1
|
Zong T, Mu T, Tan C, Xie T, Zhuang M, Wang Y, Li Z, Yang Q, Wu M, Cai J, Wang X, Yao Y. Tenascin-C induces transdifferentiation of retinal pigment epithelial cells in proliferative vitreoretinopathy. Exp Eye Res 2024; 248:110097. [PMID: 39284505 DOI: 10.1016/j.exer.2024.110097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Proliferation and transdifferentiation of the retinal pigment epithelium (RPE) are hallmarks of proliferative vitreoretinopathy (PVR); however, the critical regulators of this process remain to be elucidated. Here, we investigated the role of tenascin-C in PVR development. In vitro, exposure of human ARPE-19 (hRPE) cells to TGF-β2 increased tenascin-C expression. Tenascin-C was shown to be involved in TGF-β2-induced transdifferentiation of hRPE cells, which was inhibited by pretreatment with tenascin-C siRNA. In PVR mouse models, a marked increase in the expression of tenascin-C mRNA and protein was observed. Additionally, immunofluorescence analysis demonstrated a dramatic increase in the colocalization of tenascin-C with RPE65 or α-smooth muscle actin(α-SMA) in the epiretinal membranes of patients with PVR. There was also abundant expression of integrin αV and β-catenin in the PVR membranes. ICG-001, a β-catenin inhibitor, efficiently attenuated PVR progression in a PVR animal model. These findings suggest that tenascin-C is secreted by transdifferentiated RPE cells and promotes the development of PVR via the integrin αV and β-catenin pathways. Therefore, tenascin-C could be a potential therapeutic target for the inhibition of epiretinal membrane development associated with PVR.
Collapse
Affiliation(s)
- Tianyi Zong
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Tong Mu
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Chengye Tan
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Tianhua Xie
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Miao Zhuang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Yan Wang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Ziwen Li
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Qian Yang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China; Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Meili Wu
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Jiping Cai
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Xiaolu Wang
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China.
| | - Yong Yao
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China.
| |
Collapse
|
2
|
Yu X, Zhang M, Zhao H, Gao Y, Deng L, Shi Y, Fan Z. Nanophthalmos-Associated MYRF gene mutation facilitates intraocular inflammation in mice. Int Immunopharmacol 2024; 137:112519. [PMID: 38901241 DOI: 10.1016/j.intimp.2024.112519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/22/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
PURPOSE Patients with nanophthalmos might be prone to developing intraocular inflammation following an acute glaucoma attack. Here, we aimed to investigate the role of MYRF in intraocular inflammation by modeling the mutation in mice. METHODS Nanophthalmos frameshift mutation of Myrf was introduced into the mouse genome with the CRISPR-Cas9 system. Signaling pathways in eye tissues were delineated using RNA sequencing and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Intraocular inflammation was induced by a lipopolysaccharide (LPS) intravitreal injection. Dexamethasone (DEX) was administered systemically and locally a week before the LPS injection. The anterior segment clinical scores of the mice were examined 24 h after the LPS injection. Infiltrating inflammatory cells were evaluated with histopathology and immunofluorescence. The mRNA levels of inflammatory cytokines were quantified with reverse transcription-quantitative PCR (RT-qPCR) and the corresponding protein concentrations using enzyme-linked immunosorbent assay (ELISA). RESULTS Many inflammation-associated signaling pathways were enriched in Myrf mut/+ mice ocular tissues. Clinical scores of Myrf mut/+ mice were significantly higher than those of Myrf +/+ mice 24 h after LPS administration. Histological examination demonstrated high inflammatory cell infiltration in the anterior and vitreous chambers in Myrf mut/+ mice, with numerous CD45+ and CD11b+ inflammatory cells. Moreover, enhanced expression of inflammatory cytokines MCP-1, TGF-β, and IL-1β in eyes and aqueous humor of Myrf mut/+ mice was detected. Remarkably, pretreating Myrf mut/+ mice with DEX relieved the intraocular inflammation. CONCLUSION Nanophthalmos-associated MYRF mutation renders mouse eyes more susceptible to inflammation. Dexamethasone treatment ameliorates the inflammatory response.
Collapse
Affiliation(s)
- Xiaowei Yu
- Beijing Tongren Eye Center Research Ward, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical University, Beijing, 100730, China
| | - Miao Zhang
- Beijing Tongren Eye Center Research Ward, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical University, Beijing, 100730, China
| | - Hanxue Zhao
- Beijing Tongren Eye Center Research Ward, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical University, Beijing, 100730, China
| | - Yan Gao
- Beijing Tongren Eye Center Research Ward, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical University, Beijing, 100730, China
| | - Lin Deng
- Beijing Tongren Eye Center Research Ward, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical University, Beijing, 100730, China
| | - Yan Shi
- Beijing Tongren Eye Center Research Ward, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical University, Beijing, 100730, China.
| | - Zhigang Fan
- Beijing Tongren Eye Center Research Ward, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
3
|
Gad MS, Elsherbiny NM, El-Bassouny DR, Omar NM, Mahmoud SM, Al-Shabrawey M, Tawfik A. Exploring the role of Müller cells-derived exosomes in diabetic retinopathy. Microvasc Res 2024; 154:104695. [PMID: 38723843 PMCID: PMC11180575 DOI: 10.1016/j.mvr.2024.104695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/28/2024] [Accepted: 05/05/2024] [Indexed: 06/17/2024]
Abstract
Exosomes are nanosized vesicles that have been reported as cargo-delivering vehicles between cells. Müller cells play a crucial role in the pathogenesis of diabetic retinopathy (DR). Activated Müller cells in the diabetic retina mediate disruption of barrier integrity and neovascularization. Endothelial cells constitute the inner blood-retinal barrier (BRB). Herein, we aim to evaluate the effect of Müller cell-derived exosomes on endothelial cell viability and barrier function under normal and hyperglycemic conditions. Müller cell-derived exosomes were isolated and characterized using Western blotting, nanoparticle tracking, and electron microscopy. The uptake of Müller cells-derived exosomes by the human retinal endothelial cells (HRECs) was monitored by labeling exosomes with PKH67. Endothelial cell vitality after treatment by exosomes under normo- and hypoglycemic conditions was checked by MTT assay and Western blot for apoptotic proteins. The barrier function of HRECs was evaluated by analysis of ZO-1 and transcellular electrical resistance (TER) using ECIS. Additionally, intracellular Ca+2 in HRECs was assessed by spectrofluorimetry. Analysis of the isolated exosomes showed a non-significant change in the number of exosomes isolated from both normal and hyperglycemic condition media, however, the average size of exosomes isolated from the hyperglycemic group showed a significant rise when compared to that of the normoglycemic group. Müller cells derived exosomes from hyperglycemic condition media markedly reduced HRECs cell count, increased caspase-3 and Annexin V, decreased ZO-1 levels and TER, and increased intracellular Ca+ when compared to other groups. However, treatment of HRECs under hyperglycemia with normo-glycemic Müller cells-derived exosomes significantly decreased cell death, preserved cellular integrity and barrier function, and reduced intracellular Ca+2. Collectively, Müller cell-derived exosomes play a remarkable role in the pathological changes associated with hyperglycemia-induced inner barrier dysfunction in DR. Further in vivo research will help in understanding the role of exosomes as therapeutic targets and/or delivery systems for DR.
Collapse
Affiliation(s)
- Mohamed S Gad
- Eye Research Institute, Oakland University, Rochester, MI 48309-4479, USA; Eye Research Center (OUWB)/ERC, William Beaumont School of Medicine, Royal Oak, MI 48309-4479, USA; Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Egypt.
| | - Nehal M Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| | - Dalia R El-Bassouny
- Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Egypt.
| | - Nesreen M Omar
- Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Egypt.
| | - Safinaz M Mahmoud
- Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Egypt.
| | - Mohamed Al-Shabrawey
- Eye Research Institute, Oakland University, Rochester, MI 48309-4479, USA; Eye Research Center (OUWB)/ERC, William Beaumont School of Medicine, Royal Oak, MI 48309-4479, USA.
| | - Amany Tawfik
- Eye Research Institute, Oakland University, Rochester, MI 48309-4479, USA; Eye Research Center (OUWB)/ERC, William Beaumont School of Medicine, Royal Oak, MI 48309-4479, USA.
| |
Collapse
|
4
|
Ren M, Yao S, Chen T, Luo H, Tao X, Jiang H, Yang X, Zhang H, Yu S, Wang Y, Lu A, Zhang G. Connective Tissue Growth Factor: Regulation, Diseases, and Drug Discovery. Int J Mol Sci 2024; 25:4692. [PMID: 38731911 PMCID: PMC11083620 DOI: 10.3390/ijms25094692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
In drug discovery, selecting targeted molecules is crucial as the target could directly affect drug efficacy and the treatment outcomes. As a member of the CCN family, CTGF (also known as CCN2) is an essential regulator in the progression of various diseases, including fibrosis, cancer, neurological disorders, and eye diseases. Understanding the regulatory mechanisms of CTGF in different diseases may contribute to the discovery of novel drug candidates. Summarizing the CTGF-targeting and -inhibitory drugs is also beneficial for the analysis of the efficacy, applications, and limitations of these drugs in different disease models. Therefore, we reviewed the CTGF structure, the regulatory mechanisms in various diseases, and drug development in order to provide more references for future drug discovery.
Collapse
Affiliation(s)
- Meishen Ren
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Shanshan Yao
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Tienan Chen
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hang Luo
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiaohui Tao
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hewen Jiang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xin Yang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Huarui Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Sifan Yu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yin Wang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
5
|
Huang KH, Chang YL, Lee CB, Gau SY, Tsai TH, Chung NJ, Lee CY. Dose-response association of metformin use and risk of age-related macular degeneration among patients with type 2 diabetes mellitus: a population-based study. Front Pharmacol 2023; 14:1275095. [PMID: 38074151 PMCID: PMC10710142 DOI: 10.3389/fphar.2023.1275095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/10/2023] [Indexed: 09/23/2024] Open
Abstract
Background: Recent studies have demonstrated that patients with type 2 diabetes mellitus (T2DM) who receive metformin have a decreased risk of developing age-related macular degeneration (AMD). However, other studies have also suggested that metformin may increase the risk of AMD development. Therefore, this study investigated the association between treatment with metformin and the risk of AMD in patients with T2DM by using Taiwan' National Health Insurance Research Database. Methods: Patients who received a diagnosis of new-onset T2DM between 2002 and 2013 were enrolled in this study. The patients were divided into patients treated and not treated with metformin to evaluate the risk of AMD after 5 years of follow-up. The logistic regression was used to estimate the risk of AMD associated with the intensity of treatment with metformin. Result: A total of 7 517 patients (103.16 patients per 10,000 people) developed AMD in 5 years after DM diagnosis. After adjusting for the relevant variables, patients with T2DM treated with <5 defined daily dose (DDD)/month of metformin had a lower risk of AMD (odds ratios [OR]: 0.93; 95% confidence interval [CI]: 0.88 0.99). Patients treated with >25 DDD/month of metformin had a higher risk of AMD (OR: 1.39; 95% CI: 1.08-1.78). Conclusion: Metformin use may be associated with a risk of AMD among patients with T2DM in a dose-dependent association manner, with the greater benefit at lower DDD/month. However, higher DDD/month exhibited an increased risk of AMD.
Collapse
Affiliation(s)
- Kuang-Hua Huang
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Ya-Lan Chang
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chiachi Bonnie Lee
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Shuo-Yan Gau
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Tung-Han Tsai
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Ning-Jen Chung
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Ying Lee
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
6
|
Gu J, Lei C, Zhang M. Folate and retinal vascular diseases. BMC Ophthalmol 2023; 23:413. [PMID: 37833663 PMCID: PMC10571445 DOI: 10.1186/s12886-023-03149-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Folate, a pteroylglutamic acid derivative, participates in fundamental cellular metabolism. Homocysteine, an amino acid, serves as an intermediate of the methionine cycle and can be converted back to methionine. Hyperhomocysteinemia is a recognized risk factor for atherosclerotic and cardiovascular diseases. In recent decades, elevated plasma homocysteine levels and low folate status have been observed in many patients with retinal vascular diseases, such as retinal vascular occlusions, diabetic retinopathy, and age-related degeneration. Homocysteine-induced toxicity toward vascular endothelial cells might participate in the formation of retinal vascular diseases. Folate is an important dietary determinant of homocysteine. Folate deficiency is the most common cause of hyperhomocysteinemia. Folate supplementation can eliminate excess homocysteine in plasma. In in vitro experiments, folic acid had a protective effect on vascular endothelial cells against high glucose. Many studies have explored the relationship between folate and various retinal vascular diseases. This review summarizes the most important findings that lead to the conclusion that folic acid supplementation might be a protective treatment in patients with retinal vascular diseases with high homocysteine or glucose status. More research is still needed to validate the effect of folate and its supplementation in retinal vascular diseases.
Collapse
Affiliation(s)
- Jinyue Gu
- Department of Ophthalmology, West China Hospital, Sichuan University, 610041, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Chunyan Lei
- Department of Ophthalmology, West China Hospital, Sichuan University, 610041, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Meixia Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, 610041, Chengdu, China.
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
7
|
Washington J, Ritch R, Liu Y. Homocysteine and Glaucoma. Int J Mol Sci 2023; 24:10790. [PMID: 37445966 DOI: 10.3390/ijms241310790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/10/2023] [Accepted: 06/11/2023] [Indexed: 07/15/2023] Open
Abstract
Elevated levels of homocysteine (Hcy), a non-proteinogenic amino acid, may lead to a host of manifestations across the biological systems, particularly the nervous system. Defects in Hcy metabolism have been associated with many neurodegenerative diseases including glaucoma, i.e., the leading cause of blindness. However, the pathophysiology of elevated Hcy and its eligibility as a risk factor for glaucoma remain unclear. We aimed to provide a comprehensive review of the relationship between elevated Hcy levels and glaucoma. Through a systemic search of the PubMed and Google Scholar databases, we found that elevated Hcy might play an important role in the pathogenesis of glaucoma. Further research will be necessary to help clarify the specific contribution of elevated Hcy in the pathogenesis of glaucoma. A discovery and conceptual understanding of Hcy-associated glaucoma could be the keys to providing better therapeutic treatment, if not prophylactic treatment, for this disease.
Collapse
Affiliation(s)
- Joshua Washington
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Robert Ritch
- New York Eye & Ear Infirmary, New York, NY 10003, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- James & Jean Culver Vision Discovery Institute, 4 Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
8
|
Darwish NHE, Hussein KA, Elmasry K, Ibrahim AS, Humble J, Moustafa M, Awadalla F, Al-Shabrawey M. Bone Morphogenetic Protein-4 Impairs Retinal Endothelial Cell Barrier, a Potential Role in Diabetic Retinopathy. Cells 2023; 12:1279. [PMID: 37174679 PMCID: PMC10177364 DOI: 10.3390/cells12091279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Bone Morphogenetic Protein 4 (BMP4) is a secreted growth factor of the Transforming Growth Factor beta (TGFβ) superfamily. The goal of this study was to test whether BMP4 contributes to the pathogenesis of diabetic retinopathy (DR). Immunofluorescence of BMP4 and the vascular marker isolectin-B4 was conducted on retinal sections of diabetic and non-diabetic human and experimental mice. We used Akita mice as a model for type-1 diabetes. Proteins were extracted from the retina of postmortem human eyes and 6-month diabetic Akita mice and age-matched control. BMP4 levels were measured by Western blot (WB). Human retinal endothelial cells (HRECs) were used as an in vitro model. HRECs were treated with BMP4 (50 ng/mL) for 48 h. The levels of phospho-smad 1/5/9 and phospho-p38 were measured by WB. BMP4-treated and control HRECs were also immunostained with anti-Zo-1. We also used electric cell-substrate impedance sensing (ECIS) to calculate the transcellular electrical resistance (TER) under BMP4 treatment in the presence and absence of noggin (200 ng/mL), LDN193189 (200 nM), LDN212854 (200 nM) or inhibitors of vascular endothelial growth factor receptor 2 (VEGFR2; SU5416, 10 μM), p38 (SB202190, 10 μM), ERK (U0126, 10 μM) and ER stress (Phenylbutyric acid or PBA, 30 μmol/L). The impact of BMP4 on matrix metalloproteinases (MMP2 and MMP9) was also evaluated using specific ELISA kits. Immunofluorescence of human and mouse eyes showed increased BMP4 immunoreactivity, mainly localized in the retinal vessels of diabetic humans and mice compared to the control. Western blots of retinal proteins showed a significant increase in BMP4 expression in diabetic humans and mice compared to the control groups (p < 0.05). HRECs treated with BMP4 showed a marked increase in phospho-smad 1/5/9 (p = 0.039) and phospho-p38 (p = 0.013). Immunofluorescence of Zo-1 showed that BMP4-treated cells exhibited significant barrier disruption. ECIS also showed a marked decrease in TER of HRECs by BMP4 treatment compared to vehicle-treated HRECs (p < 0.001). Noggin, LDN193189, LDN212854, and inhibitors of p38 and VEGFR2 significantly mitigated the effects of BMP4 on the TER of HRECs. Our finding provides important insights regarding the role of BMP4 as a potential player in retinal endothelial cell dysfunction in diabetic retinopathy and could be a novel target to preserve the blood-retinal barrier during diabetes.
Collapse
Affiliation(s)
- Noureldien H. E. Darwish
- Eye Research Center, Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura 35111, Egypt
| | - Khaled A. Hussein
- Oral and Dental Research Insitute, Department of Oral Medicine and Surgery, National Research Center, Cairo 11553, Egypt
| | - Khaled Elmasry
- Department of Oral Biology and Diagnostic Science, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Anatomy, Mansoura Faculty of Medicine, Mansoura University, Mansoura 35111, Egypt
| | - Ahmed S. Ibrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35111, Egypt
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Julia Humble
- Eye Research Center, Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
| | - Mohamed Moustafa
- Eye Research Center, Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
| | - Fatma Awadalla
- Eye Research Center, Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura 35111, Egypt
| | - Mohamed Al-Shabrawey
- Eye Research Center, Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
- Department of Anatomy, Mansoura Faculty of Medicine, Mansoura University, Mansoura 35111, Egypt
| |
Collapse
|
9
|
Samra YA, Zaidi Y, Rajpurohit P, Raghavan R, Cai L, Kaddour-Djebbar I, Tawfik A. Warburg Effect as a Novel Mechanism for Homocysteine-Induced Features of Age-Related Macular Degeneration. Int J Mol Sci 2023; 24:ijms24021071. [PMID: 36674587 PMCID: PMC9865636 DOI: 10.3390/ijms24021071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023] Open
Abstract
Age-related macular degeneration (AMD) is a major cause of blindness. Recent studies have reported impaired glycolysis in AMD patients with a high lactate/pyruvate ratio. Elevated homocysteine (Hcy) (Hyperhomocysteinemia, HHcy) was observed in several clinical studies, reporting an association between HHcy and AMD. We established the effect of HHcy on barrier function, retinal pigment epithelium (RPE) structure, and induced choroidal neovascularization (CNV) in mice. We hypothesize that HHcy contributes to AMD by inducing a metabolic switch in the mitochondria, in which cells predominantly produce energy by the high rate of glycolysis, or "Warburg", effect. Increased glycolysis results in an increased production of lactate, cellular acidity, activation of angiogenesis, RPE barrier dysfunction, and CNV. Evaluation of cellular energy production under HHcy was assessed by seahorse analysis, immunofluorescence, and western blot experiments. The seahorse analysis evaluated the extracellular acidification rate (ECAR) as indicative of glycolysis. HHcy showed a significant increase in ECAR both in vivo using (Cystathionine β-synthase) cbs+/- and cbs-/- mice retinas and in vitro (Hcy-treated ARPE-19) compared to wild-type mice and RPE cells. Moreover, HHcy up-regulated glycolytic enzyme (Glucose transporter-1 (GlUT-1), lactate dehydrogenase (LDH), and hexokinase 1 (HK1)) in Hcy-treated ARPE-19 and primary RPE cells isolated from cbs+/+, cbs+/-, and cbs-/- mice retinas. Inhibition of GLUT-1 or blocking of N-methyl-D-aspartate receptors (NMDAR) reduced glycolysis in Hcy-treated RPE and improved albumin leakage and CNV induction in Hcy-injected mice eyes. The current study suggests that HHcy causes a metabolic switch in the RPE cells from mitochondrial respiration to glycolysis during AMD and confirms the involvement of NMDAR in this process. Therefore, targeting Glycolysis or NMDAR could be a novel therapeutic target for AMD.
Collapse
Affiliation(s)
- Yara A. Samra
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yusra Zaidi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Pragya Rajpurohit
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Raju Raghavan
- Department of Pharmacology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Lun Cai
- Department of Pharmacology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ismail Kaddour-Djebbar
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904, USA
| | - Amany Tawfik
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
- Eye Research Institute, Oakland University, Rochester, MI 48309-4479, USA
- Eye Research Center (OUWB)/ERC, William Beaumont School of Medicine, Royal Oak, MI 48309-4479, USA
- Correspondence: ; Tel.: +1-248-370-2398; Fax: +1-248-370-4211
| |
Collapse
|
10
|
Yang X, Hu R, Zhu Y, Wang Z, Hou Y, Su K, He X, Song G. Meta-analysis of Serum Vitamin B12 Levels and Diabetic Retinopathy in Type 2 Diabetes. Arch Med Res 2023; 54:64-73. [PMID: 36549948 DOI: 10.1016/j.arcmed.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/19/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Previous studies have shown an association between low serum vitamin B12 levels and the risk of diabetic retinopathy (DR) in type 2 diabetes, but the conclusions from various studies were inconsistent. Therefore, we collected relevant data from various databases to perform a meta-analysis and address the inconsistencies in these studies. METHODS We searched PubMed, Embase, Cochrane Library, CNKI, Wanfang and CQVIP for eligible studies published up to April 10, 2022, and performed a meta-analysis using Stata software to assess the association between serum vitamin B12 levels and DR. RESULTS A total of 15 studies were included in this meta-analysis. Statistical analysis showed that serum vitamin B12 levels were significantly reduced in patients with type 2 diabetic retinopathy ,WMD 95% CI = -68.91 (-76.76, -61.06) (p <0.00001, I2 = 88.30%). In subgroup analyses by ethnicity, an association between low serum vitamin B12 levels and DR risk was found in East Asian, South Asian and mixed populations, but not in Caucasian populations. CONCLUSIONS This meta-analysis analyzed vitamin B12 in patients with type 2 diabetic retinopathy and emphasized the importance of monitoring serum vitamin B12 levels in patients with type 2 diabetic retinopathy, but this meta-analysis still has deficiencies and limitations, and more clinical studies are needed to confirm this conclusion in the future.
Collapse
Affiliation(s)
- Xiaoyue Yang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Rui Hu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Yajun Zhu
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei, PR China
| | - Zhen Wang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Yilin Hou
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Kangkang Su
- Graduate School of Hebei North University, Zhangjiakou, Hebei, PR China
| | - Xiaoyu He
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Guangyao Song
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, PR China; Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei, PR China; Graduate School of Hebei North University, Zhangjiakou, Hebei, PR China.
| |
Collapse
|
11
|
Tomaszewski R, Rajpurohit P, Cheng M, Tawfik A. Isolation of Primary Mouse Retinal Pigmented Epithelium Cells. J Vis Exp 2022:10.3791/63543. [PMID: 36408987 PMCID: PMC9970298 DOI: 10.3791/63543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The retinal pigmented epithelium (RPE) layer lies immediately behind the photoreceptors and harbors a complex metabolic system that plays several critical roles in maintaining the photoreceptors' function. Thus, the RPE structure and function are essential to sustain normal vision. This manuscript presents an established protocol for primary mouse RPE cell isolation. RPE isolation is a great tool to investigate the molecular mechanisms underlying RPE pathology in the different mouse models of ocular disorders. Furthermore, RPE isolation can help in comparing primary mouse RPE cells isolated from wild-type and genetically modified mice, as well as testing drugs that can accelerate the development of therapy for visual disorders. The manuscript presents a step-by-step RPE isolation protocol; the entire procedure, from enucleation to seeding, takes approximately 4 hours. The media shouldn't be changed for 5-7 days after seeding, to allow the growth of the isolated cells without disturbance. This process is followed by the characterization of morphology, pigmentation, and specific markers in the cells via immunofluorescence. Cells can be passaged a maximum of three or four times.
Collapse
Affiliation(s)
- Ryan Tomaszewski
- Eye Research Institute, Oakland University; Eye Research Center (OUWB)/ERC, William Beaumont School of Medicine
| | - Pragya Rajpurohit
- Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University
| | - Mei Cheng
- Eye Research Institute, Oakland University; Eye Research Center (OUWB)/ERC, William Beaumont School of Medicine
| | - Amany Tawfik
- Eye Research Institute, Oakland University; Eye Research Center (OUWB)/ERC, William Beaumont School of Medicine; Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University;
| |
Collapse
|
12
|
Al-Shabrawey M, Elmarakby A, Samra Y, Moustafa M, Looney SW, Maddipati KR, Tawfik A. Hyperhomocysteinemia dysregulates plasma levels of polyunsaturated fatty acids-derived eicosanoids. LIFE RESEARCH 2022; 5:14. [PMID: 36341141 PMCID: PMC9632953 DOI: 10.53388/2022-0106-103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hyperhomocysteinemia (HHcy) contributes to the incidence of many cardiovascular diseases (CVD). Our group have previously established crucial roles of eicosanoids and homocysteine in the incidence of vascular injury in diabetic retinopathy and renal injury. Using cystathionine-β-synthase heterozygous mice (cβs+/-) as a model of HHcy, the current study was designed to determine the impact of homocysteine on circulating levels of lipid mediators derived from polyunsaturated fatty acids (PUFA). Plasma samples were isolated from wild-type (WT) and cβs+/- mice for the assessment of eicosanoids levels using LC/MS. Plasma 12/15-lipoxygenase (12/15-LOX) activity significantly decreased in cβs+/- vs. WT control mice. LOX-derived metabolites from both omega-3 and omega-6 PUFA were also reduced in cβs+/- mice compared to WT control (P < 0.05). Contrary to LOX metabolites, cytochrome P450 (CYP) metabolites from omega-3 and omega-6 PUFA were significantly elevated in cβs+/- mice compared to WT control. Epoxyeicosatrienoic acids (EETs) are epoxides derived from arachidonic acid (AA) metabolism by CYP with anti-inflammatory properties and are known to limit vascular injury, however their physiological role is limited by their rapid degradation by soluble epoxide hydrolase (sEH) to their corresponding diols (DiHETrEs). In cβs+/- mice, a significant decrease in the plasma EETs bioavailability was obvious as evident by the decrease in EETs/ DiHETrEs ratio relative to WT control mice. Cyclooxygenase (COX) metabolites were also significantly decreased in cβs+/- vs. WT control mice. These data suggest that HHcy impacts eicosanoids metabolism through decreasing LOX and COX metabolic activities while increasing CYP metabolic activity. The increase in AA metabolism by CYP was also associated with increase in sEH activity and decrease in EETs bioavailability. Dysregulation of eicosanoids metabolism could be a contributing factor to the incidence and progression of HHcy-induced CVD.
Collapse
Affiliation(s)
- Mohamed Al-Shabrawey
- Department of Foundational Medical Studies and Eye Research Center, Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA
- Eye Research Institute, Oakland University, Rochester, Michigan, USA
| | - Ahmed Elmarakby
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Departments of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Yara Samra
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Egypt
| | - Mohamed Moustafa
- Department of Foundational Medical Studies and Eye Research Center, Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA
- Eye Research Institute, Oakland University, Rochester, Michigan, USA
| | - Stephen W. Looney
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Krishna Rao Maddipati
- Bioactive Lipids Research Program, Department of Pathology, Wayne State University, Michigan, USA
| | - Amany Tawfik
- Department of Foundational Medical Studies and Eye Research Center, Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA
- Eye Research Institute, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
13
|
Effect of long-term chronic hyperhomocysteinemia on retinal structure and function in the cystathionine-β-synthase mutant mouse. Exp Eye Res 2022; 214:108894. [PMID: 34906600 PMCID: PMC9251730 DOI: 10.1016/j.exer.2021.108894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 02/03/2023]
Abstract
Elevated levels of the excitatory amino acid homocysteine (Hcy) have been implicated in retinal diseases in humans including glaucoma and macular degeneration. It is not clear whether elevated Hcy levels are pathogenic. Models of hyperhomocysteinemia (Hhcy) have proven useful in addressing this including mice with deficiency in the enzyme cystathionine β-synthase (CBS). Cbs+/- mice have a ∼two-fold increase in plasma and retinal Hcy levels. Previous studies of visual function and structure in Cbs+/- mice during the first 10 months of life revealed mild ganglion cell loss, but minimal electrophysiological alterations. It is not clear whether extended, chronic exposure to moderate Hhcy elevation will lead to visual function loss and retinal pathology. The present study addressed this by performing comprehensive analyses of retinal function/structure in 20 month Cbs+/- and Cbs+/+ (WT) mice including IOP, SD-OCT, scotopic and photopic ERG, pattern ERG (pERG), and visual acuity. Eyes were harvested for histology and immunohistochemical analysis of Brn3a (ganglion cells), dihydroethidium (oxidative stress) and GFAP (gliosis). The analyses revealed no difference in IOP between groups for age/strain. Visual acuity measured ∼0.36c/d for mice at 20 months in Cbs+/- and WT mice; contrast sensitivity did not differ between groups at either age. Similarly SD-OCT, scotopic/photopic ERG and pERG revealed no differences between 20 month Cbs+/- and WT mice. There was minimal disruption in retinal structure when eyes were examined histologically. Morphometric analysis revealed no significant differences in retinal layers. Immunohistochemistry revealed ∼5 RGCs/100 μm retinal length in both Cbs+/- and WT mice at 20 months. While there was greater oxidative stress and gliosis in older (20 month) mice versus young (4 month) mice, there was no difference in these parameters between the 20 month Cbs+/- and WT mice. We conclude that chronic, moderate Hhcy (at least due to deficiency of Cbs) is not accompanied by retinal structural/functional changes that differ significantly from age-matched WT littermates. Despite considerable evidence that severe Hhcy is toxic to retina, moderate Hhcy appears tolerated by retina suggesting compensatory cellular survival mechanisms.
Collapse
|
14
|
Ravi R, Kumaraswamy A, Chauhan P, Subramaniam Rajesh B. Exogenous administration of hydrogen sulfide alleviates homocysteine induced inflammation in ARPE-19 cells. Exp Eye Res 2021; 212:108759. [PMID: 34499917 DOI: 10.1016/j.exer.2021.108759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/21/2021] [Accepted: 09/01/2021] [Indexed: 02/03/2023]
Abstract
Plasma homocysteine (Hcy) is an independent risk factor for Age related macular degeneration (AMD) and an inducer of inflammation. Homocysteine catabolism releases hydrogen sulfide (H2S). H2S has controversial effects on inflammation. In this study we have analysed the endogenous and exogenous H2S in modulating inflammation using adult retinal pigment epithelial (ARPE-19) cells as an in vitro model for AMD. ARPE-19 cells were treated with various concentrations of Hcy (15, 30 and 50 μM) for 3 h. Expression of Hcy transulfuration genes (CBS, CSE) by qPCR and western blot. H2S levels were measured using Free Radical Analyzer System (WPI, USA). The inflammatory markers (IL-6 and IL-8) were evaluated using real-time PCR and ELISA. Hcy exposure increased CBS protein expression, hydrogen sulfide levels and pro-inflammatory cytokines, modulating CBS by silencing did not alter H2S levels, but inhibition of CSE with PAG inhibited H2S production and decreased cytokine (IL-6 and IL-8) levels. On the contrary exogenous supply of hydrogen sulfide with NaHS and by compound 1c showed anti-inflammatory effects even in the presence of Hcy. This study shows that exogenous delivery of H2S decreases inflammation in retinal pigment epithelial cells on exposure to Hcy in ARPE-19 cells.
Collapse
Affiliation(s)
- Ramya Ravi
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Sankara Nethralaya, Chennai, 600006, India; School of Chemical and Biotechnology, SASTRA Deemed to Be University, Thanjavur, India
| | - Anand Kumaraswamy
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Sankara Nethralaya, Chennai, 600006, India
| | - Preeti Chauhan
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan Pune, 411 008, Maharashtra, India
| | - Bharathidevi Subramaniam Rajesh
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Sankara Nethralaya, Chennai, 600006, India.
| |
Collapse
|
15
|
Implication of N-Methyl-d-Aspartate Receptor in Homocysteine-Induced Age-Related Macular Degeneration. Int J Mol Sci 2021; 22:ijms22179356. [PMID: 34502266 PMCID: PMC8431693 DOI: 10.3390/ijms22179356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/12/2021] [Accepted: 08/26/2021] [Indexed: 02/03/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of vision loss. Elevated homocysteine (Hcy) (Hyperhomocysteinemia) (HHcy) has been reported in AMD. We previously reported that HHcy induces AMD-like features. This study suggests that N-Methyl-d-aspartate receptor (NMDAR) activation in the retinal pigment epithelium (RPE) is a mechanism for HHcy-induced AMD. Serum Hcy and cystathionine-β-synthase (CBS) were assessed by ELISA. The involvement of NMDAR in Hcy-induced AMD features was evaluated (1) in vitro using ARPE-19 cells, primary RPE isolated from HHcy mice (CBS), and mouse choroidal endothelial cells (MCEC); (2) in vivo using wild-type mice and mice deficient in RPE NMDAR (NMDARR−/−) with/without Hcy injection. Isolectin-B4, Ki67, HIF-1α, VEGF, NMDAR1, and albumin were assessed by immunofluorescence (IF), Western blot (WB), Optical coherence tomography (OCT), and fluorescein angiography (FA) to evaluate retinal structure, fluorescein leakage, and choroidal neovascularization (CNV). A neovascular AMD patient’s serum showed a significant increase in Hcy and a decrease in CBS. Hcy significantly increased HIF-1α, VEGF, and NMDAR in RPE cells, and Ki67 in MCEC. Hcy-injected WT mice showed disrupted retina and CNV. Knocking down RPE NMDAR improved retinal structure and CNV. Our findings underscore the role of RPE NMDAR in Hcy-induced AMD features; thus, NMDAR inhibition could serve as a promising therapeutic target for AMD.
Collapse
|
16
|
Chu M, Teng J, Guo L, Wang Y, Zhang L, Gao J, Liu L. Mild hyperhomocysteinemia induces blood-brain barrier dysfunction but not neuroinflammation in the cerebral cortex and hippocampus of wild-type mice. Can J Physiol Pharmacol 2021; 99:847-856. [PMID: 34161158 DOI: 10.1139/cjpp-2020-0507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study explored the potential effects of mild hyperhomocysteinemia (HHcy) on the blood-brain barrier (BBB) and neuroinflammation. Seven-week-old male wild-type C57BL/6 mice were fed normal mouse chow (the control group) or a methionine-enriched diet (the HHcy group) for 14 weeks. Mice in the HHcy group exhibited a slight increase in serum Hcy levels (13.56 ± 0.61 μmol/L). Activation of the ERK signaling pathway, up-regulation of matrix metalloproteinase-9 (MMP-9), and degradation of tight junction proteins (occludin and claudin-5) were observed in both the cerebral cortex and hippocampus of mice with mild HHcy. However, microglia were not activated and the levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were not changed in either the cerebral cortex or hippocampus of mice with mild HHcy. Moreover, the signaling activity of STAT3 also did not differ significantly between the two groups. These findings demonstrate that the BBB is highly vulnerable to homocysteine insult. Even a slight increase in serum homocysteine levels up-regulates MMP-9 expression and disrupts the BBB integrity. Meanwhile, microglia activation or the STAT3 pathway might not contribute to the effects of mild HHcy on the brain.
Collapse
Affiliation(s)
- Min Chu
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Jijun Teng
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Lei Guo
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Yuyang Wang
- Department of Rehabilitation, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Liang Zhang
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Jing Gao
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Lijun Liu
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| |
Collapse
|
17
|
Shosha E, Fouda AY, Lemtalsi T, Haigh S, Fulton D, Ibrahim A, Al-Shabrawey M, Caldwell RW, Caldwell RB. Endothelial arginase 2 mediates retinal ischemia/reperfusion injury by inducing mitochondrial dysfunction. Mol Metab 2021; 53:101273. [PMID: 34139341 PMCID: PMC8274341 DOI: 10.1016/j.molmet.2021.101273] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/05/2021] [Accepted: 06/11/2021] [Indexed: 12/19/2022] Open
Abstract
Objective Retinal ischemic disease is a major cause of vision loss. Current treatment options are limited to late-stage diseases, and the molecular mechanisms of the initial insult are not fully understood. We have previously shown that the deletion of the mitochondrial arginase isoform, arginase 2 (A2), limits neurovascular injury in models of ischemic retinopathy. Here, we investigated the involvement of A2-mediated alterations in mitochondrial dynamics and function in the pathology. Methods We used wild-type (WT), global A2 knockout (A2KO-) mice, cell-specific A2 knockout mice subjected to retinal ischemia/reperfusion (I/R), and bovine retinal endothelial cells (BRECs) subjected to an oxygen-glucose deprivation/reperfusion (OGD/R) insult. We used western blotting to measure levels of cell stress and death markers and the mitochondrial fragmentation protein, dynamin related protein 1 (Drp1). We also used live cell mitochondrial labeling and Seahorse XF analysis to evaluate mitochondrial fragmentation and function, respectively. Results We found that the global deletion of A2 limited the I/R-induced disruption of retinal layers, fundus abnormalities, and albumin extravasation. The specific deletion of A2 in endothelial cells was protective against I/R-induced neurodegeneration. The OGD/R insult in BRECs increased A2 expression and induced cell stress and cell death, along with decreased mitochondrial respiration, increased Drp1 expression, and mitochondrial fragmentation. The overexpression of A2 in BREC also decreased mitochondrial respiration, promoted increases in the expression of Drp1, mitochondrial fragmentation, and cell stress and resulted in decreased cell survival. In contrast, the overexpression of the cytosolic isoform, arginase 1 (A1), did not affect these parameters. Conclusions This study is the first to show that A2 in endothelial cells mediates retinal ischemic injury through a mechanism involving alterations in mitochondrial dynamics and function. Ischemic retinopathy is a common feature of blinding eye disease. Arginase 2 overexpression in endothelial cells induces mitochondrial dysfunction. Endothelial-specific arginase 2 deletion improves neuronal survival after ischemia. Endothelial cell arginase 2 plays a crucial role in ischemic retinal injury.
Collapse
Affiliation(s)
- Esraa Shosha
- Vascular Biology Center, Augusta University, Augusta, GA, USA; Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Vision Discovery Institute, Augusta University, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Abdelrahman Y Fouda
- Vascular Biology Center, Augusta University, Augusta, GA, USA; Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Vision Discovery Institute, Augusta University, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Tahira Lemtalsi
- Vascular Biology Center, Augusta University, Augusta, GA, USA; Vision Discovery Institute, Augusta University, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Stephen Haigh
- Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - David Fulton
- Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Ahmed Ibrahim
- Vision Discovery Institute, Augusta University, Augusta, GA, USA; Wayne State University, Department of Ophthalmology, Visual, and Anatomical Sciences, Department of Pharmacology, Detroit, MI, USA; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed Al-Shabrawey
- Vision Discovery Institute, Augusta University, Augusta, GA, USA; Department of Oral Biology, Dental College of Georgia, Augusta, GA, USA
| | - R William Caldwell
- Vision Discovery Institute, Augusta University, Augusta, GA, USA; Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA
| | - Ruth B Caldwell
- Vascular Biology Center, Augusta University, Augusta, GA, USA; Vision Discovery Institute, Augusta University, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
18
|
Tawfik A, Elsherbiny NM, Zaidi Y, Rajpurohit P. Homocysteine and Age-Related Central Nervous System Diseases: Role of Inflammation. Int J Mol Sci 2021; 22:ijms22126259. [PMID: 34200792 PMCID: PMC8230490 DOI: 10.3390/ijms22126259] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) is remarkably common among the aging population. The relation between HHcy and the development of neurodegenerative diseases, such as Alzheimer's disease (AD) and eye diseases, and age-related macular degeneration (AMD) and diabetic retinopathy (DR) in elderly people, has been established. Disruption of the blood barrier function of the brain and retina is one of the most important underlying mechanisms associated with HHcy-induced neurodegenerative and retinal disorders. Impairment of the barrier function triggers inflammatory events that worsen disease pathology. Studies have shown that AD patients also suffer from visual impairments. As an extension of the central nervous system, the retina has been suggested as a prominent site of AD pathology. This review highlights inflammation as a possible underlying mechanism of HHcy-induced barrier dysfunction and neurovascular injury in aging diseases accompanied by HHcy, focusing on AD.
Collapse
Affiliation(s)
- Amany Tawfik
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (Y.Z.); (P.R.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia (MCG), Augusta University, Augusta, GA 30912, USA
- Department of Ophthalmology, MCG, Augusta University, Augusta, GA 30912, USA
- Eye Research Institue, Oakland University, Rochester, MI 48309, USA
- Correspondence: ; Tel.: +1-706-721-2582; Fax: +1-706-721-9415
| | - Nehal M. Elsherbiny
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (Y.Z.); (P.R.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Yusra Zaidi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (Y.Z.); (P.R.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA
| | - Pragya Rajpurohit
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (Y.Z.); (P.R.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
19
|
Zhang Z, Liang X, Zhou J, Meng M, Gao Y, Yi G, Fu M. Exosomes in the pathogenesis and treatment of ocular diseases. Exp Eye Res 2021; 209:108626. [PMID: 34087205 DOI: 10.1016/j.exer.2021.108626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022]
Abstract
Exosomes have diverse functions and rich content and are involved in intercellular communication, immune regulation, viral infection, tissue regeneration, and the occurrence, development and metastasis of tumours. Notably, various stem cell-derived exosomes are expected to become new therapeutic approaches for inflammatory diseases and tumours and have good clinical application prospects. However, few studies have examined exosomes in ophthalmic diseases. Therefore, based on the functions of exosomes, this paper summarizes progress in the possible use of exosomes as treatment for specific ophthalmic diseases, aiming to determine the pathogenesis of exosomes to achieve more effective clinical diagnosis and treatment of these diseases.
Collapse
Affiliation(s)
- Zhihan Zhang
- Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaotian Liang
- Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Zhou
- Southern Medical University, Guangzhou, Guangdong, China
| | - Meijun Meng
- Southern Medical University, Guangzhou, Guangdong, China
| | - Ya Gao
- Southern Medical University, Guangzhou, Guangdong, China
| | - Guoguo Yi
- Department of Ophthalmology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Min Fu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
20
|
Abstract
Microglia, the main immune cell of the central nervous system (CNS), categorized into M1-like phenotype and M2-like phenotype, play important roles in phagocytosis, cell migration, antigen presentation, and cytokine production. As a part of CNS, retinal microglial cells (RMC) play an important role in retinal diseases. Diabetic retinopathy (DR) is one of the most common complications of diabetes. Recent studies have demonstrated that DR is not only a microvascular disease but also retinal neurodegeneration. RMC was regarded as a central role in neurodegeneration and neuroinflammation. Therefore, in this review, we will discuss RMC polarization and its possible regulatory factors in early DR, which will provide new targets and insights for early intervention of DR.
Collapse
|
21
|
Exacerbation of AMD Phenotype in Lasered CNV Murine Model by Dysbiotic Oral Pathogens. Antioxidants (Basel) 2021; 10:antiox10020309. [PMID: 33670526 PMCID: PMC7922506 DOI: 10.3390/antiox10020309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence underscores an association between age-related macular degeneration (AMD) and periodontal disease (PD), yet the biological basis of this linkage and the specific role of oral dysbiosis caused by PD in AMD pathophysiology remains unclear. Furthermore, a simple reproducible model that emulates characteristics of both AMD and PD has been lacking. Hence, we established a novel AMD+PD murine model to decipher the potential role of oral infection (ligature-enhanced) with the keystone periodontal pathogen Porphyromonas gingivalis, in the progression of neovasculogenesis in a laser-induced choroidal-neovascularization (Li-CNV) mouse retina. By a combination of fundus photography, optical coherence tomography, and fluorescein angiography, we documented inflammatory drusen-like lesions, reduced retinal thickness, and increased vascular leakage in AMD+PD mice retinae. H&E further confirmed a significant reduction of retinal thickness and subretinal drusen-like deposits. Immunofluorescence microscopy revealed significant induction of choroidal/retinal vasculogenesis in AMD+PD mice. qPCR identified increased expression of oxidative-stress, angiogenesis, pro-inflammatory mediators, whereas antioxidants and anti-inflammatory genes in AMD+PD mice retinae were notably decreased. Through qPCR, we detected Pg and its fimbrial 16s-RrNA gene expression in the AMD+PD mice retinae. To sum-up, this is the first in vivo study signifying a role of periodontal infection in augmentation of AMD phenotype, with the aid of a pioneering AMD+PD murine model established in our laboratory.
Collapse
|
22
|
George AK, Homme RP, Stanisic D, Tyagi SC, Singh M. Protecting the aging eye with hydrogen sulfide. Can J Physiol Pharmacol 2021; 99:161-170. [PMID: 32721225 DOI: 10.1139/cjpp-2020-0216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Research demonstrates that senescence is associated with tissue and organ dysfunction, and the eye is no exception. Sequelae arising from aging have been well defined as distinct clinical entities and vision impairment has significant psychosocial consequences. Retina and adjacent tissues like retinal pigmented epithelium and choroid are the key structures that are required for visual perception. Any structural and functional changes in retinal layers and blood retinal barrier could lead to age-related macular degeneration, diabetic retinopathy, and glaucoma. Further, there are significant oxygen gradients in the eye that can lead to excessive reactive oxygen species, resulting in endoplasmic reticulum and mitochondrial stress response. These radicals are source of functional and morphological impairment in retinal pigmented epithelium and retinal ganglion cells. Therefore, ocular diseases could be summarized as disturbance in the redox homeostasis. Hyperhomocysteinemia is a risk factor and causes vascular occlusive disease of the retina. Interestingly, hydrogen sulfide (H2S) has been proven to be an effective antioxidant agent, and it can help treat diseases by alleviating stress and inflammation. Concurrent glutamate excitotoxicity, endoplasmic reticulum stress, and microglia activation are also linked to stress; thus, H2S may offer additional interventional strategy. A refined understanding of the aging eye along with H2S biology and pharmacology may help guide newer therapies for the eye.
Collapse
Affiliation(s)
- Akash K George
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Rubens P Homme
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Dragana Stanisic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Mahavir Singh
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
23
|
Al-Shabrawey M, Hussein K, Wang F, Wan M, Elmasry K, Elsherbiny N, Saleh H, Yu PB, Tawfik A, Ibrahim AS. Bone Morphogenetic Protein-2 Induces Non-Canonical Inflammatory and Oxidative Pathways in Human Retinal Endothelial Cells. Front Immunol 2021; 11:568795. [PMID: 33584642 PMCID: PMC7878387 DOI: 10.3389/fimmu.2020.568795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/08/2020] [Indexed: 11/13/2022] Open
Abstract
The mechanisms of diabetic retinopathy (DR), are not yet fully understood. We previously demonstrated an upregulation of retinal bone morphogenetic protein-2 (BMP2) in experimental diabetes and in retinas of diabetic human subjects. The purpose of current study was to investigate the role of non-canonical inflammatory pathway in BMP2-induced retinal endothelial cell (REC) barrier dysfunction. For this purpose, we used RT-PCR and western blotting to evaluate the levels of BMP2 signaling components (BMP2, BMP4, BMP receptors), VEGF, phosphorylated p38 MAPK and NFκB, and oxidative stress markers in cultured human retinal endothelial cells (HRECs) subjected to BMP2 (50ng/ml) for up to 24 h. Also, effect of high glucose (HG, 30mM D-glucose) on the expression of BMP2 and its downstream genes was examined in HRECs. H2-DCF is a fluorogenic dye that measures the levels of cellular reactive oxygen species (ROS) was used to measure the pro-oxidative effect of BMP2. Moreover, we evaluated the effect of inhibiting p38 and VEGF signaling on BMP2-induced HRECs barrier dysfunction by measuring the trans-endothelial cell electrical resistance (TER) using electric cell-substrate impedance sensing (ECIS). We also tested the effect of HG on the integrity of HRECs barrier in the presence or absence of inhibitors of BMP2 signaling. Our data reveals that BMP2 and high glucose upregulates BMP components of the BMP signaling pathway (SMAD effectors, BMP receptors, and TGFβ ligand itself) and induces phosphorylation of p38 MAPK and NFκB with nuclear translocation of NFκB. Inhibition of p38 or NFκB attenuated BMP2-induced VEGF expression and barrier dysfunction in HRECs. Also, inhibition of VEGFR2 attenuated BMP2-induced barrier dysfunction. Moreover, BMP2 induces generation of ROS and endothelial nitric oxide synthase (eNOS) expression and activity in HRECs. Finally, HG upregulated BMP2 and its downstream genes (SMAD, BMP4, ALKs, and TGF-β) in HRECs and BMP2 inhibitors attenuated HG-induced HRECs barrier dysfunction. Our results suggest that in addition to the regular canonical SMAD signaling BMP2 induces non-canonical inflammatory pathway in HRECs via activation of p38/NFκB pathway that causes the upregulation of VEGF and the disruption of HRECs. Inhibition of BMP2 signaling is a potential therapeutic intervention to preserve endothelial cell barrier function in DR.
Collapse
Affiliation(s)
- Mohamed Al-Shabrawey
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Ophthalmology and Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Anatomy, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Khaled Hussein
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
- Department of Medicine and Surgery, Oral and Dental Research Division, National Research Centre, Cairo, Egypt
| | - Fang Wang
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
- Department of Traditional Chinese Medicine, School of Medicine, Jianghan University, Wuhan, China
| | - Ming Wan
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
- Department of Traditional Chinese Medicine, School of Medicine, Jianghan University, Wuhan, China
| | - Khaled Elmasry
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
- Department of Anatomy, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nehal Elsherbiny
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Heba Saleh
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - Paul B. Yu
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Amany Tawfik
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Ophthalmology and Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Ahmed S. Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Ophthalmology, Visual, and Anatomical Sciences, Department of Pharmacology, Wayne State University, Detroit, MI, United States
| |
Collapse
|
24
|
Tawfik A, Mohamed R, Kira D, Alhusban S, Al-Shabrawey M. N-Methyl-D-aspartate receptor activation, novel mechanism of homocysteine-induced blood-retinal barrier dysfunction. J Mol Med (Berl) 2021; 99:119-130. [PMID: 33159240 PMCID: PMC7785674 DOI: 10.1007/s00109-020-02000-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/18/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022]
Abstract
Elevated levels of amino acid homocysteine (Hcy) recognized as hyperhomocysteinemia (HHcy) was reported in several human visual disorders, such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Breakdown of blood-retinal barrier (BRB) is concomitant with vision loss in DR and AMD. We previously reported that HHcy alters BRB. Here, we tested the hypothesis that HHcy alters BRB via activation of N-methyl-D-aspartate receptor (NMDAR). Human retinal endothelial cells subjected to high level of Hcy and mouse model of HHcy were used. We injected Hcy intravitreal and used a mouse model of HHcy that lacks cystathionine-β-synthase (CBS). RT-PCR, western blot, and immunofluorescence showed that retinal endothelial cells (RECs) express NMDAR at the gene and protein levels both in vitro and in vivo and this was increased by HHcy. We assessed BRB function and retinal morphology using fluorescein angiogram and optical coherence tomography (OCT) under HHcy with and without pharmacological inhibition of NMDAR by (MK801) or in mice lacking endothelial NMDAR (NMDARE-/- mouse). Additionally, retinal albumin leakage and tight junction proteins ZO-1 and occludin were assessed by western blotting analysis. Inhibition or elimination of NMDAR was able to improve the altered retinal hyperpermeability and morphology under HHcy as indicated by significant decrease in retinal albumin leakage and restoration of tight junction proteins ZO-1 and occludin. Our findings underscore a potential role for endothelial NMDAR in mediating Hcy-induced breakdown of BRB and subsequently as a potential therapeutic target in retinal diseases associated with HHcy such as DR and AMD. KEY MESSAGES: • Elevated levels of homocysteine (Hcy) are defined as hyperhomocysteinemia (HHcy). • HHcy is implicated in diabetic retinopathy and age-related macular degeneration. • HHcy alters BRB via activation of N-methyl-D-aspartate receptor.
Collapse
Affiliation(s)
- Amany Tawfik
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1120 15th Street, CB 1114, Augusta, GA, 30912-2000, USA.
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia (MCG), Augusta University, Augusta, GA, 30912, USA.
- Department of Cellular Biology and Anatomy, Medical College of Georgia (MCG), Augusta University, Augusta, GA, 30912, USA.
- Department of Ophthalmology, Medical College of Georgia (MCG), Augusta University, Augusta, GA, 30912, USA.
| | - Riyaz Mohamed
- Department of Physiology Medical College of Georgia (MCG), Augusta University, Augusta, GA, 30912, USA
| | - Dina Kira
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1120 15th Street, CB 1114, Augusta, GA, 30912-2000, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia (MCG), Augusta University, Augusta, GA, 30912, USA
| | - Suhib Alhusban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1120 15th Street, CB 1114, Augusta, GA, 30912-2000, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia (MCG), Augusta University, Augusta, GA, 30912, USA
| | - Mohamed Al-Shabrawey
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1120 15th Street, CB 1114, Augusta, GA, 30912-2000, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia (MCG), Augusta University, Augusta, GA, 30912, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia (MCG), Augusta University, Augusta, GA, 30912, USA
- Department of Ophthalmology, Medical College of Georgia (MCG), Augusta University, Augusta, GA, 30912, USA
| |
Collapse
|
25
|
Mohammad G, Radhakrishnan R, Kowluru RA. Hydrogen Sulfide: A Potential Therapeutic Target in the Development of Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2020; 61:35. [PMID: 33372981 PMCID: PMC7774116 DOI: 10.1167/iovs.61.14.35] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose Hyperglycemia damages the retinal mitochondria, and the mitochondrial damage plays a central role in the development of diabetic retinopathy. Patients with diabetes also have higher homocysteine levels, and abnormalities in homocysteine metabolism result in decreased levels of hydrogen sulfide (H2S), an endogenous gasotransmitter signaling molecule with antioxidant properties. This study aimed to investigate the role of H2S in the development of diabetic retinopathy. Methods Streptozotocin-induced diabetic mice were administered a slow releasing H2S donor GYY4137 for 6 months. The retina was used to measure H2S levels, and their retinal vasculature was analyzed for the histopathology characteristic of diabetic retinopathy and oxidative stress, mitochondrial damaging matrix metalloproteinase-9 (MMP-9), and mitochondrial integrity. These parameters were also measured in the isolated retinal endothelial cells incubated in high glucose medium containing GYY4137. Results Administration of GYY4137 to diabetic mice ameliorated decrease in H2S and prevented the development of histopathology, characteristic of diabetic retinopathy. Diabetes-induced increase in oxidative stress, MMP-9 activation, and mitochondrial damage were also attenuated in mice receiving GYY4137. Results from isolated retinal endothelial cells confirmed the results obtained from diabetic mice. Conclusions Thus, supplementation of H2S donor prevents the development of diabetic retinopathy by ameliorating increase in oxidative stress and preserving the mitochondrial integrity. H2S donors may provide a novel therapeutic strategy to inhibit the development of diabetic retinopathy.
Collapse
Affiliation(s)
- Ghulam Mohammad
- Kresge Eye Institute, Wayne State University, Detroit, Michigan, United States
| | | | - Renu A Kowluru
- Kresge Eye Institute, Wayne State University, Detroit, Michigan, United States
| |
Collapse
|
26
|
Diabetic Retinopathy: Mitochondria Caught in a Muddle of Homocysteine. J Clin Med 2020; 9:jcm9093019. [PMID: 32961662 PMCID: PMC7564979 DOI: 10.3390/jcm9093019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022] Open
Abstract
Diabetic retinopathy is one of the most feared complications of diabetes. In addition to the severity of hyperglycemia, systemic factors also play an important role in its development. Another risk factor in the development of diabetic retinopathy is elevated levels of homocysteine, a non-protein amino acid, and hyperglycemia and homocysteine are shown to produce synergistic detrimental effects on the vasculature. Hyperhomocysteinemia is associated with increased oxidative stress, and in the pathogenesis of diabetic retinopathy, oxidative stress-mitochondrial dysfunction precedes the development of histopathology characteristic of diabetic retinopathy. Furthermore, homocysteine biosynthesis from methionine forms S-adenosyl methionine (SAM), and SAM is a co-substrate of DNA methylation. In diabetes, DNA methylation machinery is activated, and mitochondrial DNA (mtDNA) and several genes associated with mitochondrial homeostasis undergo epigenetic modifications. Consequently, high homocysteine, by further affecting methylation of mtDNA and that of genes associated with mtDNA damage and biogenesis, does not give any break to the already damaged mitochondria, and the vicious cycle of free radicals continues. Thus, supplementation of sensible glycemic control with therapies targeting hyperhomocysteinemia could be valuable for diabetic patients to prevent/slow down the development of this sight-threatening disease.
Collapse
|
27
|
Implication of Hyperhomocysteinemia in Blood Retinal Barrier (BRB) Dysfunction. Biomolecules 2020; 10:biom10081119. [PMID: 32751132 PMCID: PMC7463551 DOI: 10.3390/biom10081119] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Elevated plasma homocysteine (Hcy) level, known as hyperhomocysteinemia (HHcy) has been linked to different systemic and neurological diseases, well-known as a risk factor for systemic atherosclerosis and cardiovascular disease (CVD) and has been identified as a risk factor for several ocular disorders, such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Different mechanisms have been proposed to explain HHcy-induced visual dysfunction, including oxidative stress, upregulation of inflammatory mediators, retinal ganglion cell apoptosis, and extracellular matrix remodeling. Our previous studies using in vivo and in vitro models of HHcy have demonstrated that Hcy impairs the function of both inner and outer blood retinal barrier (BRB). Dysfunction of BRB is a hallmark of vision loss in DR and AMD. Our findings highlighted oxidative stress, ER stress, inflammation, and epigenetic modifications as possible mechanisms of HHcy-induced BRB dysfunction. In addition, we recently reported HHcy-induced brain inflammation as a mechanism of blood–brain barrier (BBB) dysfunction and pathogenesis of Alzheimer’s disease (AD). Moreover, we are currently investigating the activation of glutamate receptor N-methyl-d-aspartate receptor (NMDAR) as the molecular mechanism for HHcy-induced BRB dysfunction. This review focuses on the studied effects of HHcy on BRB and the controversial role of HHcy in the pathogenesis of aging neurological diseases such as DR, AMD, and AD. We also highlight the possible mechanisms for such deleterious effects of HHcy.
Collapse
|
28
|
Ibrahim AS, Hussein K, Wang F, Wan M, Saad N, Essa M, Kim I, Shakoor A, Owen LA, DeAngelis MM, Al-Shabrawey M. Bone Morphogenetic Protein (BMP)4 But Not BMP2 Disrupts the Barrier Integrity of Retinal Pigment Epithelia and Induces Their Migration: A Potential Role in Neovascular Age-Related Macular Degeneration. J Clin Med 2020; 9:jcm9072293. [PMID: 32707711 PMCID: PMC7408815 DOI: 10.3390/jcm9072293] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/04/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022] Open
Abstract
Disruption of retinal pigment epithelial (RPE) barrier integrity and RPE migration are hallmark features in neovascular age-related macular degeneration (nAMD), but the underlying causes and pathophysiology are not completely well-defined. Herein, we aimed to evaluate the effect of bone morphogenetic proteins (BMPs) on the barrier function and migration of RPE. In particular, we investigated the role of BMP2 and BMP4 in these processes as our analysis of RNA-sequencing (seq) data from human donor eyes demonstrated that they are highly differentially expressed BMP members in macular RPE/choroid versus macular retina. We used electrical cell-substrate impedance sensing (ECIS) system to monitor precisely in real time the barrier integrity and migration of ARPE-19 after treatment with various concentrations of BMP2 or BMP4. Immunofluorescence was also used to assess the changes in the expression and the organization of the key tight junction protein, zona occludens (ZO)-1, in ARPE-19 cells under BMP2 or BMP4 treatment. This was followed by measuring the activity of matrix metalloproteinases (MMPs). Finally, RNA-seq and ELISA were used to determine the local and circulating levels of BMP2 and BMP4 in retinas and serum samples from nAMD donors. Our ECIS results showed that BMP4 but not BMP2 decreased the transcellular electrical resistance (TER) of ARPE-19 and increased their migration in comparison with control (vehicle-treated cells). Furthermore, immunofluorescence showed a disorganization of ZO-1 in BMP4-treated ARPE-19 not in BMP2-treated cells or vehicle-treated controls. This effect of BMP4 was associated with significant increases in the activity of MMPs, specifically MMP2. Lastly, these results were corroborated by additional findings that circulating but not local BMP4 levels were significantly higher in nAMD donor samples compared to controls. Collectively, our results demonstrated unreported effects of BMP4 on inducing RPE dysfunction and suggest that BMP4 but not BMP2 may represent a potential therapeutic target in nAMD.
Collapse
Affiliation(s)
- Ahmed S. Ibrahim
- Department of Ophthalmology, Visual, and Anatomical Sciences, Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Correspondence: (A.S.I.); (M.A.-S.); Tel.: +313-577-7854 or 313-577-7864 (A.S.I.); +1-(706)-721-4278 (M.A.-S.)
| | - Khaled Hussein
- Department of Medicine and Surgery, Oral and Dental Research Division, National Research Centre, Cairo 12622, Egypt;
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA 30912, USA; (F.W.); (M.W.); (N.S.); (M.E.)
| | - Fang Wang
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA 30912, USA; (F.W.); (M.W.); (N.S.); (M.E.)
- Department of Traditional Chinese Medicine, School of Medicine, Jianghan University, Wuhan 430199, China
| | - Ming Wan
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA 30912, USA; (F.W.); (M.W.); (N.S.); (M.E.)
- Department of Traditional Chinese Medicine, School of Medicine, Jianghan University, Wuhan 430199, China
| | - Nancy Saad
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA 30912, USA; (F.W.); (M.W.); (N.S.); (M.E.)
- Dental school, University of Alberta Canada, Edmonton AB T6G 2R3, Canada
| | - Maamon Essa
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA 30912, USA; (F.W.); (M.W.); (N.S.); (M.E.)
- Department of Medical Biochemistry, Mansoura Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ivana Kim
- Retina Service, Harvard Medical School, Massachusetts Eye and Ear, Boston, MA 02115, USA;
| | - Akbar Shakoor
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84112, USA; (A.S.); (L.A.O.); (M.M.D.)
| | - Leah A. Owen
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84112, USA; (A.S.); (L.A.O.); (M.M.D.)
| | - Margaret M. DeAngelis
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84112, USA; (A.S.); (L.A.O.); (M.M.D.)
- Department of Population Health Sciences, University of Utah School of Medicine; Salt Lake City, UT 84132, USA
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Engineering, University at Buffalo SUNY, and the VA Western New York Healthcare System, Buffalo, NY 14215, USA
| | - Mohamed Al-Shabrawey
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA 30912, USA; (F.W.); (M.W.); (N.S.); (M.E.)
- Department of Cellular Biology and Anatomy, Augusta University, GA 30912, USA
- Department of Ophthalmology and Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
- Department of Anatomy, Mansoura Faculty of Medicine, Mansoura University-Egypt, Dakahlia Governorate 35516, Egypt
- Correspondence: (A.S.I.); (M.A.-S.); Tel.: +313-577-7854 or 313-577-7864 (A.S.I.); +1-(706)-721-4278 (M.A.-S.)
| |
Collapse
|
29
|
Shi C, Wang P, Airen S, Brown C, Liu Z, Townsend JH, Wang J, Jiang H. Nutritional and medical food therapies for diabetic retinopathy. EYE AND VISION (LONDON, ENGLAND) 2020; 7:33. [PMID: 32582807 PMCID: PMC7310218 DOI: 10.1186/s40662-020-00199-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 05/28/2020] [Indexed: 02/07/2023]
Abstract
Diabetic retinopathy (DR) is a form of microangiopathy. Reducing oxidative stress in the mitochondria and cell membranes decreases ischemic injury and end-organ damage to the retina. New approaches are needed, which reduce the risk and improve the outcomes of DR while complementing current therapeutic approaches. Homocysteine (Hcy) elevation and oxidative stress are potential therapeutic targets in DR. Common genetic polymorphisms such as those of methylenetetrahydrofolate reductase (MTHFR), increase Hcy and DR risk and severity. Patients with DR have high incidences of deficiencies of crucial vitamins, minerals, and related compounds, which also lead to elevation of Hcy and oxidative stress. Addressing the effects of the MTHFR polymorphism and addressing comorbid deficiencies and insufficiencies reduce the impact and severity of the disease. This approach provides safe and simple strategies that support conventional care and improve outcomes. Suboptimal vitamin co-factor availability also impairs the release of neurotrophic and neuroprotective growth factors. Collectively, this accounts for variability in presentation and response of DR to conventional therapy. Fortunately, there are straightforward recommendations for addressing these issues and supporting traditional treatment plans. We have reviewed the literature for nutritional interventions that support conventional therapies to reduce disease risk and severity. Optimal combinations of vitamins B1, B2, B6, L-methylfolate, methylcobalamin (B12), C, D, natural vitamin E complex, lutein, zeaxanthin, alpha-lipoic acid, and n-acetylcysteine are identified for protecting the retina and choroid. Certain medical foods have been successfully used as therapy for retinopathy. Recommendations based on this review and our clinical experience are developed for clinicians to use to support conventional therapy for DR. DR from both type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) have similar retinal findings and responses to nutritional therapies.
Collapse
Affiliation(s)
- Ce Shi
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL 33136 USA
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Peng Wang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL 33136 USA
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shriya Airen
- College of Arts and Sciences, University of Miami, Miami, FL USA
| | - Craig Brown
- Department of Ophthalmology, College of Medicine, the University of Arkansas for Medical Sciences, Fayetteville, AR USA
| | - Zhiping Liu
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL 33136 USA
- Ophthalmic Center, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong China
| | - Justin H. Townsend
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL 33136 USA
| | - Jianhua Wang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL 33136 USA
| | - Hong Jiang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL 33136 USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL USA
| |
Collapse
|
30
|
Eyeing the Extracellular Matrix in Vascular Development and Microvascular Diseases and Bridging the Divide between Vascular Mechanics and Function. Int J Mol Sci 2020; 21:ijms21103487. [PMID: 32429045 PMCID: PMC7278940 DOI: 10.3390/ijms21103487] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
The extracellular matrix (ECM) is critical in all aspects of vascular development and health: supporting cell anchorage, providing structure, organization and mechanical stability, and serving as a sink for growth factors and sustained survival signals. Abnormal changes in ECM protein expression, organization, and/or properties, and the ensuing changes in vascular compliance affect vasodilator responses, microvascular pressure transmission, and collateral perfusion. The changes in microvascular compliance are independent factors initiating, driving, and/or exacerbating a plethora of microvascular diseases of the eye including diabetic retinopathy (DR) and vitreoretinopathy, retinopathy of prematurity (ROP), wet age-related macular degeneration (AMD), and neovascular glaucoma. Congruently, one of the major challenges with most vascular regenerative therapies utilizing localized growth factor, endothelial progenitor, or genetically engineered cell delivery, is the regeneration of blood vessels with physiological compliance properties. Interestingly, vascular cells sense physical forces, including the stiffness of their ECM, through mechanosensitive integrins, their associated proteins and the actomyosin cytoskeleton, which generates biochemical signals that culminate in a rapid expression of matricellular proteins such as cellular communication network 1 (CCN1) and CCN2 (aka connective tissue growth factor or CTGF). Loss or gain of function of these proteins alters genetic programs of cell growth, ECM biosynthesis, and intercellular signaling, that culminate in changes in cell behavior, polarization, and barrier function. In particular, the function of the matricellular protein CCN2/CTGF is critical during retinal vessel development and regeneration wherein new blood vessels form and invest a preformed avascular neural retina following putative gradients of matrix stiffness. These observations underscore the need for further in-depth characterization of the ECM-derived cues that dictate structural and functional properties of the microvasculature, along with the development of new therapeutic strategies addressing the ECM-dependent regulation of pathophysiological stiffening of blood vessels in ischemic retinopathies.
Collapse
|
31
|
Song J, Han D, Lee H, Kim DJ, Cho JY, Park JH, Seok SH. A Comprehensive Proteomic and Phosphoproteomic Analysis of Retinal Pigment Epithelium Reveals Multiple Pathway Alterations in Response to the Inflammatory Stimuli. Int J Mol Sci 2020; 21:ijms21093037. [PMID: 32344885 PMCID: PMC7246457 DOI: 10.3390/ijms21093037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/31/2022] Open
Abstract
Overwhelming and persistent inflammation of retinal pigment epithelium (RPE) induces destructive changes in the retinal environment. However, the precise mechanisms remain unclear. In this study, we aimed to investigate RPE-specific biological and metabolic responses against intense inflammation and identify the molecular characteristics determining pathological progression. We performed quantitative analyses of the proteome and phosphoproteome of the human-derived RPE cell line ARPE-19 after treatment with lipopolysaccharide (LPS) for 45 min or 24 h using the latest isobaric tandem-mass tags (TMTs) labeling approach. This approach led to the identification of 8984 proteins, of which 261 showed a 1.5-fold change in abundance after 24 h of treatment with LPS. A parallel phosphoproteome analysis identified 20,632 unique phosphopeptides from 3207 phosphoproteins with 3103 phosphorylation sites. Integrated proteomic and phosphoproteomic analyses showed significant downregulation of proteins related to mitochondrial respiration and cell cycle checkpoint, while proteins related to lipid metabolism, amino acid metabolism, cell-matrix adhesion, and endoplasmic reticulum (ER) stress were upregulated after LPS stimulation. Further, phosphorylation events in multiple pathways, including MAPKK and Wnt/β-catenin signalings, were identified as involved in LPS-triggered pathobiology. In essence, our findings reveal multiple integrated signals exerted by RPE under inflammation and are expected to give insight into the development of therapeutic interventions for RPE disorders.
Collapse
Affiliation(s)
- Juha Song
- Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Chongno-gu, Seoul 03080, Korea;
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul 08826, Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (D.H.); (H.L.)
| | - Heonyi Lee
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (D.H.); (H.L.)
| | - Da Jung Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea; (D.J.K.); (J.-Y.C.)
- Department of Biomedical Sciences, Seoul National University College of Medicine, Chongno-gu, Seoul 03080, Korea
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea; (D.J.K.); (J.-Y.C.)
- Department of Biomedical Sciences, Seoul National University College of Medicine, Chongno-gu, Seoul 03080, Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul 08826, Korea
- Correspondence: (J.-H.P.); (S.H.S.); Tel.: +82-2-880-1256 (J.-H.P.); +82-2-740-8302 (S.H.S.); Fax: +82-2-763-5206 (S.H.S.)
| | - Seung Hyeok Seok
- Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Chongno-gu, Seoul 03080, Korea;
- Department of Biomedical Sciences, Seoul National University College of Medicine, Chongno-gu, Seoul 03080, Korea
- Correspondence: (J.-H.P.); (S.H.S.); Tel.: +82-2-880-1256 (J.-H.P.); +82-2-740-8302 (S.H.S.); Fax: +82-2-763-5206 (S.H.S.)
| |
Collapse
|
32
|
Elsherbiny NM, Sharma I, Kira D, Alhusban S, Samra YA, Jadeja R, Martin P, Al-Shabrawey M, Tawfik A. Homocysteine Induces Inflammation in Retina and Brain. Biomolecules 2020; 10:biom10030393. [PMID: 32138265 PMCID: PMC7175372 DOI: 10.3390/biom10030393] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/23/2020] [Accepted: 02/29/2020] [Indexed: 02/03/2023] Open
Abstract
Homocysteine (Hcy) is an amino acid that requires vitamins B12 and folic acid for its metabolism. Vitamins B12 and folic acid deficiencies lead to hyperhomocysteinemia (HHcy, elevated Hcy), which is linked to the development of diabetic retinopathy (DR), age-related macular degeneration (AMD), and Alzheimer’s disease (AD). The goal of the current study was to explore inflammation as an underlying mechanism of HHcy-induced pathology in age related diseases such as AMD, DR, and AD. Mice with HHcy due to a lack of the enzyme cystathionine-β-synthase (CBS) and wild-type mice were evaluated for microglia activation and inflammatory markers using immuno-fluorescence (IF). Tissue lysates isolated from the brain hippocampal area from mice with HHcy were evaluated for inflammatory cytokines using the multiplex assay. Human retinal endothelial cells, retinal pigment epithelial cells, and monocyte cell lines treated with/without Hcy were evaluated for inflammatory cytokines and NFκB activation using the multiplex assay, western blot analysis, and IF. HHcy induced inflammatory responses in mouse brain, retina, cultured retinal, and microglial cells. NFκB was activated and cytokine array analysis showed marked increase in pro-inflammatory cytokines and downregulation of anti-inflammatory cytokines. Therefore, elimination of excess Hcy or reduction of inflammation is a promising intervention for mitigating damage associated with HHcy in aging diseases such as DR, AMD, and AD.
Collapse
Affiliation(s)
- Nehal M. Elsherbiny
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (I.S.); (D.K.); (S.A.); (Y.A.S.); (M.A.-S.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA; (R.J.); (P.M.)
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Isha Sharma
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (I.S.); (D.K.); (S.A.); (Y.A.S.); (M.A.-S.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA; (R.J.); (P.M.)
| | - Dina Kira
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (I.S.); (D.K.); (S.A.); (Y.A.S.); (M.A.-S.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA; (R.J.); (P.M.)
| | - Suhib Alhusban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (I.S.); (D.K.); (S.A.); (Y.A.S.); (M.A.-S.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA; (R.J.); (P.M.)
| | - Yara A. Samra
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (I.S.); (D.K.); (S.A.); (Y.A.S.); (M.A.-S.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA; (R.J.); (P.M.)
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ravirajsinh Jadeja
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA; (R.J.); (P.M.)
- Department of Biochemistry, Medical College of Georgia (MCG), Augusta University, Augusta, GA 30912, USA
| | - Pamela Martin
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA; (R.J.); (P.M.)
- Department of Biochemistry, Medical College of Georgia (MCG), Augusta University, Augusta, GA 30912, USA
- Department of Ophthalmology, MCG, Augusta University, Augusta, GA 30912, USA
| | - Mohamed Al-Shabrawey
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (I.S.); (D.K.); (S.A.); (Y.A.S.); (M.A.-S.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA; (R.J.); (P.M.)
- Department of Ophthalmology, MCG, Augusta University, Augusta, GA 30912, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia (MCG), Augusta University, Augusta, GA 30912, USA
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Amany Tawfik
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (I.S.); (D.K.); (S.A.); (Y.A.S.); (M.A.-S.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA; (R.J.); (P.M.)
- Department of Ophthalmology, MCG, Augusta University, Augusta, GA 30912, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia (MCG), Augusta University, Augusta, GA 30912, USA
- Correspondence:
| |
Collapse
|
33
|
George AK, Majumder A, Ice H, Homme RP, Eyob W, Tyagi SC, Singh M. Genes and genetics in hyperhomocysteinemia and the "1-carbon metabolism": implications for retinal structure and eye functions. Can J Physiol Pharmacol 2019; 98:51-60. [PMID: 31369712 DOI: 10.1139/cjpp-2019-0236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Homocysteine (Hcy), a sulfur-containing nonproteinogenic amino acid, is generated as a metabolic intermediate. Hcy constitutes an important part of the "1-carbon metabolism" during methionine turnover. Elevated levels of Hcy known as hyperhomocysteinemia (HHcy) results from vitamin B deficiency, lack of exercise, smoking, excessive alcohol intake, high-fat and methionine-rich diet, and the underlying genetic defects. These factors directly affect the "1-carbon metabolism (methionine-Hcy-folate)" of a given cell. In fact, the Hcy levels are determined primarily by dietary intake, vitamin status, and the genetic blueprint of the susceptible individual. Although Hcy performs an important role in cellular functions, genetic alterations in any of the key enzymes responsible for the "1-carbon metabolism" could potentially upset the metabolic cycle, thus causing HHcy environment in susceptible people. As such, HHcy relates to several clinical conditions like atherosclerosis, myocardial infarction, stroke, cognitive impairment, dementia, Parkinson's disease, multiple sclerosis, epilepsy, and ocular disorders, among others. This article summarizes the findings from our laboratory and public database regarding genetics of HHcy and its effects on ocular disorders, their respective management during dysregulation of the 1-carbon metabolism.
Collapse
Affiliation(s)
- Akash K George
- Eye and Vision Science Laboratory, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA.,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Avisek Majumder
- Department of Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, USA
| | - Hayley Ice
- Eye and Vision Science Laboratory, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA.,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Rubens P Homme
- Eye and Vision Science Laboratory, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA.,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Wintana Eyob
- College of Arts and Sciences, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Mahavir Singh
- Eye and Vision Science Laboratory, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA.,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| |
Collapse
|
34
|
AnandBabu K, Sen P, Angayarkanni N. Oxidized LDL, homocysteine, homocysteine thiolactone and advanced glycation end products act as pro-oxidant metabolites inducing cytokine release, macrophage infiltration and pro-angiogenic effect in ARPE-19 cells. PLoS One 2019; 14:e0216899. [PMID: 31086404 PMCID: PMC6516731 DOI: 10.1371/journal.pone.0216899] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/30/2019] [Indexed: 02/03/2023] Open
Abstract
Age-related Macular Degeneration (AMD) is one of the major vision-threatening diseases of the eye. Oxidative stress is one of the key factors in the onset and progression of AMD. In this study, metabolites associated with AMD pathology more so at the systemic level namely, oxidized LDL (oxLDL), homocysteine (Hcy), homocysteine thiolactone (HCTL), advanced glycation end product (AGE) were evaluated for their pro-oxidant nature in a localized ocular environment based on in vitro studies in human retinal pigment epithelial cells (ARPE-19 cells). Human ARPE-19 cells were treated with pro-oxidants 50 μg/mL oxLDL, 500 μM Hcy, 500 nM HCTL, 100 μg/mL AGE, 200 μM H2O2 and 200 μM H2O2 with and without pre-treatment of 5 mM N-acetyl cysteine (NAC). The cytokines IL-6, IL-8 and vascular endothelial growth factor (VEGF) secreted from ARPE-19 cells exposed to pro-oxidants were estimated by ELISA. In vitro angiogenesis assay was performed with conditioned media of the pro-oxidant treated ARPE-19 cells in Geltrex-Matrigel coated 96-well plate. The human acute monocytic leukemia cell line (THP-1) was differentiated into macrophages and its migration in response to conditioned media of ARPE-19 cells insulted with the pro-oxidants was studied by transwell migration assay. Western blot was performed to detect the protein expression of Bax, Bcl-2 and NF-κB to assess apoptotic changes. The compounds involved in the study showed a significant increase in reactive oxygen species (ROS) generation in ARPE-19 cells (oxLDL; Hcy; AGE: p < 0.001 and HCTL: p < 0.05). NAC pre-treatment significantly lowered the oxidative stress brought about by pro-oxidants as seen by lowered ROS and MDA levels in the cells. Treatment with pro-oxidants significantly increased the secretion of IL-6 (oxLDL: p < 0.05; Hcy, HCTL and AGE: p < 0.01) and IL-8 cytokines (oxLDL: p < 0.05; HCTL: p <. 001 and AGE: p < 0.01) in ARPE-19 cells. Serum samples of AMD patients (n = 23) revealed significantly higher IL-6 and IL-8 levels compared to control subjects (n = 23) (IL6: p < 0.01 and IL8: p < 0.05). The pro-oxidants also promoted VEGF secretion by ARPE-19 cells compared to untreated control (oxLDL: p < 0.001; Hcy: p < 0.01; HCTL and AGE: p < 0.05). In vitro angiogenesis assay showed that the conditioned media significantly increased the tube formation in RF/6A endothelial cells. Transwell migration assay revealed significant infiltration of macrophages in response to pro-oxidants. We further demonstrated that the pro-oxidants increased the Bax/Bcl-2 ratio and increased the NF-κB activation resulting in pro-apoptotic changes in ARPE-19 cells. Thus, oxLDL, Hcy, HCTL and AGE act as pro-oxidant metabolites in RPE that promote AMD through oxidative stress, inflammation, chemotaxis and neovascularization.
Collapse
Affiliation(s)
- Kannadasan AnandBabu
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Sankara Nethralaya, Chennai, India
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - Parveen Sen
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, India
| | - Narayanasamy Angayarkanni
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Sankara Nethralaya, Chennai, India
- * E-mail: ,
| |
Collapse
|
35
|
Han Y, Shang Q, Yao J, Ji Y. Hydrogen sulfide: a gaseous signaling molecule modulates tissue homeostasis: implications in ophthalmic diseases. Cell Death Dis 2019; 10:293. [PMID: 30926772 PMCID: PMC6441042 DOI: 10.1038/s41419-019-1525-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/12/2019] [Accepted: 03/11/2019] [Indexed: 12/14/2022]
Abstract
Hydrogen sulfide (H2S) serves as a gasotransmitter in the regulation of organ development and maintenance of homeostasis in tissues. Its abnormal levels are associated with multiple human diseases, such as neurodegenerative disease, myocardial injury, and ophthalmic diseases. Excessive exposure to H2S could lead to cellular toxicity, orchestrate pathological process, and increase the risk of various diseases. Interestingly, under physiological status, H2S plays a critical role in maintaining cellular physiology and limiting damages to tissues. In mammalian species, the generation of H2S is catalyzed by cystathionine beta-synthase (CBS), cystathionine gamma-lyase (CSE), 3-mercapto-methylthio pyruvate aminotransferase (3MST) and cysteine aminotransferase (CAT). These enzymes are found inside the mammalian eyeballs at different locations. Their aberrant expression and the accumulation of substrates and intermediates can change the level of H2S by orders of magnitude, causing abnormal structures or functions in the eyes. Detailed investigations have demonstrated that H2S donors' administration could regulate intraocular pressure, protect retinal cells, inhibit oxidative stress and alleviate inflammation by modulating the function of intra or extracellular proteins in ocular tissues. Thus, several slow-releasing H2S donors have been shown to be promising drugs for treating multiple diseases. In this review, we discuss the biological function of H2S metabolism and its application in ophthalmic diseases.
Collapse
Affiliation(s)
- Yuyi Han
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, China
| | - Qianwen Shang
- Institutes for Translational Medicine, Soochow University Medical College, Suzhou, China
| | - Jin Yao
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China.
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
36
|
Singh M, George AK, Homme RP, Majumder A, Laha A, Sandhu HS, Tyagi SC. Expression Analysis of the Circular RNA Molecules in the Human Retinal Cells Treated with Homocysteine. Curr Eye Res 2019; 44:287-293. [PMID: 30369271 PMCID: PMC6709669 DOI: 10.1080/02713683.2018.1542005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/12/2018] [Accepted: 10/21/2018] [Indexed: 01/10/2023]
Abstract
PURPOSE To characterize the global profile of circular RNAs (circRNAs) and their differential expression levels in homocysteine (Hcy)-treated ARPE-19 cells, a line of human retinal pigment epithelial (RPE) cells. MATERIALS AND METHODS We treated ARPE-19 cells with and without Hcy to investigate the influence of Hcy on circRNA expression levels using dedicated human circRNA microarrays. RESULTS A total of 12,233 circRNAs were identified out of them 54 were differentially expressed (17 were down-regulated, and 37 were up-regulated) with a fold change >2.0 (p < 0.05) in Hcy-treated versus untreated cells. CONCLUSIONS To our knowledge, this is the first report profiling circRNAs in human RPE cells post-Hcy treatment mimicking hyperhomocysteinemic (HHcy) conditions that negatively affect retinal biology and vision. These findings are of potential clinical significance as they will help understand Hcy metabolism and HHcy-mediated diseases and identify potential diagnostic and therapeutic targets for eye diseases that are caused by elevated Hcy concentrations.
Collapse
Affiliation(s)
- Mahavir Singh
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Akash K George
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Rubens Petit Homme
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Avisek Majumder
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Anwesha Laha
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Harpal S. Sandhu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Kentucky Lions Eye Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
37
|
Homocysteine: A Potential Biomarker for Diabetic Retinopathy. J Clin Med 2019; 8:jcm8010121. [PMID: 30669482 PMCID: PMC6352029 DOI: 10.3390/jcm8010121] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 12/14/2022] Open
Abstract
Diabetic retinopathy (DR) is the most common cause of blindness in people under the age of 65. Unfortunately, the current screening process for DR restricts the population that can be evaluated and the disease goes undetected until irreversible damage occurs. Herein, we aimed to evaluate homocysteine (Hcy) as a biomarker for DR screening. Hcy levels were measured by enzyme-linked immuno sorbent assay (ELISA) and immunolocalization methods in the serum, vitreous and retina of diabetic patients as well as in serum and retina of different animal models of DM representing type 1 diabetes (streptozotocin (STZ) mice, Akita mice and STZ rats) and db/db mice which exhibit features of human type 2 diabetes. Our results revealed increased Hcy levels in the serum, vitreous and retina of diabetic patients and experimental animal models of diabetes. Moreover, optical coherence tomography (OCT) and fluorescein angiography (FA) were used to evaluate the retinal changes in mice eyes after Hcy-intravitreal injection into normal wild-type (WT) and diabetic (STZ) mice. Hcy induced changes in mice retina which were aggravated under diabetic conditions. In conclusion, our data reported Hcy as a strong candidate for use as a biomarker in DR screening. Targeting the clearance of Hcy could also be a future therapeutic target for DR.
Collapse
|
38
|
Epigenetic modifications in hyperhomocysteinemia: potential role in diabetic retinopathy and age-related macular degeneration. Oncotarget 2018; 9:12562-12590. [PMID: 29560091 PMCID: PMC5849155 DOI: 10.18632/oncotarget.24333] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 01/24/2018] [Indexed: 02/03/2023] Open
Abstract
To study Hyperhomocysteinemia (HHcy)-induced epigenetic modifications as potential mechanisms of blood retinal barrier (BRB) dysfunction, retinas isolated from three- week-old mice with elevated level of Homocysteine (Hcy) due to lack of the enzyme cystathionine β-synthase (cbs-/- , cbs+/- and cbs+/+ ), human retinal endothelial cells (HRECs), and human retinal pigmented epithelial cells (ARPE-19) treated with or without Hcy were evaluated for (1) histone deacetylases (HDAC), (2) DNA methylation (DNMT), and (3) miRNA analysis. Differentially expressed miRNAs in mice with HHcy were further compared with miRNA analysis of diabetic mice retinas (STZ) and miRNAs within the exosomes released from Hcy-treated RPEs. Differentially expressed miRNAs were further evaluated for predicted target genes and associated pathways using Ingenuity Pathway Analysis. HHcy significantly increased HDAC and DNMT activity in HRECs, ARPE-19, and cbs mice retinas, whereas inhibition of HDAC and DNMT decreased Hcy-induced BRB dysfunction. MiRNA profiling detected 127 miRNAs in cbs+/- and 39 miRNAs in cbs-/- mice retinas, which were significantly differentially expressed compared to cbs+/+ . MiRNA pathway analysis showed their involvement in HDAC and DNMT activation, endoplasmic reticulum (ER), and oxidative stresses, inflammation, hypoxia, and angiogenesis pathways. Hcy-induced epigenetic modifications may be involved in retinopathies associated with HHcy, such as age-related macular degeneration and diabetic retinopathy.
Collapse
|
39
|
Mohamed R, Sharma I, Ibrahim AS, Saleh H, Elsherbiny NM, Fulzele S, Elmasry K, Smith SB, Al-Shabrawey M, Tawfik A. Hyperhomocysteinemia Alters Retinal Endothelial Cells Barrier Function and Angiogenic Potential via Activation of Oxidative Stress. Sci Rep 2017; 7:11952. [PMID: 28931831 PMCID: PMC5607263 DOI: 10.1038/s41598-017-09731-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 07/28/2017] [Indexed: 01/16/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) is associated with several human visual disorders, such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Breakdown of the blood-retinal barrier (BRB) is linked to vision loss in DR and AMD. Our previous work revealed that HHcy altered BRB in retinal endothelial cells in vivo. Here we hypothesize that homocysteine (Hcy) alters retinal endothelial cell barrier function and angiogenic potential via activation of oxidative stress. Human retinal endothelial cells (HRECs) treated with and without different concentrations of Hcy showed a reduction of tight junction protein expression, increased FITC dextran leakage, decreased transcellular electrical resistance and increased angiogenic potential. In addition, HRECs treated with Hcy showed increased production of reactive oxygen species (ROS). The anti-oxidant N-acetyl-cysteine (NAC) reduced ROS formation and decreased FITC-dextran leakage in Hcy treated HRECs. A mouse model of HHcy, in which cystathionine-β-synthase is deficient (cbs−/−), was evaluated for oxidative stress by dichlolorofluorescein (DCF), dihydroethidium (DHE) staining. There was a marked increase in ROS production and augmented GSH reductase and antioxidant regulator NRF2 activity, but decreased antioxidant gene expression in retinas of hyperhomocysteinemic mice. Our results suggest activation of oxidative stress as a possible mechanism of HHcy induced retinal endothelial cell dysfunction.
Collapse
Affiliation(s)
- Riyaz Mohamed
- Department of Oral Biology and Anatomy, Dental College of Georgia, Augusta University, Augusta, GA, USA.,James and Jean Culver Vision Discovery Institute, Medical College of Georgia (MCG), Augusta University, Augusta, USA
| | - Isha Sharma
- Department of Oral Biology and Anatomy, Dental College of Georgia, Augusta University, Augusta, GA, USA.,James and Jean Culver Vision Discovery Institute, Medical College of Georgia (MCG), Augusta University, Augusta, USA
| | - Ahmed S Ibrahim
- Department of Oral Biology and Anatomy, Dental College of Georgia, Augusta University, Augusta, GA, USA.,James and Jean Culver Vision Discovery Institute, Medical College of Georgia (MCG), Augusta University, Augusta, USA.,Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Heba Saleh
- Department of Oral Biology and Anatomy, Dental College of Georgia, Augusta University, Augusta, GA, USA.,James and Jean Culver Vision Discovery Institute, Medical College of Georgia (MCG), Augusta University, Augusta, USA
| | - Nehal M Elsherbiny
- Department of Oral Biology and Anatomy, Dental College of Georgia, Augusta University, Augusta, GA, USA.,James and Jean Culver Vision Discovery Institute, Medical College of Georgia (MCG), Augusta University, Augusta, USA.,Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Sadanand Fulzele
- Department: Orthopedic Surgery, MCG, Augusta University, Augusta, GA, USA
| | - Khaled Elmasry
- Department of Oral Biology and Anatomy, Dental College of Georgia, Augusta University, Augusta, GA, USA.,James and Jean Culver Vision Discovery Institute, Medical College of Georgia (MCG), Augusta University, Augusta, USA.,Department of Cellular Biology and Anatomy, MCG, Augusta University, Augusta, GA, USA
| | - Sylvia B Smith
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia (MCG), Augusta University, Augusta, USA.,Department of Cellular Biology and Anatomy, MCG, Augusta University, Augusta, GA, USA.,Department of Ophthalmology, MCG, Augusta University, Augusta, GA, USA
| | - Mohamed Al-Shabrawey
- Department of Oral Biology and Anatomy, Dental College of Georgia, Augusta University, Augusta, GA, USA.,James and Jean Culver Vision Discovery Institute, Medical College of Georgia (MCG), Augusta University, Augusta, USA.,Department of Cellular Biology and Anatomy, MCG, Augusta University, Augusta, GA, USA.,Department of Ophthalmology, MCG, Augusta University, Augusta, GA, USA
| | - Amany Tawfik
- Department of Oral Biology and Anatomy, Dental College of Georgia, Augusta University, Augusta, GA, USA. .,James and Jean Culver Vision Discovery Institute, Medical College of Georgia (MCG), Augusta University, Augusta, USA. .,Department of Cellular Biology and Anatomy, MCG, Augusta University, Augusta, GA, USA. .,Department of Ophthalmology, MCG, Augusta University, Augusta, GA, USA.
| |
Collapse
|
40
|
Agarwal A, Garg M, Dixit N, Godara R. Evaluation and correlation of stress scores with blood pressure, endogenous cortisol levels, and homocysteine levels in patients with central serous chorioretinopathy and comparison with age-matched controls. Indian J Ophthalmol 2017; 64:803-805. [PMID: 27958201 PMCID: PMC5200980 DOI: 10.4103/0301-4738.195591] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Context: Stress had been associated with the development of central serous chorioretinopathy (CSC). The study was designed to evaluate the effect of stress on other risk factors of CSC such as serum cortisol levels, serum homocysteine levels, and blood pressure (BP) in CSC patients. Aims: To compare stress scores, serum cortisol and serum homocysteine levels, and BP of CSC patients with that of control population and to correlate stress scores of CSC patients with BP, serum cortisol levels, and serum homocysteine levels. Materials and Methods: Stress scores, serum morning and evening cortisol levels, serum homocysteine levels, systolic and diastolic BP of 54 CSC patients were measured and compared with that of 54 age- and sex-related controls using Student's t-test. Stress scores of CSC patients were correlated with systolic and diastolic BP, serum morning and evening cortisol levels and serum homocysteine levels and Pearson correlation coefficient (r) were calculated. Results: Stress scores, serum homocysteine levels, serum morning and evening cortisol levels, and systolic and diastolic BP were all elevated in CSC patients as compared with age- and sex-related controls (P < 0.05). Stress scores of CSC patients were found to correlate strongly with serum homocysteine levels, serum morning and evening cortisol levels, and systolic and diastolic BP, with r values 0.82, 0.8, 0.8, 0.8, and 0.81, respectively (P < 0.0001). Conclusions: Stress scores were elevated in CSC patients and were strongly correlated with serum homocysteine and cortisol levels and BP.
Collapse
Affiliation(s)
- Abhishek Agarwal
- Department of Vitreo-retinal Services, Sri Jagdamba Charitable Eye Hospital, Sri Ganganagar, Rajasthan, India
| | - Monika Garg
- Department of Vitreo-retinal Services, Sri Jagdamba Charitable Eye Hospital, Sri Ganganagar, Rajasthan, India
| | - Nikhil Dixit
- Department of Vitreo-retinal Services, Sri Jagdamba Charitable Eye Hospital, Sri Ganganagar, Rajasthan, India
| | - Rohini Godara
- Department of Vitreo-retinal Services, Sri Jagdamba Charitable Eye Hospital, Sri Ganganagar, Rajasthan, India
| |
Collapse
|
41
|
Singh M, Tyagi SC. Hyperhomocysteinemia and Age-related Macular Degeneration: Role of Inflammatory Mediators and Pyroptosis; A Proposal. Med Hypotheses 2017; 105:17-21. [DOI: 10.1016/j.mehy.2017.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 06/22/2017] [Indexed: 02/03/2023]
|
42
|
Kruger WD. Cystathionine β-synthase deficiency: Of mice and men. Mol Genet Metab 2017; 121:199-205. [PMID: 28583326 PMCID: PMC5526210 DOI: 10.1016/j.ymgme.2017.05.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 01/28/2023]
Abstract
Cystathionine β-synthase (CBS) deficiency (Online Mendelian Inheritance in Man [OMIM] 236,200) is an autosomal recessive disorder that is caused by mutations in the CBS gene. It is the most common inborn error of sulfur metabolism and is the cause of classical homocystinuria, a condition characterized by very high levels of plasma total homocysteine and methionine. Although recognized as an inborn error of metabolism over 60years ago, these is still much we do not understand related to how this specific metabolic defect gives rise to its distinct phenotypes. To try and answer these questions, several groups have developed mouse models on CBS deficiency. In this article, we will review various mouse models of CBS deficiency and discuss how these mouse models compare to human CBS deficient patients.
Collapse
Affiliation(s)
- Warren D Kruger
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| |
Collapse
|
43
|
Singh M, Tyagi SC. Homocysteine mediates transcriptional changes of the inflammatory pathway signature genes in human retinal pigment epithelial cells. Int J Ophthalmol 2017; 10:696-704. [PMID: 28546923 DOI: 10.18240/ijo.2017.05.06] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 03/01/2017] [Indexed: 12/28/2022] Open
Abstract
AIM To test whether homocysteine (Hcy) can influence the transcriptional profile, we hypothesized that Hcy can lead to the induction of proinflammatory molecules in the retinal cells of aging people. METHODS An unbiased in vitro inflammatory pathway focused study was designed employing retinal pigment epithelial (RPE) cell line, ARPE-19. Cells were cultured in the presence or absence of Hcy to capture target genes' expression profile. Three different concentrations of Hcy were added in the culture medium of confluent monolayers. cRNAs were made from the isolated total RNAs and the labeled cRNA probes were hybridized to microarrays specific for human disease pathway inflammatory cytokines, chemokines and their receptor gene micro-array panels as per manufacture's recommendations. Two Hcy up-regulated molecules: IL6 and CEBPB were further validated via Western blot analysis. Hcy's effect on ARPE-19 cellular morphology and genomic DNA integrity were also evaluated. RESULTS Gene microarray analyses of RPE cells in response to Hcy treatment revealed alterations in the expressions of several inflammatory gene transcripts such as CCL5, CEBPB, IL13RA2, IL15RA, IL6, IL8 and CXCL3 that were up-regulated. The transcripts for C3, CCL2, IL11RA and IL18 genes exhibited down-regulation. The IL6 and CEBPB expressions were subsequently validated at the protein levels. Treatment of the retinal cells with increasing Hcy concentration influenced their density in culture however their morphology and DNA integrity remained unaffected. CONCLUSION These findings suggest that Hcy can potentially mediate the expression of chemokines, cytokines and interleukins receptors in the retinal cells without having any debilitating effects on their morphology and the genomic DNA integrity.
Collapse
Affiliation(s)
- Mahavir Singh
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|