001). There were similar differences in metastasis-free survival between groups. The Cox proportional hazards analysis showed that the FAK expression profile was an independent indicator of both overall and metastasis-free survival. SiRNA-based knockdown of FAK not only dramatically reduced the migration and invasion of MG63 and 143B cells, but also had a distinct effect on osteosarcoma cell proliferation and apoptosis. These results collectively suggest that FAK overexpression and phosphorylation might predict more aggressive biologic behavior in osteosarcoma and may be an independent predictor of poor prognosis.
Collapse
Affiliation(s)
- Ke Ren
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, Jiangsu Province, P.R.China.,Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, P.R.China
| | - Xiao Lu
- Center Laboratory of Cancer Center, The Jingdu Hospital of Nanjing, Nanjing 210002, Jiangsu Province, P.R.China
| | - Nan Yao
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, P.R.China
| | - Yong Chen
- Jinling Hospital, Department of Orthopedics, Nanjing University, School of Medicine, Nanjing 210002, Jiangsu Province, P.R.China
| | - Aizhen Yang
- Center Laboratory of Cancer Center, The Jingdu Hospital of Nanjing, Nanjing 210002, Jiangsu Province, P.R.China
| | - Hui Chen
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, P.R.China
| | - Jian Zhang
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, P.R.China
| | - Sujia Wu
- Jinling Hospital, Department of Orthopedics, Nanjing University, School of Medicine, Nanjing 210002, Jiangsu Province, P.R.China
| | - Xin Shi
- Jinling Hospital, Department of Orthopedics, Nanjing University, School of Medicine, Nanjing 210002, Jiangsu Province, P.R.China
| | - Chen Wang
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, P.R.China
| | - Xiaoliang Sun
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, Jiangsu Province, P.R.China
| |
Collapse
|
16
|
Li WX, Chen LP, Sun MY, Li JT, Liu HZ, Zhu W. 3'3-Diindolylmethane inhibits migration, invasion and metastasis of hepatocellular carcinoma by suppressing FAK signaling. Oncotarget 2016; 6:23776-92. [PMID: 26068982 PMCID: PMC4695151 DOI: 10.18632/oncotarget.4196] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 05/21/2015] [Indexed: 01/28/2023] Open
Abstract
Late stage hepatocellular carcinoma (HCC) usually has a low survival rate because it has high potential of metastases and there is no effective cure. 3'3-Diindolylmethane (DIM) is the major product of the acid-catalyzed oligomerization of indole-3-carbinol present in cruciferous vegetables. DIM has been proved to exhibit anticancer properties. In this study, we explored the effects and molecular mechanisms of anti-metastasis of DIM on HCC cells both in vitro and in vivo. We chose two HCC cell lines SMMC-7721 and MHCC-97H that have high potential of invasion. The results showed that DIM inhibited the proliferation, migration and invasion of these two cell lines in vitro. In addition, in vivo study demonstrated that DIM significantly decreased the volumes of SMMC-7721 orthotopic liver tumor and suppressed lung metastasis in nude mice. Focal Adhesion Kinase (FAK) is found over activated in HCC cells. We found that DIM decreased the level of phospho-FAK (Tyr397) both in vitro and in vivo. DIM inhibition of phospho-FAK (Tyr397) led to down-regulation of MMP2/9 and decreased potential of metastasis. DIM also repressed the migration and invasion induced by vitronectin through inactivation of FAK pathway and down-regulation of MMP2/9 in vitro. We also found that pTEN plays a role in down-regulation of FAK by DIM. These results demonstrated that DIM blocks HCC cell metastasis by suppressing tumor cell migration and invasion. The anti-metastasis effect of DIM could be explained to be its down-regulated expression and activation of MMP2/9 partly induced by up-regulation of pTEN and inhibition of phospho-FAK (Tyr397).
Collapse
Affiliation(s)
- Wen-Xue Li
- Dearpartmant of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Li-Ping Chen
- Faculty of Toxicology, School of Public Health, Sun Yet-sen University, Guangzhou, China
| | - Min-Ying Sun
- Dearpartmant of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Jun-Tao Li
- Dearpartmant of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Hua-Zhang Liu
- Dearpartmant of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Wei Zhu
- Dearpartmant of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| |
Collapse
|
17
|
Waters AM, Stafman LL, Garner EF, Mruthyunjayappa S, Stewart JE, Mroczek-Musulman E, Beierle EA. Targeting Focal Adhesion Kinase Suppresses the Malignant Phenotype in Rhabdomyosarcoma Cells. Transl Oncol 2016; 9:263-73. [PMID: 27567948 PMCID: PMC4925808 DOI: 10.1016/j.tranon.2016.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/04/2016] [Accepted: 06/06/2016] [Indexed: 01/15/2023] Open
Abstract
Despite the tremendous advances in the treatment of childhood solid tumors, rhabdomyosarcoma (RMS) continues to provide a therapeutic challenge. Children with metastatic or relapsed disease have a disease-free survival rate under 30%. Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase that is important in many facets of tumorigenesis. Signaling pathways both upstream and downstream to FAK have been found to be important in sarcoma tumorigenesis, leading us to hypothesize that FAK would be present in RMS and would impact cellular survival. In the current study, we showed that FAK was present and phosphorylated in pediatric alveolar and embryonal RMS tumor specimens and cell lines. We also examined the effects of FAK inhibition upon two RMS cell lines utilizing parallel approaches including RNAi and small molecule inhibitors. FAK inhibition resulted in decreased cellular survival, invasion, and migration and increased apoptosis. Furthermore, small molecule inhibition of FAK led to decreased tumor growth in a nude mouse RMS xenograft model. The findings from this study will help to further our understanding of the regulation of tumorigenesis in RMS and may provide desperately needed novel therapeutic strategies for these difficult-to-treat tumors.
Collapse
Affiliation(s)
- Alicia M Waters
- Department of Surgery, Division of Pediatric Surgery, University of Alabama, Birmingham, AL
| | - Laura L Stafman
- Department of Surgery, Division of Pediatric Surgery, University of Alabama, Birmingham, AL
| | - Evan F Garner
- Department of Surgery, Division of Pediatric Surgery, University of Alabama, Birmingham, AL
| | - Smitha Mruthyunjayappa
- Department of Surgery, Division of Pediatric Surgery, University of Alabama, Birmingham, AL
| | - Jerry E Stewart
- Department of Surgery, Division of Pediatric Surgery, University of Alabama, Birmingham, AL
| | | | - Elizabeth A Beierle
- Department of Surgery, Division of Pediatric Surgery, University of Alabama, Birmingham, AL.
| |
Collapse
|
18
|
Elshafae SM, Hassan BB, Supsavhad W, Dirksen WP, Camiener RY, Ding H, Tweedle MF, Rosol TJ. Gastrin-releasing peptide receptor (GRPr) promotes EMT, growth, and invasion in canine prostate cancer. Prostate 2016; 76:796-809. [PMID: 26939805 PMCID: PMC5867904 DOI: 10.1002/pros.23154] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/05/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND The gastrin-releasing peptide receptor (GRPr) is upregulated in early and late-stage human prostate cancer (PCa) and other solid tumors of the mammary gland, lung, head and neck, colon, uterus, ovary, and kidney. However, little is known about its role in prostate cancer. This study examined the effects of a heterologous GRPr agonist, bombesin (BBN), on growth, motility, morphology, gene expression, and tumor phenotype of an osteoblastic canine prostate cancer cell line (Ace-1) in vitro and in vivo. METHODS The Ace-1 cells were stably transfected with the human GRPr and tumor cells were grown in vitro and as subcutaneous and intratibial tumors in nude mice. The effect of BBN was measured on cell proliferation, cell migration, tumor growth (using bioluminescence), tumor cell morphology, bone tumor phenotype, and epithelial-mesenchymal transition (EMT) and metastasis gene expression (quantitative RT-PCR). GRPr mRNA expression was measured in primary canine prostate cancers and normal prostate glands. RESULTS Bombesin (BBN) increased tumor cell proliferation and migration in vitro and tumor growth and invasion in vivo. BBN upregulated epithelial-to-mesenchymal transition (EMT) markers (TWIST, SNAIL, and SLUG mRNA) and downregulated epithelial markers (E-cadherin and β-catenin mRNA), and modified tumor cell morphology to a spindle cell phenotype. Blockade of GRPr upregulated E-cadherin and downregulated VIMENTIN and SNAIL mRNA. BBN altered the in vivo tumor phenotype in bone from an osteoblastic to osteolytic phenotype. Primary canine prostate cancers had increased GRPr mRNA expression compared to normal prostates. CONCLUSION These data demonstrated that the GRPr is important in prostate cancer growth and progression and targeting GRPr may be a promising strategy for treatment of prostate cancer. Prostate 76:796-809, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Said M. Elshafae
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Kalyubia, Egypt
| | - Bardes B. Hassan
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | | - Wessel P. Dirksen
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Rachael Y. Camiener
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Haiming Ding
- Department of Radiology, Wexner Medical Center, The Wright Center for Innovation in Biomedical Imaging, The Ohio State University, Columbus, Ohio
| | - Michael F. Tweedle
- Department of Radiology, Wexner Medical Center, The Wright Center for Innovation in Biomedical Imaging, The Ohio State University, Columbus, Ohio
| | - Thomas J. Rosol
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| |
Collapse
|
19
|
Peritoneal expression of Matrilysin helps identify early post-operative recurrence of colorectal cancer. Oncotarget 2016; 6:13402-15. [PMID: 25596746 PMCID: PMC4537023 DOI: 10.18632/oncotarget.2830] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 11/27/2014] [Indexed: 12/20/2022] Open
Abstract
Recurrence of colorectal cancer (CRC) following a potentially curative resection is a challenging clinical problem. Matrix metalloproteinase-7 (MMP-7) is over-expressed by CRC cells and supposed to play a major role in CRC cell diffusion and metastasis. MMP-7 RNA expression was assessed by real-time PCR using specific primers in peritoneal washing fluid obtained during surgical procedure. After surgery, patients underwent a regular follow up for assessing recurrence. transcripts for MMP-7 were detected in 31/57 samples (54%). Patients were followed-up (range 20-48 months) for recurrence prevention. Recurrence was diagnosed in 6 out of 55 patients (11%) and two patients eventually died because of this. Notably, all the six patients who had relapsed were positive for MMP-7. Sensitivity and specificity of the test were 100% and 49% respectively. Data from patients have also been corroborated by computational approaches. Public available coloncarcinoma datasets have been employed to confirm MMP7 clinical impact on the disease. Interestingly, MMP-7 expression appeared correlated to Tgfb-1, and correlation of the two factors represented a poor prognostic factor. This study proposes positivity of MMP-7 in peritoneal cavity as a novel biomarker for predicting disease recurrence in patients with CRC.
Collapse
|
20
|
Liu Y, An S, Ward R, Yang Y, Guo XX, Li W, Xu TR. G protein-coupled receptors as promising cancer targets. Cancer Lett 2016; 376:226-39. [PMID: 27000991 DOI: 10.1016/j.canlet.2016.03.031] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/14/2016] [Accepted: 03/14/2016] [Indexed: 02/07/2023]
Abstract
G protein-coupled receptors (GPCRs) regulate an array of fundamental biological processes, such as growth, metabolism and homeostasis. Specifically, GPCRs are involved in cancer initiation and progression. However, compared with the involvement of the epidermal growth factor receptor in cancer, that of GPCRs have been largely ignored. Recent findings have implicated many GPCRs in tumorigenesis, tumor progression, invasion and metastasis. Moreover, GPCRs contribute to the establishment and maintenance of a microenvironment which is permissive for tumor formation and growth, including effects upon surrounding blood vessels, signaling molecules and the extracellular matrix. Thus, GPCRs are considered to be among the most useful drug targets against many solid cancers. Development of selective ligands targeting GPCRs may provide novel and effective treatment strategies against cancer and some anticancer compounds are now in clinical trials. Here, we focus on tumor related GPCRs, such as G protein-coupled receptor 30, the lysophosphatidic acid receptor, angiotensin receptors 1 and 2, the sphingosine 1-phosphate receptors and gastrin releasing peptide receptor. We also summarize their tissue distributions, activation and roles in tumorigenesis and discuss the potential use of GPCR agonists and antagonists in cancer therapy.
Collapse
Affiliation(s)
- Ying Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Su An
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Richard Ward
- Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Yang Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xiao-Xi Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Wei Li
- Kidney Cancer Research, Diagnosis and Translational Technology Center of Yunnan Province, Department of Urology, The People's Hospital of Yunnan Province, Kunming, Yunnan 650032, China.
| | - Tian-Rui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| |
Collapse
|
21
|
Middelbeek J, Visser D, Henneman L, Kamermans A, Kuipers AJ, Hoogerbrugge PM, Jalink K, van Leeuwen FN. TRPM7 maintains progenitor-like features of neuroblastoma cells: implications for metastasis formation. Oncotarget 2016; 6:8760-76. [PMID: 25797249 PMCID: PMC4496182 DOI: 10.18632/oncotarget.3315] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/08/2015] [Indexed: 12/18/2022] Open
Abstract
Neuroblastoma is an embryonal tumor derived from poorly differentiated neural crest cells. Current research is aimed at identifying the molecular mechanisms that maintain the progenitor state of neuroblastoma cells and to develop novel therapeutic strategies that induce neuroblastoma cell differentiation. Mechanisms controlling neural crest development are typically dysregulated during neuroblastoma progression, and provide an appealing starting point for drug target discovery. Transcriptional programs involved in neural crest development act as a context dependent gene regulatory network. In addition to BMP, Wnt and Notch signaling, activation of developmental gene expression programs depends on the physical characteristics of the tissue microenvironment. TRPM7, a mechanically regulated TRP channel with kinase activity, was previously found essential for embryogenesis and the maintenance of undifferentiated neural crest progenitors. Hence, we hypothesized that TRPM7 may preserve progenitor-like, metastatic features of neuroblastoma cells. Using multiple neuroblastoma cell models, we demonstrate that TRPM7 expression closely associates with the migratory and metastatic properties of neuroblastoma cells in vitro and in vivo. Moreover, microarray-based expression profiling on control and TRPM7 shRNA transduced neuroblastoma cells indicates that TRPM7 controls a developmental transcriptional program involving the transcription factor SNAI2. Overall, our data indicate that TRPM7 contributes to neuroblastoma progression by maintaining progenitor-like features.
Collapse
Affiliation(s)
- Jeroen Middelbeek
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Daan Visser
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Linda Henneman
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alwin Kamermans
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Arthur J Kuipers
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Peter M Hoogerbrugge
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands.,Princes Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Kees Jalink
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Frank N van Leeuwen
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
22
|
JUENGEL EVA, AFSCHAR MASUD, MAKAREVIĆ JASMINA, RUTZ JOCHEN, TSAUR IGOR, MANI JENS, NELSON KAREN, HAFERKAMP AXEL, BLAHETA ROMANA. Amygdalin blocks the in vitro adhesion and invasion of renal cell carcinoma cells by an integrin-dependent mechanism. Int J Mol Med 2016; 37:843-50. [DOI: 10.3892/ijmm.2016.2454] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/03/2015] [Indexed: 11/06/2022] Open
|
23
|
Borriello L, Seeger RC, Asgharzadeh S, DeClerck YA. More than the genes, the tumor microenvironment in neuroblastoma. Cancer Lett 2015; 380:304-14. [PMID: 26597947 DOI: 10.1016/j.canlet.2015.11.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/06/2015] [Accepted: 11/11/2015] [Indexed: 10/22/2022]
Abstract
Neuroblastoma is the second most common solid tumor in children. Since the seminal discovery of the role of amplification of the MYCN oncogene in the pathogenesis of neuroblastoma in the 1980s, much focus has been on the contribution of genetic alterations in the progression of this cancer. However it is now clear that not only genetic events play a role but that the tumor microenvironment (TME) substantially contributes to the biology of neuroblastoma. In this article, we present a comprehensive review of the literature on the contribution of the TME to the ten hallmarks of cancer in neuroblastoma and discuss the mechanisms of communication between neuroblastoma cells and the TME that underlie the influence of the TME on neuroblastoma progression. We end our review by discussing how the knowledge acquired over the last two decades in this field is now leading to new clinical trials targeting the TME.
Collapse
Affiliation(s)
- Lucia Borriello
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA; The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Robert C Seeger
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA; The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Shahab Asgharzadeh
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA; The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Yves A DeClerck
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA; The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Department of Biochemistry and Molecular Biology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Lee S, Rellinger EJ, Kim KW, Craig BT, Romain CV, Qiao J, Chung DH. Bromodomain and extraterminal inhibition blocks tumor progression and promotes differentiation in neuroblastoma. Surgery 2015; 158:819-26. [PMID: 26067464 PMCID: PMC4536146 DOI: 10.1016/j.surg.2015.04.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/27/2015] [Accepted: 04/10/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND MYCN amplification is a key molecular hallmark of high-risk neuroblastoma. Previously considered an "undruggable" target, MYCN transcription can be disrupted by inhibiting the bromodomain and the extraterminal (BET) domain family of proteins that regulates MYCN transcription epigenetically. JQ1 is a potent, small-molecule BET inhibitor that induces cell-cycle arrest and initiates apoptosis in neuroblastoma. Here, we sought to validate the antitumorigenic effects of JQ1 in neuroblastoma and to evaluate whether blocking N-myc expression with JQ1 promotes neural differentiation. METHODS We determined the effects in vitro of JQ1 treatment on human neuroblastoma cell growth in both monolayer and sphere-forming conditions. Subcutaneous neuroblastoma xenografts were used for an in vivo study. Western blotting and immunohistochemistry were performed to evaluate the effects on neural differentiation and stem cell markers. RESULTS JQ1 treatment blocked neuroblastoma cell growth in both monolayer and sphere-forming conditions; JQ1 also attenuated the growth of neuroblastoma xenograft in athymic nude mice. Neurofilament expression was enhanced with JQ1 treatment, indicating that JQ1 induces neuronal differentiation. Sphere forming conditions resulted in increased expression of multiple stem cell markers; these effects were reversed with JQ1 treatment. CONCLUSION BET inhibition attenuates progression and promotes neural differentiation of neuroblastoma in vitro and in vivo in mice, providing insight into potential clinical applications of BET inhibitors in the treatment of patients with neuroblastoma.
Collapse
Affiliation(s)
- Sora Lee
- Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Eric J Rellinger
- Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Kwang Woon Kim
- Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Brian T Craig
- Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Carmelle V Romain
- Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Jingbo Qiao
- Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Dai H Chung
- Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN; Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN.
| |
Collapse
|
25
|
Rellinger EJ, Romain C, Choi S, Qiao J, Chung DH. Silencing gastrin-releasing peptide receptor suppresses key regulators of aerobic glycolysis in neuroblastoma cells. Pediatr Blood Cancer 2015; 62:581-6. [PMID: 25630799 PMCID: PMC4339541 DOI: 10.1002/pbc.25348] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 09/29/2014] [Indexed: 12/28/2022]
Abstract
BACKGROUND Under normoxic conditions, cancer cells use aerobic glycolysis as opposed to glucose oxidation for energy production; this altered metabolism correlates with poor outcomes in neuroblastoma. Hypoxia-inducible factor-1 alpha (HIF-1α) and pyruvate dehydrogenase kinase 4 (PDK4) regulate aerobic glycolysis, while pyruvate dehydrogenase phosphatase 2 (PDP2) promotes glucose oxidation. Here, we sought to determine whether gastrin-releasing peptide receptor (GRP-R) signaling regulates glucose metabolism. PROCEDURE Neuroblastoma cell lines, BE(2)-C and SK-N-AS, were used. PCR microararay for glucose metabolism was performed on GRP-R silenced cells. Target protein expression was validated using Western blotting and VEGF ELISA. Cobalt chloride (CoCl2 ) was used to induce chemical hypoxia. Efficacy of targeting PDK regulation in neuroblastoma was assessed using dichloroacetate (DCA) by conducting cell viability assays and Western blotting for apoptotic markers. RESULTS Silencing GRP-R decreased HIF-1α expression and blocked VEGF expression and secretion in both normoxic and CoCl2 induced hypoxia. PCR array analysis identified that GRP-R silencing reduced PDK4 and increased PDP2 mRNA expression. These findings were validated by Western blotting. CoCl2 induced hypoxia increased VEGF secretion, HIF-1α, and PDK4 expression. PDK4 silencing decreased HIF-1α expression and VEGF expression and secretion. DCA treatment decreased BE(2)-C and SK-N-AS proliferation while promoting cell death. GRP-R silencing and DCA treatment synergistically halted BE(2)-C proliferation. CONCLUSIONS We report that GRP-R regulates glucose metabolism in neuroblastoma by modulating HIF-1α, PDK4 and PDP2. PDK4 regulates glucose metabolism, in part, via regulation of HIF-1α. Synergistic consequences of GRP-R inhibition and DCA treatment may suggest a novel therapeutic strategy for the treatment of aggressive neuroblastoma.
Collapse
Affiliation(s)
- Eric J. Rellinger
- Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Carmelle Romain
- Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232
| | - SunPhil Choi
- Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jingbo Qiao
- Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Dai H. Chung
- Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232,Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
26
|
Shankar V, Hori H, Kihira K, Lei Q, Toyoda H, Iwamoto S, Komada Y. Mesenchymal stromal cell secretome up-regulates 47 kDa CXCR4 expression, and induce invasiveness in neuroblastoma cell lines. PLoS One 2015; 10:e0120069. [PMID: 25774696 PMCID: PMC4361348 DOI: 10.1371/journal.pone.0120069] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 01/31/2015] [Indexed: 12/26/2022] Open
Abstract
Neuroblastoma accounts for 15% of childhood cancer deaths and presents with metastatic disease of the bone and the bone marrow at diagnosis in 70% of the cases. Previous studies have shown that the Mesenchymal Stromal Cell (MSC) secretome, triggers metastases in several cancer types such as breast and prostate cancer, but the specific role of the MSC factors in neuroblastoma metastasis is unclear. To better understand the effect of MSC secretome on chemokine receptors in neuroblastoma, and its role in metastasis, we studied a panel of 20 neuroblastoma cell lines, and compared their invasive potential towards MSC-conditioned-RPMI (mRPMI) and their cytokine receptor expression profiles. Western blot analysis revealed the expression of multiple CXCR4 isoforms in neuroblastoma cells. Among the five major isoforms, the expression of the 47 kDa isoform showed significant correlation with high invasiveness. Pretreatment with mRPMI up-regulated the expression of the 47 kDa CXCR4 isoform and also increased MMP-9 secretion, expression of integrin α3 and integrin β1, and the invasive potential of the cell; while blocking CXCR4 either with AMD 3100, a CXCR4 antagonist, or with an anti-47 kDa CXCR4 neutralizing antibody decreased the secretion of MMP-9, the expression of integrin α3 and integrin β1, and the invasive potential of the cell. Pretreatment with mRPMI also protected the 47 kDa CXCR4 isoform from ubiquitination and subsequent degradation. Our data suggest a modulatory role of the MSC secretome on the expression of the 47 kDa CXCR4 isoform and invasion potential of the neuroblastoma cells to the bone marrow.
Collapse
Affiliation(s)
- Vipin Shankar
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Hiroki Hori
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
- * E-mail:
| | - Kentaro Kihira
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Qi Lei
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Hidemi Toyoda
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Shotaro Iwamoto
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Yoshihiro Komada
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| |
Collapse
|
27
|
Zimmer AS, Steeg PS. Meaningful prevention of breast cancer metastasis: candidate therapeutics, preclinical validation, and clinical trial concerns. J Mol Med (Berl) 2015; 93:13-29. [PMID: 25412774 PMCID: PMC6545582 DOI: 10.1007/s00109-014-1226-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/08/2014] [Accepted: 10/30/2014] [Indexed: 12/31/2022]
Abstract
The development of drugs to treat breast and other cancers proceeds through phase I dose finding, phase II efficacy, and phase III comparative studies in the metastatic setting, only then asking if metastasis can be prevented in adjuvant trials. Compounds without overt cytotoxic activity, such as those developed to inhibit metastatic colonization, will likely fail to shrink established lesions in the metastatic setting and never be tested in a metastasis prevention scenario where they were preclinically validated. We and others have proposed phase II primary and secondary metastasis prevention studies to address this need. Herein, we have asked whether preclinical metastasis prevention data agrees with the positive adjuvant setting trials. The data are limited but complimentary. We also review fundamental pathways involved in metastasis, including Src, integrins, focal adhesion kinase (FAK), and fibrosis, for their clinical progress to date and potential for metastasis prevention. Issues of inadequate preclinical validation and clinical toxicity profiles are discussed.
Collapse
Affiliation(s)
- Alexandra S Zimmer
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA,
| | | |
Collapse
|
28
|
Lange I, Koomoa DLT. MycN promotes TRPM7 expression and cell migration in neuroblastoma through a process that involves polyamines. FEBS Open Bio 2014; 4:966-75. [PMID: 25426416 PMCID: PMC4241534 DOI: 10.1016/j.fob.2014.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/13/2014] [Accepted: 10/24/2014] [Indexed: 12/22/2022] Open
Abstract
MycN expression correlates with TRPM7 expression in neuroblastoma (NB) tumors. Expression of the transmembrane protein TRPM7 correlates with lower overall survival in NB tumors. MycN promotes TRPM7 mRNA and protein expression and increases TRPM7 channel activity. TRPM7 regulates NB cell migration. Polyamines regulate TRPM7 expression.
Neuroblastoma is an extra-cranial solid cancer in children. MYCN gene amplification is a prognostic indicator of poor outcome in neuroblastoma. Recent studies have shown that the multiple steps involved in cell migration are dependent on the availability of intracellular calcium (Ca2+). Although significant advances have been made in understanding the role of Ca2+ during migration, little has been achieved towards understanding its impact on the progression of diseases such as cancer. Interestingly, previous studies showed that cancer cell migration is regulated by TRPM7, a calcium-permeable ion channel. The objective of the current study was to elucidate the mechanism by which MycN promotes NB cell migration and the mechanism regulating TRPM7 expression. The results showed that MycN increased TRPM7 expression, induced TRPM7 channel activity, increased intracellular Ca2+ signaling, and promoted cell migration in NB cells. The results also showed that inhibition or down-regulation of ornithine decarboxylase (ODC) inhibited TRPM7 expression, a process that was reversed by spermidine. Overall, this study provides evidence that MycN promotes TRPM7 expression and cell migration through a mechanism that involves ODC synthesis of polyamines.
Collapse
Affiliation(s)
- Ingo Lange
- University of Hawaii at Hilo, The Daniel K. Inouye College of Pharmacy, Hilo, HI 96720, USA
| | - Dana-Lynn T Koomoa
- University of Hawaii at Hilo, The Daniel K. Inouye College of Pharmacy, Hilo, HI 96720, USA
| |
Collapse
|
29
|
FAK signaling in human cancer as a target for therapeutics. Pharmacol Ther 2014; 146:132-49. [PMID: 25316657 DOI: 10.1016/j.pharmthera.2014.10.001] [Citation(s) in RCA: 295] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 02/08/2023]
Abstract
Focal adhesion kinase (FAK) is a key regulator of growth factor receptor- and integrin-mediated signals, governing fundamental processes in normal and cancer cells through its kinase activity and scaffolding function. Increased FAK expression and activity occurs in primary and metastatic cancers of many tissue origins, and is often associated with poor clinical outcome, highlighting FAK as a potential determinant of tumor development and metastasis. Indeed, data from cell culture and animal models of cancer provide strong lines of evidence that FAK promotes malignancy by regulating tumorigenic and metastatic potential through highly-coordinated signaling networks that orchestrate a diverse range of cellular processes, such as cell survival, proliferation, migration, invasion, epithelial-mesenchymal transition, angiogenesis and regulation of cancer stem cell activities. Such an integral role in governing malignant characteristics indicates that FAK represents a potential target for cancer therapeutics. While pharmacologic targeting of FAK scaffold function is still at an early stage of development, a number of small molecule-based FAK tyrosine kinase inhibitors are currently undergoing pre-clinical and clinical testing. In particular, PF-00562271, VS-4718 and VS-6063 show promising clinical activities in patients with selected solid cancers. Clinical testing of rationally designed FAK-targeting agents with implementation of predictive response biomarkers, such as merlin deficiency for VS-4718 in mesothelioma, may help improve clinical outcome for cancer patients. In this article, we have reviewed the current knowledge regarding FAK signaling in human cancer, and recent developments in the generation and clinical application of FAK-targeting pharmacologic agents.
Collapse
|
30
|
Li D, Mei H, Qi M, Yang D, Zhao X, Xiang X, Pu J, Huang K, Zheng L, Tong Q. FOXD3 is a novel tumor suppressor that affects growth, invasion, metastasis and angiogenesis of neuroblastoma. Oncotarget 2014; 4:2021-44. [PMID: 24269992 PMCID: PMC3875767 DOI: 10.18632/oncotarget.1579] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The transcription factor forkhead box D3 (FOXD3) plays a crucial role in the development of neural crest cells. However, the function and underlying mechanisms of FOXD3 in the progression of neuroblastoma (NB), an embryonal tumor that is derived from the neural crest, still remain largely unknown. Here, we report that FOXD3 is an important oncosuppressor of NB tumorigenicity and aggressiveness. We found that FOXD3 was down-regulated in NB tissues and cell lines. Patients with high FOXD3 expression have greater survival probability. Over-expression or knockdown of FOXD3 responsively altered both the protein and mRNA levels of N-myc downstream regulated 1 (NDRG1) and its downstream genes, vascular endothelial growth factor and matrix metalloproteinase 9, in cultured NB cell lines SH-SY5Y and SK-N-SH. Luciferase reporter and chromatin immunoprecipitation assays indicated that FOXD3 directly targeted the binding site within NDRG1 promoter to facilitate its transcription. Ectopic expression of FOXD3 suppressed the growth, invasion, metastasis and angiogenesis of SH-SY5Y and SK-N-SH cells in vitro and in vivo. Conversely, knockdown of FOXD3 promoted the growth, migration, invasion and angiogenesis of NB cells. In addition, rescue experiments in FOXD3 over-expressed or silenced NB cells showed that restoration of NDRG1 expression prevented the tumor cells from FOXD3-mediated changes in these biological features. Our results indicate that FOXD3 exhibits tumor suppressive activity that affects the growth, aggressiveness and angiogenesis of NB through transcriptional regulation of NDRG1.
Collapse
Affiliation(s)
- Dan Li
- Department of Pediatric Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Romain CV, Paul P, Lee S, Qiao J, Chung DH. Targeting aurora kinase A inhibits hypoxia-mediated neuroblastoma cell tumorigenesis. Anticancer Res 2014; 34:2269-2274. [PMID: 24778030 PMCID: PMC4165572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
BACKGROUND/AIM It is unknown whether hypoxia regulates aurora kinase A (AURKA), a serine/threonine kinase, in neuroblastoma to stimulate cell growth or migration. We sought to determine whether AURKA mediates hypoxia-induced regulation of neuroblastoma tumorigenicity. MATERIALS AND METHODS Human neuroblastoma BE(2)-C cells were treated with CoCl2, a chemical hypoxia mimetic, and MLN8237, a pharmalogical inhibitor of AURKA, to assess cell viability, colony formation and transwell migration. Focal adhesion kinase (FAK) expression was analyzed after silencing of AURKA under normoxic vs. hypoxic conditions. RESULTS Hypoxia up-regulated expression of AURKA mRNA and protein. CoCl2 stimulated cell proliferation and migration, while inhibiting colony formation. MLN8237 reduced colony formation and cell migration. Silencing of AURKA reduced expression of FAK and pFAK under normoxia and hypoxia. CONCLUSION Hypoxia positively regulates AURKA expression. Hypoxia-induced stimulation of colony formation and migration is, in part, mediated by AURKA. These findings establish that AURKA is a critical regulator of hypoxia-mediated tumor progression in neuroblastoma.
Collapse
Affiliation(s)
- Carmelle V Romain
- Department of Pediatric Surgery, 2200 Children's Way, DOT 7100, Vanderbilt University Medical Center, Nashville, TN 37232-9780, U.S.A.
| | | | | | | | | |
Collapse
|
32
|
Redden RA, Iyer R, Brodeur GM, Doolin EJ. Rotary bioreactor culture can discern specific behavior phenotypes in Trk-null and Trk-expressing neuroblastoma cell lines. In Vitro Cell Dev Biol Anim 2014; 50:188-93. [PMID: 24477561 DOI: 10.1007/s11626-013-9716-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/26/2013] [Indexed: 01/22/2023]
Abstract
Neuroblastoma is characterized by biological and genetic heterogeneity that leads to diverse, often unpredictable, clinical behavior. Differential expression of the Trk family of neurotrophin receptors strongly correlates with clinical behavior; TrkA expression is associated with favorable outcome, whereas TrkB with unfavorable outcome. Neuroblastoma cells cultured in a microgravity rotary bioreactor spontaneously aggregate into tumor-like structures, called organoids. We wanted to determine if the clinical heterogeneity of TrkA- or TrkB-expressing neuroblastomas was reflected in aggregation kinetics and organoid morphology. Trk-null SY5Y cells were stably transfected to express either TrkA or TrkB. Short-term aggregation kinetics were determined by counting the number of single (non-aggregated) viable cells in the supernatant over time. Organoids were harvested after 8 d of bioreactor culture, stained, and analyzed morphometrically. SY5Y-TrkA cells aggregated significantly slower than SY5Y and SY5Y-TrkB cells, as quantified by several measures of aggregation. SY5Y and TrkB cell lines formed irregularly shaped organoids, featuring stellate projections. In contrast, TrkA cells formed smooth (non-stellate) organoids. SY5Y organoids were slightly smaller on average, but had significantly larger average perimeter than TrkA or TrkB organoids. TrkA expression alone is sufficient to dramatically alter the behavior of neuroblastoma cells in three-dimensional, in vitro rotary bioreactor culture. This pattern is consistent with both clinical behavior and in vivo tumorigenicity, in that SY5Y-TrkA represents a more differentiated, less aggressive phenotype. The microgravity bioreactor is a useful in vitro tool to rapidly investigate the biological characteristics of neuroblastoma and potentially to assess the effect of cytotoxic as well as biologically targeted drugs.
Collapse
Affiliation(s)
- Robert A Redden
- Department of General, Thoracic, and Fetal Surgery, The Children's Hospital of Philadelphia, 34th and Civic Center Blvd. Wood Center, 5th Floor, Philadelphia, PA, 19104, USA
| | | | | | | |
Collapse
|
33
|
Megison ML, Gillory LA, Stewart JE, Nabers HC, Mrozcek-Musulman E, Beierle EA. FAK inhibition abrogates the malignant phenotype in aggressive pediatric renal tumors. Mol Cancer Res 2014; 12:514-26. [PMID: 24464916 DOI: 10.1158/1541-7786.mcr-13-0505] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
UNLABELLED Despite the tremendous advances in the treatment of childhood kidney tumors, there remain subsets of pediatric renal tumors that continue to pose a therapeutic challenge, mainly malignant rhabdoid kidney tumors and nonosseous renal Ewing sarcoma. Children with advanced, metastatic, or relapsed disease have a poor disease-free survival rate. Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase that is important in many facets of tumor development and progression. FAK has been found in other pediatric solid tumors and in adult renal cellular carcinoma, leading to the hypothesis that FAK contributes to pediatric kidney tumors and would affect cellular survival. In the current study, FAK was present and phosphorylated in pediatric kidney tumor specimens. Moreover, the effects of FAK inhibition upon G401 and SK-NEP-1 cell lines were examined using a number of parallel approaches to block FAK, including RNA interference and small-molecule FAK inhibitors. FAK inhibition resulted in decreased cellular survival, invasion and migration, and increased apoptosis. Furthermore, small-molecule inhibition of FAK led to decreased SK-NEP-1 xenograft growth in vivo. These data deepen the knowledge of the tumorigenic process in pediatric renal tumors, and provide desperately needed therapeutic strategies and targets for these rare, but difficult to treat, malignancies. IMPLICATIONS This study provides a fundamental understanding of tumorigenesis in difficult to treat renal tumors and provides an impetus for new avenues of research and potential for novel, targeted therapies.
Collapse
Affiliation(s)
- Michael L Megison
- University of Alabama at Birmingham, 1600 7th Avenue South, Lowder, Room 300, Birmingham, AL 35233.
| | | | | | | | | | | |
Collapse
|
34
|
Targeting Aurora kinase-A downregulates cell proliferation and angiogenesis in neuroblastoma. J Pediatr Surg 2014; 49:159-65. [PMID: 24439602 PMCID: PMC4183462 DOI: 10.1016/j.jpedsurg.2013.09.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 09/30/2013] [Indexed: 01/18/2023]
Abstract
PURPOSE Aurora kinase A (AURKA) overexpression is associated with poor prognosis in neuroblastoma and has been described to upregulate VEGF in gastric cancer cells. However, the exact role of AURKA in the regulation of neuroblastoma tumorigenesis remains unknown. We hypothesize that AURKA-mediated stabilization of N-Myc may affect VEGF expression and angiogenesis in neuroblastoma. Therefore, we sought to determine whether inhibition of AURKA modulates neuroblastoma angiogenesis. METHODS Cell viability and anchorage-independent growth were determined after silencing AURKA or after treatment with MLN8237, AURKA inhibitor. Immunofluorescence was used to determine N-Myc localization. Human umbilical vein endothelial cells (HUVECs) were used to assess angiogenesis in vitro. Real time-PCR and ELISA were performed to determine VEGF transcription and secretion, respectively. RESULTS Knockdown of AURKA significantly reduced cell proliferation and inhibited anchorage-independent growth. It also decreased N-Myc protein levels and nuclear localization. AURKA inhibition also decreased HUVECs tubule formation along with VEGF transcription and secretion. Similarly, MLN8237 treatment decreased neuroblastoma tumorigenicity in vitro. CONCLUSIONS Our findings demonstrate that AURKA plays a critical role in neuroblastoma angiogenesis. AURKA regulates nuclear translocation of N-Myc in neuroblastoma cells, thus potentially affecting cell proliferation, anchorage-independent cell growth, and angiogenesis. Targeting AURKA might provide a novel therapeutic strategy in treating aggressive neuroblastomas.
Collapse
|
35
|
Lee S, Qiao J, Paul P, Chung DH. Integrin β1 is critical for gastrin-releasing peptide receptor-mediated neuroblastoma cell migration and invasion. Surgery 2013; 154:369-75. [PMID: 23889963 DOI: 10.1016/j.surg.2013.04.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 04/26/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Gastrin-releasing peptide (GRP) and its receptor, GRP-R, are critically involved in neuroblastoma tumorigenesis; however, the molecular mechanisms and signaling pathways that are responsible for GRP/GRP-R-induced cell migration and invasion remain unclear. In this study, we sought to determine the cell signals involved in GRP/GRP-R-mediated neuroblastoma cell migration and invasion. METHODS Human neuroblastoma cell lines SK-N-SH, LAN-1, and IMR-32 were used for our study. Transwell migration and invasion assays were performed after GRP (10(-7) M) stimulation. The cDNA GEArray Microarray kit was used to determine GRP-R-induced gene expression changes. Protein and membrane expression of integrin subunits were confirmed by Western blotting and flow cytometry analysis. siRNA transfection was performed using Lipofectamine 2000. For scratch assay, a confluent monolayer of cells in 6-well plates were wounded with micropipette tip and observed microscopically at 24 to 72 h. RESULTS GRP increased neuroblastoma cell migration and expressions of MMP-2 whereas the TIMP-1 level decreased. GRP-R overexpression stimulated SK-N-SH cell migration and upregulated integrin α2, α3, and β1 protein as well as mRNA expression. Targeted silencing of integrin β1 inhibited cell migration. CONCLUSION GRP/GRP-R signaling contributes to neuroblastoma cell migration and invasion. Moreover, the integrin ß1 subunit critically regulates GRP-R-mediated neuroblastoma cell migration and invasion.
Collapse
Affiliation(s)
- Sora Lee
- Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | |
Collapse
|
36
|
Duperret EK, Ridky TW. Focal adhesion complex proteins in epidermis and squamous cell carcinoma. Cell Cycle 2013; 12:3272-85. [PMID: 24036537 DOI: 10.4161/cc.26385] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Focal adhesions (FAs) are large, integrin-containing, multi-protein assemblies spanning the plasma membrane that link the cellular cytoskeleton to surrounding extracellular matrix. They play critical roles in adhesion and cell signaling and are major regulators of epithelial homeostasis, tissue response to injury, and tumorigenesis. Most integrin subunits and their associated FA proteins are expressed in skin, and murine genetic models have provided insight into the functional roles of FAs in normal and neoplastic epidermis. Here, we discuss the roles of these proteins in normal epidermal proliferation, adhesion, wound healing, and cancer. While many downstream signaling mechanisms remain unclear, the critically important roles of FAs are highlighted by the development of therapeutics targeting FAs for human cancer.
Collapse
|
37
|
Targeting gastrin-releasing peptide suppresses neuroblastoma progression via upregulation of PTEN signaling. PLoS One 2013; 8:e72570. [PMID: 24039782 PMCID: PMC3767701 DOI: 10.1371/journal.pone.0072570] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 07/11/2013] [Indexed: 12/15/2022] Open
Abstract
We have previously demonstrated the role of gastrin-releasing peptide (GRP) as an autocrine growth factor for neuroblastoma. Here, we report that GRP silencing regulates cell signaling involved in the invasion-metastasis cascade. Using a doxycycline inducible system, we demonstrate that GRP silencing decreased anchorage-independent growth, inhibited migration and neuroblastoma cell-mediated angiogenesis in vitro, and suppressed metastasis in vivo. Targeted inhibition of GRP decreased the mRNA levels of oncogenes responsible for neuroblastoma progression. We also identified PTEN/AKT signaling as a key mediator of the tumorigenic properties of GRP in neuroblastoma cells. Interestingly, PTEN overexpression decreased GRP-mediated migration and angiogenesis; a novel role for this, otherwise, understated tumor suppressor in neuroblastoma. Furthermore, activation of AKT (pAKT) positively correlated with neuroblastoma progression in an in vivo tumor-metastasis model. PTEN expression was slightly decreased in metastatic lesions. A similar phenomenon was observed in human neuroblastoma sections, where, early-stage localized tumors had a higher PTEN expression relative to pAKT; however, an inverse expression pattern was observed in liver lesions. Taken together, our results argue for a dual purpose of targeting GRP in neuroblastoma –1) decreasing expression of critical oncogenes involved in tumor progression, and 2) enhancing activation of tumor suppressor genes to treat aggressive, advanced-stage disease.
Collapse
|
38
|
Qiao J, Lee S, Paul P, Theiss L, Tiao J, Qiao L, Kong A, Chung DH. miR-335 and miR-363 regulation of neuroblastoma tumorigenesis and metastasis. Surgery 2013; 154:226-33. [PMID: 23806264 DOI: 10.1016/j.surg.2013.04.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/03/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND microRNA (miRNA) functions broadly as post-transcriptional regulators of gene expression, and disproportionate miRNAs can result in dysregulation of oncogenes in cancer cells. We have previously shown that gastrin-releasing peptide receptor (GRP-R) signaling regulates tumorigenicity of neuroblastoma cells. Herein, we sought to characterize miRNA profile in GRP-R silenced neuroblastoma cells, and to determine the role of miRNAs on tumorigenicity and metastatic potential. METHODS Human neuroblastoma cell lines, BE(2)-C and SK-N-SH, were used for our study. Stably transfected GRP-R silenced cells were assessed for miRNA profiles. Cells were transfected with miR-335, miR-363, or miR-CON, a nontargeting control, and in vitro assays were performed. In vivo functions of miR-335 and miR-363 were also assessed in a spleen-liver metastasis murine model. RESULTS GRP-R silencing significantly increased expression of miR-335 and miR-363 in BE(2)-C cells. Overexpression of miR-335 and miR-363 decreased tumorigenicity as measured by clonogenicity, anchorage-independent growth, and metastasis determined by cell invasion assay and liver metastasis in vivo. CONCLUSION We report, for the first time, that GRP-R-mediated tumorigenicity and increased metastatic potential in neuroblastoma are regulated, in part, by miR-335 and miR-363. A better understanding of the anti-tumor functions of miRNAs could provide valuable insights to discerning molecular mechanisms responsible for neuroblastoma metastasis.
Collapse
Affiliation(s)
- Jingbo Qiao
- Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Fusicoccin a, a phytotoxic carbotricyclic diterpene glucoside of fungal origin, reduces proliferation and invasion of glioblastoma cells by targeting multiple tyrosine kinases. Transl Oncol 2013; 6:112-23. [PMID: 23544164 DOI: 10.1593/tlo.12409] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/29/2013] [Accepted: 01/30/2013] [Indexed: 01/27/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a deadly cancer that possesses an intrinsic resistance to pro-apoptotic insults, such as conventional chemotherapy and radiotherapy, and diffusely invades the brain parenchyma, which renders it elusive to total surgical resection. We found that fusicoccin A, a fungal metabolite from Fusicoccum amygdali, decreased the proliferation and migration of human GBM cell lines in vitro, including several cell lines that exhibit varying degrees of resistance to pro-apoptotic stimuli. The data demonstrate that fusicoccin A inhibits GBM cell proliferation by decreasing growth rates and increasing the duration of cell division and also decreases two-dimensional (measured by quantitative video microscopy) and three-dimensional (measured by Boyden chamber assays) migration. These effects of fusicoccin A treatment translated into structural changes in actin cytoskeletal organization and a loss of GBM cell adhesion. Therefore, fusicoccin A exerts cytostatic effects but low cytotoxic effects (as demonstrated by flow cytometry). These cytostatic effects can partly be explained by the fact that fusicoccin inhibits the activities of a dozen kinases, including focal adhesion kinase (FAK), that have been implicated in cell proliferation and migration. Overexpression of FAK, a nonreceptor protein tyrosine kinase, directly correlates with the invasive phenotype of aggressive human gliomas because FAK promotes cell proliferation and migration. Fusicoccin A led to the down-regulation of FAK tyrosine phosphorylation, which occurred in both normoxic and hypoxic GBM cell culture conditions. In conclusion, the current study identifies a novel compound that could be used as a chemical template for generating cytostatic compounds designed to combat GBM.
Collapse
|