1
|
Hashida R, Kawabata T. Structural Perspective of NR4A Nuclear Receptor Family and Their Potential Endogenous Ligands. Biol Pharm Bull 2024; 47:580-590. [PMID: 38432913 DOI: 10.1248/bpb.b23-00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
There are 48 nuclear receptors in the human genome, and many members of this superfamily have been implicated in human diseases. The NR4A nuclear receptor family consisting of three members, NR4A1, NR4A2, and NR4A3 (formerly annotated as Nur77, Nurr1, and NOR1, respectively), are still orphan receptors but exert pathological effects on immune-related and neurological diseases. We previously reported that prostaglandin A1 (PGA1) and prostaglandin A2 (PGA2) are potent activators of NR4A3, which bind directly to the ligand-binding domain (LBD) of the receptor. Recently, the co-crystallographic structures of NR4A2-LBD bound to PGA1 and PGA2 were reported, followed by reports of the neuroprotective effects of these possible endogenous ligands in mouse models of Parkinson's disease. Based on these structures, we modeled the binding structures of the other two members (NR4A1 and NR4A3) with these potential endogenous ligands using a template-based modeling method, and reviewed the similarity and diversity of ligand-binding mechanisms in the nuclear receptor family.
Collapse
Affiliation(s)
- Ryoichi Hashida
- Genox Research Inc
- Department of Microbiology, Matsumoto Dental University
| | - Takeshi Kawabata
- Department of Applied Information Sciences, Graduate School of Information Sciences, Tohoku University
| |
Collapse
|
2
|
Zhao T, Sun J, Lu X, Liu L, Chen L, Zhao W, Zhou B. Let-7a-5p abrogates progression of papillary thyroid carcinoma cells by decreasing nuclear receptor subfamily 6 group a member 1-mediated lipogenesis. J Biochem Mol Toxicol 2024; 38:e23572. [PMID: 37905833 DOI: 10.1002/jbt.23572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/20/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
Increasing evidence shows that microRNAs (miRNAs) contribute vital roles in papillary thyroid carcinoma (PTC) carcinogenesis, proliferation, invasion, and so on. As the most common endocrine malignancy, there still have largely unknown molecular events. First, our analysis and open access database information indicates that the downregulation of let-7a-5p accelerates PTC progression. Next, lentivirus mediates the overexpression of let-7a-5p PTC cells, and found let-7a-5p suppressed cancer cells proliferation and invasion. Interestingly, bioinformatics analysis hints NR6A1 is the potential target gene of let-7a-5p. The regulation was validated by luciferase and quantitative reverse transcription polymerase chain reaction (qRT-PCR) in PTC tissue and the clinic tumors. Moreover, let-7a-5p regulated NR6A1 involved in PTC cells lipogensis in vitro and in vivo. Finally, let-7a-5p abrogates PCT xenograft tumors growth, NR6A1 expression and lipogenesis. Taken together, our data indicates that let-7a-5p suppresses PCT progression through decreased lipogenesis, the related let-7a-5p/NR6A1axis might be promising candidate targets for PTC treatment.
Collapse
Affiliation(s)
- Tao Zhao
- Department of Oncology, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, China
| | - Jinghui Sun
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Xiangdong Lu
- Department of Oncology, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, China
| | - Lingling Liu
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Lin Chen
- Department of Outpatient, North Sichuan Medical College, Nanchong, China
| | - Wei Zhao
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Bin Zhou
- Department of Thyroid and Breast Surgery, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, China
| |
Collapse
|
3
|
Xie S, Hu Y, Jin J, Fu L, Zhang C, Yang Q, Niu Y, Sheng Z. Regulation of the stem‑like properties of estrogen receptor‑positive breast cancer cells through NR2E3/NR2C2 signaling. Exp Ther Med 2023; 26:474. [PMID: 37664670 PMCID: PMC10469576 DOI: 10.3892/etm.2023.12173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Cancer stem cells (CSCs) are major drivers of metastasis, drug resistance and recurrence in numerous cancers. However, critical factors that can modulate CSC stemness have not been clearly identified. Nuclear receptor subfamily 2 group E member 3 (nr2e3) expression has been previously reported to be positively associated with drug sensitivity and favorable clinical outcomes in patients with estrogen receptor (ER)+ breast cancer. This suggests that nr2e3 expression may be inversely associated with CSC stemness in this type of tumor cells. The present study aimed to investigate the regulatory roles of NR2E3 in the stem-like properties of ER+ breast cancer cells and to identify the underlying mechanisms. Bioinformatics analysis was performed using the data derived from the Cancer Genome Atlas database. Nr2e3-specific shRNA and nuclear receptor subfamily 2 group C member 2 (nr2c2) overexpressed plasmids were constructed to silence and enhance the expression of nr2e3 and nr2c2, respectively. Transwell and wound healing experiments were conducted to evaluate the migration and invasion ability of MCF7 cells, while colony formation tests were used to evaluate the clonality. Flow cytometry was used to detect the percentage of CD44+CD24-/low cells. Reverse transcription-quantitative PCR and western blotting were performed to detect expression at the mRNA and protein levels. The results showed that compared with normal breast tissues and MCF10A cells, the expression of nr2e3 was increased in ER+ breast tumor tissues and cell lines. Nr2e3 silencing promoted the migration, invasion and colony-forming ability of the ER+ MCF7 cells. It also increased the expression of epithelial-mesenchymal transition markers and stem cell-related transcription factors, in addition to the percentage of CD44+CD24-/low cells. The expression of nr2e3 and nr2c2 was found to be positively correlated. Nr2e3 knockdown decreased the mRNA and protein expression levels of nr2c2, whereas nr2c2 overexpression reversed the elevated CD44+CD24-/low cell ratio and the increased migratory activity caused by nr2e3 silencing. The results of the present study suggest that NR2E3 may serve an important role in modulating the stem-like properties of ER+ breast cancer cells, where NR2E3/NR2C2 signaling may be a therapeutic target in ER+ breast cancer.
Collapse
Affiliation(s)
- Shanglun Xie
- School of Life Sciences, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Yaru Hu
- Department of Ophthalmology, Fuyang People's Hospital, Fuyang, Anhui 236000, P.R. China
| | - Jiacheng Jin
- School of Life Sciences, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Lingzhi Fu
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233099, P.R. China
| | - Cong Zhang
- School of Life Sciences, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Qing Yang
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233099, P.R. China
| | - Yaxin Niu
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233099, P.R. China
| | - Zhiyong Sheng
- School of Life Sciences, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| |
Collapse
|
4
|
Revisiting the Syndecans: Master Signaling Regulators with Prognostic and Targetable Therapeutic Values in Breast Carcinoma. Cancers (Basel) 2023; 15:cancers15061794. [PMID: 36980680 PMCID: PMC10046401 DOI: 10.3390/cancers15061794] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Syndecans (SDC1 to 4), a family of cell surface heparan sulfate proteoglycans, are frequently expressed in mammalian tissues. SDCs are aberrantly expressed either on tumor or stromal cells, influencing cancer initiation and progression through their pleiotropic role in different signaling pathways relevant to proliferation, cell-matrix adhesion, migration, invasion, metastasis, cancer stemness, and angiogenesis. In this review, we discuss the key roles of SDCs in the pathogenesis of breast cancer, the most common malignancy in females worldwide, focusing on the prognostic significance and molecular regulators of SDC expression and localization in either breast tumor tissue or its microenvironmental cells and the SDC-dependent epithelial–mesenchymal transition program. This review also highlights the molecular mechanisms underlying the roles of SDCs in regulating breast cancer cell behavior via modulation of nuclear hormone receptor signaling, microRNA expression, and exosome biogenesis and functions, as well as summarizing the potential of SDCs as promising candidate targets for therapeutic strategies against breast cancer.
Collapse
|
5
|
Zhang J, Zhang J, Zhao W, Li Q, Cheng W. Low expression of NR1H3 correlates with macrophage infiltration and indicates worse survival in breast cancer. Front Genet 2023; 13:1067826. [PMID: 36699456 PMCID: PMC9868774 DOI: 10.3389/fgene.2022.1067826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/10/2022] [Indexed: 01/11/2023] Open
Abstract
Background: Nuclear receptor NR1H3 is a key regulator of macrophage function and lipid homeostasis. Here, we aimed to visualize the prognostic value and immunological characterization of NR1H3 in breast cancer. Methods: The expression pattern and prognostic value of NR1H3 were analyzed via multiple databases, including TIMER2, GEPIA2 and Kaplan-Meier Plotter. TISIDB, TIMER2 and immunohistochemical analysis were used to investigate the correlation between NR1H3 expression and immune infiltration. GO enrichment analysis, KEGG analysis, Reactome analysis, ConsensusPathDB and GeneMANIA were used to visualize the functional enrichment of NR1H3 and signaling pathways related to NR1H3. Results: We demonstrated that the expression of NR1H3 was significantly lower in breast cancer compared with adjacent normal tissues. Kaplan-Meier survival curves showed shorter overall survival in basal breast cancer patients with low NR1H3 expression, and poorer prognosis of relapse-free survival in breast cancer patients with low NR1H3 expression. NR1H3 was mainly expressed in immune cells, and its expression was closely related with infiltrating levels of tumor-infiltrating immune cells in breast cancer. Additionally, univariate and multivariate analysis indicated that the expression of NR1H3 and the level of macrophage infiltration were independent prognostic factors for breast cancer. Gene interaction network analysis showed the function of NR1H3 involved in regulating of innate immune response and macrophage activation. Moreover, NR1H3 may function as a predictor of chemoresponsiveness in breast cancer. Conclusion: These findings suggest that NR1H3 serves as a prognostic biomarker and contributes to the regulation of macrophage activation in breast cancer.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Integrated Therapy, Shanghai Cancer Center, Fudan University, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Zhao
- Department of Integrated Therapy, Shanghai Cancer Center, Fudan University, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qingxian Li
- The Center of Reproductive Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai, China,*Correspondence: Qingxian Li, ; Wenwu Cheng,
| | - Wenwu Cheng
- Department of Integrated Therapy, Shanghai Cancer Center, Fudan University, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,*Correspondence: Qingxian Li, ; Wenwu Cheng,
| |
Collapse
|
6
|
Jayaprakash S, Hegde M, Girisa S, Alqahtani MS, Abbas M, Lee EHC, Yap KCH, Sethi G, Kumar AP, Kunnumakkara AB. Demystifying the Functional Role of Nuclear Receptors in Esophageal Cancer. Int J Mol Sci 2022; 23:ijms231810952. [PMID: 36142861 PMCID: PMC9501100 DOI: 10.3390/ijms231810952] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Esophageal cancer (EC), an aggressive and poorly understood disease, is one of the top causes of cancer-related fatalities. GLOBOCAN 2020 reports that there are 544,076 deaths and 604,100 new cases expected worldwide. Even though there are various advancements in treatment procedures, this cancer has been reported as one of the most difficult cancers to cure, and to increase patient survival; treatment targets still need to be established. Nuclear receptors (NRs) are a type of transcription factor, which has a key role in several biological processes such as reproduction, development, cellular differentiation, stress response, immunity, metabolism, lipids, and drugs, and are essential regulators of several diseases, including cancer. Numerous studies have demonstrated the importance of NRs in tumor immunology and proved the well-known roles of multiple NRs in modulating proliferation, differentiation, and apoptosis. There are surplus of studies conducted on NRs and their implications in EC, but only a few studies have demonstrated the diagnostic and prognostic potential of NRs. Therefore, there is still a paucity of the role of NRs and different ways to target them in EC cells to stop them from spreading malignancy. This review emphasizes the significance of NRs in EC by discussing their diverse agonists as well as antagonists and their response to tumor progression. Additionally, we emphasize NRs’ potential to serve as a novel therapeutic target and their capacity to treat and prevent EC.
Collapse
Affiliation(s)
- Sujitha Jayaprakash
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - E. Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Kenneth Chun-Hong Yap
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Correspondence: (A.P.K.); (A.B.K.)
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
- Correspondence: (A.P.K.); (A.B.K.)
| |
Collapse
|
7
|
Shatnawi A, Ayoub NM, Alkhalifa AE, Ibrahim DR. Estrogen-Related Receptors Gene Expression and Copy Number Alteration Association With the Clinicopathologic Characteristics of Breast Cancer. BREAST CANCER: BASIC AND CLINICAL RESEARCH 2022; 16:11782234221086713. [PMID: 35359609 PMCID: PMC8961373 DOI: 10.1177/11782234221086713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose: It has been suggested that dysregulation of transcription factors expression
or activity plays significant roles in breast cancer (BC) severity and poor
prognosis. Therefore, our study aims to thoroughly evaluate the
estrogen-related receptor isoforms (ESRRs) expression and copy number
alteration (CNA) status and their association with clinicopathologic
characteristics in BC. Methods: A METABRIC dataset consist of 2509 BC patients’ samples was obtained from the
cBioPortal public domain. The gene expression, putative CNA, and relevant
tumor information of ESRRs were retrieved. ESRRs messenger RNA (mRNA)
expression in BC cell lines was obtained from the Cancer Cell Line
Encyclopedia (CCLE). Association and correlation analysis of ESRRs
expression with BC clinicopathologic characteristics and molecular subtype
were performed. Kaplan–Meier survival analysis was conducted to evaluate the
prognostic value of ESRRs expression on patient survival. Results: ESRRα expression correlated negatively with patients’ age and overall
survival, whereas positively correlated with tumor size, the number of
positive lymph nodes, and Nottingham prognostic index (NPI). Conversely,
ESRRγ expression was positively correlated with patients’ age and negatively
correlated with NPI. ESRRα and ESRRγ expression were significantly
associated with tumor grade, expression of hormone receptors, human
epidermal growth factor receptor 2 (HER2), and molecular subtype, whereas
ESRRβ was only associated with tumor stage. A significant and distinct
association of each of ESRRs CNA with various clinicopathologic and
prognostic factors was also observed. Kaplan–Meier survival analysis
demonstrated no significant difference for survival curves among BC patients
with high or low expression of ESRRα, β, or γ. On stratification, high ESRRα
expression significantly reduced survival among premenopausal patients,
patients with grade I/II, and early-stage disease. In BC cell lines, only
ESRRα expression was significantly higher in HER2-positive cells. No
significant association was observed between ESRRβ expression and any of the
clinicopathologic characteristics examined. Conclusions: In this clinical dataset, ESRRα and ESRRγ mRNA expression and CNA show a
significant correlation and association with distinct clinicopathologic and
prognostic parameters known to influence treatment outcomes; however, ESRRβ
failed to show a robust role in BC pathogenesis. ESRRα and ESRRγ can be
employed as therapeutic targets in BC-targeted therapy. However, the role of
ESRRβ in BC pathogenesis remains unclear.
Collapse
Affiliation(s)
- Aymen Shatnawi
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, University of Charleston, Charleston, WV, USA
| | - Nehad M Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Amer E Alkhalifa
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Dalia R Ibrahim
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
8
|
Lang A, Isigkeit L, Schubert-Zsilavecz M, Merk D. The Medicinal Chemistry and Therapeutic Potential of LRH-1 Modulators. J Med Chem 2021; 64:16956-16973. [PMID: 34839661 DOI: 10.1021/acs.jmedchem.1c01663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ligand-activated transcription factor liver receptor homologue 1 (LRH-1, NR5A2) is involved in the regulation of metabolic homeostasis, including cholesterol and glucose balance. Preliminary evidence points to therapeutic potential of LRH-1 modulation in diabetes, hepatic diseases, inflammatory bowel diseases, atherosclerosis, and certain cancers, but because of a lack of suitable ligands, pharmacological control of LRH-1 has been insufficiently studied. Despite the availability of considerable structural knowledge on LRH-1, only a few ligand chemotypes have been developed, and potent, selective, and bioavailable tools to explore LRH-1 modulation in vivo are lacking. In view of the therapeutic potential of LRH-1 in prevalent diseases, improved chemical tools are needed to probe the beneficial and adverse effects of pharmacological LRH-1 modulation in sophisticated preclinical models and to further elucidate the receptor's molecular function.
Collapse
Affiliation(s)
- Alisa Lang
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, D-60438 Frankfurt, Germany
| | - Laura Isigkeit
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, D-60438 Frankfurt, Germany
| | | | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, D-60438 Frankfurt, Germany.,Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, D-81377 Munich, Germany
| |
Collapse
|
9
|
The novel immune-related genes predict the prognosis of patients with hepatocellular carcinoma. Sci Rep 2021; 11:10728. [PMID: 34021184 PMCID: PMC8139963 DOI: 10.1038/s41598-021-89747-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/09/2021] [Indexed: 02/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the main causes of cancer deaths globally. Immunotherapy is becoming increasingly important in the cure of advanced HCC. Thus it is essential to identify biomarkers for treatment response and prognosis prediction. We searched publicly available databases and retrieved 465 samples of genes from The Cancer Genome Atlas (TCGA) database and 115 tumor samples from Gene Expression Omnibus (GEO). Meanwhile, we used the ImmPort database to determine the immune-related genes as well. Weighted gene correlation network analysis, Cox regression analysis and least absolute shrinkage and selection operator (LASSO) analysis were used to identify the key immune related genes (IRGs) which are closely related to prognosis. Gene set enrichment analysis (GSEA) was implemented to explore the difference of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway between Immune high- and low-risk score groups. Finally, we made a prognostic nomogram including Immune-Risk score and other clinicopathologic factors. A total of 318 genes from prognosis related modules were identified through weighted gene co-expression network analysis (WGCNA). 46 genes were strongly linked to prognosis after univariate Cox analysis. We constructed a seven genes prognostic signature which showed powerful prediction ability in both training cohort and testing cohort. 16 significant KEGG pathways were identified between high- and low- risk score groups using GSEA analysis. This study identified and verified seven immune-related prognostic biomarkers for the patients with HCC, which have potential value for immune modulatory and therapeutic targets.
Collapse
|
10
|
Sun G, Sun K, Shen C. Human nuclear receptors (NRs) genes have prognostic significance in hepatocellular carcinoma patients. World J Surg Oncol 2021; 19:137. [PMID: 33941198 PMCID: PMC8091722 DOI: 10.1186/s12957-021-02246-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality in the world. Method We downloaded the mRNA profiles and clinical information of 371 HCC patients from The Cancer Genome Atlas (TCGA) database. The consensus clustering analysis with the mRNA levels of 48 nuclear receptors (NRs) was performed by the “ConsensusClusterPlus.” The univariate Cox regression analysis was performed to predict the prognostic significance of NRs on HCC. The risk score was calculated by the prognostic model constructed based on eight optimal NRs. Then multivariate Cox regression analysis was performed to determine whether the risk score is an independent prognostic signature. Finally, the nomogram based on multiple independent prognostic factors was used to predict the long-term survival of HCC patients. Results The prognostic model constructed based on the eight optimal NRs (NR1H3, ESR1, NR1I2, NR2C1, NR6A1, PPARD, PPARG, and VDR) could effectively predict the prognosis of HCC patients as an independent prognostic signature. Moreover, the nomogram was constructed based on multiple independent prognostic factors including risk score and tumor node metastasis (TNM) stage and could better predict the long-term survival for 3- and 5-year of HCC patients. Conclusion Our results provided novel evidences that NRs could act as the potential prognostic signatures for HCC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-021-02246-x.
Collapse
Affiliation(s)
- Guangtao Sun
- Department of Hepatobiliary Surgery, ZiBo Central Hospital, No. 54, Gongqingtuanxi Road, Zibo, Shandong, 255036, People's Republic of China
| | - Kejian Sun
- Department of Hepatobiliary Surgery, ZiBo Central Hospital, No. 54, Gongqingtuanxi Road, Zibo, Shandong, 255036, People's Republic of China
| | - Chao Shen
- Department of Hepatobiliary Surgery, ZiBo Central Hospital, No. 54, Gongqingtuanxi Road, Zibo, Shandong, 255036, People's Republic of China.
| |
Collapse
|
11
|
Retinoic Acid Sensitivity of Triple-Negative Breast Cancer Cells Characterized by Constitutive Activation of the notch1 Pathway: The Role of Rarβ. Cancers (Basel) 2020; 12:cancers12103027. [PMID: 33081033 PMCID: PMC7650753 DOI: 10.3390/cancers12103027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous disease that lacks effective therapeutic options. In this study, we profile eighteen TNBC cell lines for their sensitivity to the anti-proliferative action of all-trans retinoic acid (ATRA). The only three cell lines (HCC-1599, MB-157 and MDA-MB-157) endowed with ATRA-sensitivity are characterized by genetic aberrations of the NOTCH1-gene, causing constitutive activation of the NOTCH1 γ-secretase product, N1ICD. N1ICD renders HCC-1599, MB-157 and MDA-MB-157 cells sensitive not only to ATRA, but also to γ-secretase inhibitors (DAPT; PF-03084014). Combinations of ATRA and γ-secretase inhibitors produce additive/synergistic effects in vitro and in vivo. RNA-sequencing studies of HCC-1599 and MB-157 cells exposed to ATRA and DAPT and ATRA+DAPT demonstrate that the two compounds act on common gene sets, some of which belong to the NOTCH1 pathway. ATRA inhibits the growth of HCC-1599, MB-157 and MDA-MB-157 cells via RARα, which up-regulates several retinoid target-genes, including RARβ. RARβ is a key determinant of ATRA anti-proliferative activity, as its silencing suppresses the effects exerted by the retinoid. In conclusion, we demonstrate that ATRA exerts a significant anti-tumor action only in TNBC cells showing constitutive NOTCH1 activation. Our results support the design of clinical trials involving combinations between ATRA and γ-secretase inhibitors for the treatment of this TNBC subtype.
Collapse
|
12
|
Wei Y, Wang X, Zhang Z, Zhao C, Chang Y, Bian Z, Zhao X. Impact of NR5A2 and RYR2 3'UTR polymorphisms on the risk of breast cancer in a Chinese Han population. Breast Cancer Res Treat 2020; 183:1-8. [PMID: 32572717 DOI: 10.1007/s10549-020-05736-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The NR5A2 and RYR2 genes are important players in steroid metabolism and play an important role in cancer research. In this research, we want to evaluate the effect of NR5A2 and RYR2 polymorphisms on breast cancer (BC). METHODS Four single nucleotide polymorphisms on NR5A2 and RYR2 were selected to genotype by Agena MassARRAY in 379 BC patients and 407 healthy controls. Using the PLINK software to calculate the Odds ratio (OR) and 95% confidence intervals (CIs) via the logistic regression analysis to evaluate the risk for BC. RESULTS We found that NR5A2 rs2246209 significantly decreased the risk of BC with the AA genotype (OR 0.58, 95%CI 0.34-0.99, p = 0.049), and recessive model (OR 0.59, 95%CI 0.35-0.99, p = 0.046); rs12594 in the RYR2 gene significantly decreased the risk of BC in the GG genotype (OR 0.44, 95%CI 0.22-0.88, p = 0.020), and recessive model (OR 0.43, 95%CI 0.21-0.85, p = 0.016). Further stratification analysis showed that NR5A2 rs2246209 was related to a lower incidence of BC affected by age, lymph nodes metastasis, and tumor stage; RYR2 rs12594 was related to a decreased BC risk restricted by age, estrogen receptor (ER), progesterone receptor (PR), menopausal status, tumor size, and tumor stage. Rs12594 in the RyR2 gene remained significant on the genetic susceptibility of PR-positive BC after Bonferroni correction (p < 0.0125). CONCLUSIONS This study provides an evidence that NR5A2 rs2246209 and RYR2 rs12594 decreased the risk of breast cancer.
Collapse
Affiliation(s)
- Ying Wei
- Department of Internal Medicine Oncology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, 710061, Shaanxi, China.,Department of Internal Medicine Oncology, Yulin No.2 Hospital, Yulin, 719000, Shaanxi, China
| | - Xiaolin Wang
- Department of General Surgery, Yulin No.2 Hospital, Yulin, 719000, Shaanxi, China
| | - Zhe Zhang
- Department of General Surgery, Yulin No.2 Hospital, Yulin, 719000, Shaanxi, China
| | - Changtao Zhao
- Department of Internal Medicine Oncology, Yulin No.2 Hospital, Yulin, 719000, Shaanxi, China
| | - Yuwei Chang
- Department of Internal Medicine Oncology, Yulin No.2 Hospital, Yulin, 719000, Shaanxi, China
| | - Zhiqing Bian
- Department of Internal Medicine Oncology, Yulin No.2 Hospital, Yulin, 719000, Shaanxi, China
| | - Xinhan Zhao
- Department of Internal Medicine Oncology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
13
|
Fernandez AI, Geng X, Chaldekas K, Harris B, Duttargi A, Berry VL, Berry DL, Mahajan A, Cavalli LR, Győrffy B, Tan M, Riggins RB. The orphan nuclear receptor estrogen-related receptor beta (ERRβ) in triple-negative breast cancer. Breast Cancer Res Treat 2020; 179:585-604. [PMID: 31741180 PMCID: PMC7153462 DOI: 10.1007/s10549-019-05485-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Triple-negative breast cancer (TNBC)/basal-like breast cancer (BLBC) is a highly aggressive form of breast cancer. We previously reported that a small molecule agonist ligand for the orphan nuclear receptor estrogen-related receptor beta (ERRβ or ESRRB) has growth inhibitory and anti-mitotic activity in TNBC cell lines. In this study, we evaluate the association of ESRRB mRNA, copy number levels, and protein expression with demographic, clinicopathological, and gene expression features in breast tumor clinical specimens. METHODS ESRRB mRNA-level expression and clinical associations were analyzed using RNAseq data. Array-based comparative genomic hybridization determined ESRRB copy number in African-American and Caucasian women. Transcription factor activity was measured using promoter-reporter luciferase assays in TNBC cell lines. Semi-automatic quantification of immunohistochemistry measured ERRβ protein expression on a 150-patient tissue microarray series. RESULTS ESRRB mRNA expression is significantly lower in TNBC/BLBC versus other breast cancer subtypes. There is no evidence of ESRRB copy number loss. ESRRB mRNA expression is correlated with the expression of genes associated with neuroactive ligand-receptor interaction, metabolic pathways, and deafness. These genes contain G/C-rich transcription factor binding motifs. The ESRRB message is alternatively spliced into three isoforms, which we show have different transcription factor activity in basal-like versus other TNBC cell lines. We further show that the ERRβ2 and ERRβsf isoforms are broadly expressed in breast tumors at the protein level. CONCLUSIONS Decreased ESRRB mRNA expression and distinct patterns of ERRβ isoform subcellular localization and transcription factor activity are key features in TNBC/BLBC.
Collapse
Affiliation(s)
- Aileen I Fernandez
- Department of Oncology, Georgetown University, Washington, DC, 22209, USA.
- Department of Oncology, Georgetown University, 3970 Reservoir Rd NW, E412 Research Bldg., Washington, DC, 20057, USA.
| | - Xue Geng
- Department of Oncology, Georgetown University, Washington, DC, 22209, USA
| | - Krysta Chaldekas
- Department of Oncology, Georgetown University, Washington, DC, 22209, USA
| | - Brent Harris
- Department of Oncology, Georgetown University, Washington, DC, 22209, USA
| | - Anju Duttargi
- Department of Oncology, Georgetown University, Washington, DC, 22209, USA
| | - V Layne Berry
- Department of Oncology, Georgetown University, Washington, DC, 22209, USA
| | - Deborah L Berry
- Department of Oncology, Georgetown University, Washington, DC, 22209, USA
| | - Akanksha Mahajan
- Department of Oncology, Georgetown University, Washington, DC, 22209, USA
| | - Luciane R Cavalli
- Department of Oncology, Georgetown University, Washington, DC, 22209, USA
- Research Institute Pelé Pequeno Príncipe Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group and Semmelweis University 2nd Department of Pediatrics, Budapest, Hungary
| | - Ming Tan
- Department of Oncology, Georgetown University, Washington, DC, 22209, USA
| | - Rebecca B Riggins
- Department of Oncology, Georgetown University, Washington, DC, 22209, USA.
- Department of Oncology, Georgetown University, 3970 Reservoir Rd NW, E412 Research Bldg., Washington, DC, 20057, USA.
| |
Collapse
|
14
|
Dufresne J, Bowden P, Thavarajah T, Florentinus-Mefailoski A, Chen ZZ, Tucholska M, Norzin T, Ho MT, Phan M, Mohamed N, Ravandi A, Stanton E, Slutsky AS, Dos Santos CC, Romaschin A, Marshall JC, Addison C, Malone S, Heyland D, Scheltens P, Killestein J, Teunissen C, Diamandis EP, Siu KWM, Marshall JG. The plasma peptides of breast versus ovarian cancer. Clin Proteomics 2019; 16:43. [PMID: 31889940 PMCID: PMC6927194 DOI: 10.1186/s12014-019-9262-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023] Open
Abstract
Background There is a need to demonstrate a proof of principle that proteomics has the capacity to analyze plasma from breast cancer versus other diseases and controls in a multisite clinical trial design. The peptides or proteins that show a high observation frequency, and/or precursor intensity, specific to breast cancer plasma might be discovered by comparison to other diseases and matched controls. The endogenous tryptic peptides of breast cancer plasma were compared to ovarian cancer, female normal, sepsis, heart attack, Alzheimer's and multiple sclerosis along with the institution-matched normal and control samples collected directly onto ice. Methods Endogenous tryptic peptides were extracted from individual breast cancer and control EDTA plasma samples in a step gradient of acetonitrile, and collected over preparative C18 for LC-ESI-MS/MS with a set of LTQ XL linear quadrupole ion traps working together in parallel to randomly and independently sample clinical populations. The MS/MS spectra were fit to fully tryptic peptides or phosphopeptides within proteins using the X!TANDEM algorithm. The protein observation frequency was counted using the SEQUEST algorithm after selecting the single best charge state and peptide sequence for each MS/MS spectra. The observation frequency was subsequently tested by Chi Square analysis. The log10 precursor intensity was compared by ANOVA in the R statistical system. Results Peptides and/or phosphopeptides of common plasma proteins such as APOE, C4A, C4B, C3, APOA1, APOC2, APOC4, ITIH3 and ITIH4 showed increased observation frequency and/or precursor intensity in breast cancer. Many cellular proteins also showed large changes in frequency by Chi Square (χ2 > 100, p < 0.0001) in the breast cancer samples such as CPEB1, LTBP4, HIF-1A, IGHE, RAB44, NEFM, C19orf82, SLC35B1, 1D12A, C8orf34, HIF1A, OCLN, EYA1, HLA-DRB1, LARS, PTPDC1, WWC1, ZNF562, PTMA, MGAT1, NDUFA1, NOGOC, OR1E1, OR1E2, CFI, HSA12, GCSH, ELTD1, TBX15, NR2C2, FLJ00045, PDLIM1, GALNT9, ASH2L, PPFIBP1, LRRC4B, SLCO3A1, BHMT2, CS, FAM188B2, LGALS7, SAT2, SFRS8, SLC22A12, WNT9B, SLC2A4, ZNF101, WT1, CCDC47, ERLIN1, SPFH1, EID2, THOC1, DDX47, MREG, PTPRE, EMILIN1, DKFZp779G1236 and MAP3K8 among others. The protein gene symbols with large Chi Square values were significantly enriched in proteins that showed a complex set of previously established functional and structural relationships by STRING analysis. An increase in mean precursor intensity of peptides was observed for QSER1 as well as SLC35B1, IQCJ-SCHIP1, MREG, BHMT2, LGALS7, THOC1, ANXA4, DHDDS, SAT2, PTMA and FYCO1 among others. In contrast, the QSER1 peptide QPKVKAEPPPK was apparently specific to ovarian cancer. Conclusion There was striking agreement between the breast cancer plasma peptides and proteins discovered by LC-ESI-MS/MS with previous biomarkers from tumors, cells lines or body fluids by genetic or biochemical methods. The results indicate that variation in plasma peptides from breast cancer versus ovarian cancer may be directly discovered by LC-ESI-MS/MS that will be a powerful tool for clinical research. It may be possible to use a battery of sensitive and robust linear quadrupole ion traps for random and independent sampling of plasma from a multisite clinical trial.
Collapse
Affiliation(s)
- Jaimie Dufresne
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Pete Bowden
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Thanusi Thavarajah
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Angelique Florentinus-Mefailoski
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Zhuo Zhen Chen
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Monika Tucholska
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Tenzin Norzin
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Margaret Truc Ho
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Morla Phan
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Nargiz Mohamed
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Amir Ravandi
- 2Institute of Cardiovascular Sciences, St. Boniface Hospital Research Center, University of Manitoba, Winnipeg, Canada
| | - Eric Stanton
- 3Division of Cardiology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Arthur S Slutsky
- 4St. Michael's Hospital, Keenan Chair in Medicine, Professor of Medicine, Surgery & Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Claudia C Dos Santos
- 5St. Michael's Hospital, Keenan Research Centre for Biomedical Science, Toronto, Canada
| | - Alexander Romaschin
- 5St. Michael's Hospital, Keenan Research Centre for Biomedical Science, Toronto, Canada
| | - John C Marshall
- 5St. Michael's Hospital, Keenan Research Centre for Biomedical Science, Toronto, Canada
| | - Christina Addison
- 6Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Shawn Malone
- 6Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Daren Heyland
- 7Clinical Evaluation Research Unit, Kingston General Hospital, Kingston, Canada
| | - Philip Scheltens
- 8Alzheimer Center, Dept of Neurology, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Joep Killestein
- 9MS Center, Dept of Neurology, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Charlotte Teunissen
- 10Neurochemistry Lab and Biobank, Dept of Clinical Chemsitry, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | | | - K W M Siu
- 12University of Windsor, Windsor, Canada
| | - John G Marshall
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada.,13International Biobank of Luxembourg (IBBL), Luxembourg Institute of Health (formerly CRP Sante Luxembourg), Strassen, Luxembourg
| |
Collapse
|
15
|
NR2F1 contributes to cancer cell dormancy, invasion and metastasis of salivary adenoid cystic carcinoma by activating CXCL12/CXCR4 pathway. BMC Cancer 2019; 19:743. [PMID: 31357956 PMCID: PMC6664703 DOI: 10.1186/s12885-019-5925-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 07/11/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Salivary adenoid cystic carcinoma (SACC) can recur after removal of the primary tumor and treatment, where they can keep no clinical symptoms and dormant state for 10-15 years. NR2F1 has been demonstrated to regulate the tumor cell dormancy in various malignant tumors and has a potential impact on recurrence and metastasis of carcinoma. However, the role and significance of NR2F1 in SACC dormancy still remain unknown. METHODS A total number of 59 patients with a diagnosis of SACC were included to detected expression of NR2F1, Ki-67 by immunohistochemical (IHC) staining and terminal deoxynucleotidyl transferase-mediated dUTP nick and labeling (TUNEL). Fisher's exact test was used to examine the NR2F1 expression and clinicopathologic parameters of SACC. In vitro, SACC cell lines were transfected NR2F1 and knockdown NR2F1 respectively. CCK-8, flow cytometry, wound healing assay and transwell invasion determined SACC cell proliferation, apoptosis, cell cycle, migration and invasion respectively. Chromatin immunoprecipitation (ChIP) assays were utilized to demonstrate the potential role of NR2F1 in SACC invasion via CXCL12/CXCR4 axis. In vivo, xenografts of nude mice via subcutaneous injection or tail vein injection were used to testify the results in vitro. RESULTS Among the 59 patients with SACC, 23.73% (14/59) were positive to NR2F1 expression, a lower rate of expression compared with 60% (6/10) in normal salivary gland samples. NR2F1 was correlated with metastasis, relapse and dormancy of SACC. SACC cells with transfected NR2F1 remained dormant, as well as enhanced invasion and metastasis. Knockdown of NR2F1 via siRNA after NR2F1 overexpression restored the proliferation and the cell number in G2/M phases, and reduced the abilities of migration and invasion. In addition, NR2F1 promoted the expression of CXCL12 and CXCR4, and overexpression of CXCL12 at least partly rescued the proliferation, migration, and invasion activities induced by NR2F1 silencing. CONCLUSIONS NR2F1 may be an underlying mechanism of SACC recurrence and metastasis via regulating tumor cell dormancy through CXCL12/CXCR4 pathway.
Collapse
|
16
|
Zhao XG, Hu JY, Tang J, Yi W, Zhang MY, Deng R, Mai SJ, Weng NQ, Wang RQ, Liu J, Zhang HZ, He JH, Wang HY. miR-665 expression predicts poor survival and promotes tumor metastasis by targeting NR4A3 in breast cancer. Cell Death Dis 2019; 10:479. [PMID: 31209222 PMCID: PMC6579763 DOI: 10.1038/s41419-019-1705-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022]
Abstract
Cancer metastasis is the main cause of death in breast cancer (BC) patients. Therefore, prediction and treatment of metastasis is critical for enhancing the survival of BC patients. In this study, we aimed to identify biomarkers that can predict metastasis of BC and elucidate the underlying mechanism of the functional involvement of such markers in metastasis. miRNA expression profile was analyzed using a custom microarray system in 422 BC tissues. The relationship between the upregulated miR-665, metastasis and survival of BC was analyzed and verified in another set of 161 BC samples. The biological function of miR-665 in BC carcinogenesis was explored with in vitro and in vivo methods. The target gene of miR-665 and its signaling cascade were also analyzed. There are 399 differentially expressed miRNAs between BC and noncancerous tissues, of which miR-665 is the most upregulated miRNA in the BC tissues compared with non-tumor breast tissues (P < 0.001). The expression of miR-665 predicts metastasis and poor survival in 422 BC patients, which is verified in another 161 BC patients and 2323 BC cases from online databases. Ectopic miR-665 expression promotes epithelial–mesenchymal transition (EMT), proliferation, migration and invasion of BC cells, and increases tumor growth and metastasis of BC in mice. Bioinformatics, luciferase assay and other methods showed that nuclear receptor subfamily 4 group A member 3 (NR4A3) is a target of miR-665 in BC. Mechanistically, we demonstrated that miR-665 promotes EMT, invasion and metastasis of BC via inhibiting NR4A3 to activate MAPK/ERK kinase (MEK) signaling pathway. Our study demonstrates that miR-665 upregulation is associated with metastasis and poor survival in BC patients, and mechanistically, miR-665 enhances progression of BC via NR4A3/MEK signaling pathway. This study provides a new potential prognostic biomarker and therapeutic target for BC patients.
Collapse
Affiliation(s)
- Xin-Ge Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Jing-Ye Hu
- Department of Basic Medicine, Guiyang College of Traditional Chinese Medicine, Guiyang, 550002, China
| | - Jun Tang
- Department of Breast Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Wei Yi
- Department of Radiation Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510060, China
| | - Mei-Yin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Rong Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Shi-Juan Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Nuo-Qing Weng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Rui-Qi Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Ji Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Hui-Zhong Zhang
- Department of Breast Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Jie-Hua He
- Department of Breast Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
17
|
Meinsohn MC, Smith OE, Bertolin K, Murphy BD. The Orphan Nuclear Receptors Steroidogenic Factor-1 and Liver Receptor Homolog-1: Structure, Regulation, and Essential Roles in Mammalian Reproduction. Physiol Rev 2019; 99:1249-1279. [DOI: 10.1152/physrev.00019.2018] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nuclear receptors are intracellular proteins that act as transcription factors. Proteins with classic nuclear receptor domain structure lacking identified signaling ligands are designated orphan nuclear receptors. Two of these, steroidogenic factor-1 (NR5A1, also known as SF-1) and liver receptor homolog-1 (NR5A2, also known as LRH-1), bind to the same DNA sequences, with different and nonoverlapping effects on targets. Endogenous regulation of both is achieved predominantly by cofactor interactions. SF-1 is expressed primarily in steroidogenic tissues, LRH-1 in tissues of endodermal origin and the gonads. Both receptors modulate cholesterol homeostasis, steroidogenesis, tissue-specific cell proliferation, and stem cell pluripotency. LRH-1 is essential for development beyond gastrulation and SF-1 for genesis of the adrenal, sexual differentiation, and Leydig cell function. Ovary-specific depletion of SF-1 disrupts follicle development, while LRH-1 depletion prevents ovulation, cumulus expansion, and luteinization. Uterine depletion of LRH-1 compromises decidualization and pregnancy. In humans, SF-1 is present in endometriotic tissue, where it regulates estrogen synthesis. SF-1 is underexpressed in ovarian cancer cells and overexpressed in Leydig cell tumors. In breast cancer cells, proliferation, migration and invasion, and chemotherapy resistance are regulated by LRH-1. In conclusion, the NR5A orphan nuclear receptors are nonredundant factors that are crucial regulators of a panoply of biological processes, across multiple reproductive tissues.
Collapse
Affiliation(s)
- Marie-Charlotte Meinsohn
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Olivia E. Smith
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Kalyne Bertolin
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Bruce D. Murphy
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Québec, Canada
| |
Collapse
|
18
|
Heckler MM, Zeleke TZ, Divekar SD, Fernandez AI, Tiek DM, Woodrick J, Farzanegan A, Roy R, Üren A, Mueller SC, Riggins RB. Antimitotic activity of DY131 and the estrogen-related receptor beta 2 (ERRβ2) splice variant in breast cancer. Oncotarget 2018; 7:47201-47220. [PMID: 27363015 PMCID: PMC5216935 DOI: 10.18632/oncotarget.9719] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 05/19/2016] [Indexed: 01/09/2023] Open
Abstract
Breast cancer remains a leading cause of cancer-related death in women, and triple negative breast cancer (TNBC) lacks clinically actionable therapeutic targets. Death in mitosis is a tumor suppressive mechanism that occurs in cancer cells experiencing a defective M phase. The orphan estrogen-related receptor beta (ERRβ) is a key reprogramming factor in murine embryonic and induced pluripotent stem cells. In primates, ERRβ is alternatively spliced to produce several receptor isoforms. In cellular models of glioblastoma, short form (ERRβsf) and beta2 (ERRβ2) splice variants differentially regulate cell cycle progression in response to the synthetic agonist DY131, with ERRβ2 driving arrest in G2/M.The goals of the present study are to determine the cellular function(s) of ligand-activated ERRβ splice variants in breast cancer and evaluate the potential of DY131 to serve as an antimitotic agent, particularly in TNBC. DY131 inhibits growth in a diverse panel of breast cancer cell lines, causing cell death that involves the p38 stress kinase pathway and a bimodal cell cycle arrest. ERRβ2 facilitates the block in G2/M, and DY131 delays progression from prophase to anaphase. Finally, ERRβ2 localizes to centrosomes and DY131 causes mitotic spindle defects. Targeting ERRβ2 may therefore be a promising therapeutic strategy in breast cancer.
Collapse
Affiliation(s)
- Mary M Heckler
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Tizita Zewde Zeleke
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shailaja D Divekar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Aileen I Fernandez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Deanna M Tiek
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jordan Woodrick
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Alexander Farzanegan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Rabindra Roy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Aykut Üren
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Susette C Mueller
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Rebecca B Riggins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
19
|
Wang L, Zheng Y, Gao X, Liu Y, You X. Retinoid X receptor ligand regulates RXRα/Nur77-dependent apoptosis via modulating its nuclear export and mitochondrial targeting. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:10770-10780. [PMID: 31966420 PMCID: PMC6965856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 09/28/2017] [Indexed: 06/10/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder disease in elderly. It is characterized by the formation of amyloid plaques and nerve cells apoptosis in the brain. This study focuses on the association between nerve cells apoptosis and nuclear receptors within AD. Thus, we detected the changes of the expression and subcellular localization of RXRα/Nur77 and the apoptotic rate of neuroblastoma cells, SH-SY5Y cells and nerve cells in C57BL/6 mouse hippocampus in Alzheimer's disease pathologic condition, and investigated the effect of RXRα exporting inhibition caused by 9-cis-RA on the apoptosis of neurons. We demonstrated that Aβ peptide and H2O2 treatment could result in the translocation of RXRα and Nur77 from the nucleus to the mitochondria, and the ligand of RXR, 9-cis-RA, treatment can block the above phenomenon. More importantly, 9-cis-RA treatment could reduce the apoptotic rate of neurons caused by H2O2 or Aβ stimulation via enhancing the expression level of Bcl-2 protein. Therefore, our studies revealed a critical role of RXRα/Nur77 in 9-cis-RA-mediated anti-apoptosis in nerve cells and provided novel information for better management of AD.
Collapse
Affiliation(s)
- Li Wang
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, School of Basic Medical Sciences, Fujian Medical UniversityFuzhou 350122, Fujian, China
| | - Yansong Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Fujian Medical University350005 Fujian, China
| | - Xiaoxiao Gao
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, School of Basic Medical Sciences, Fujian Medical UniversityFuzhou 350122, Fujian, China
| | - Yingchun Liu
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, School of Basic Medical Sciences, Fujian Medical UniversityFuzhou 350122, Fujian, China
| | - Xiaoqing You
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, School of Basic Medical Sciences, Fujian Medical UniversityFuzhou 350122, Fujian, China
| |
Collapse
|
20
|
Loss of NR2E3 represses AHR by LSD1 reprogramming, is associated with poor prognosis in liver cancer. Sci Rep 2017; 7:10662. [PMID: 28878246 PMCID: PMC5587550 DOI: 10.1038/s41598-017-11106-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 08/18/2017] [Indexed: 11/15/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) plays crucial roles in inflammation, metabolic disorder, and cancer. However, the molecular mechanisms regulating AHR expression remain unknown. Here, we found that an orphan nuclear NR2E3 maintains AHR expression, and forms an active transcriptional complex with transcription factor Sp1 and coactivator GRIP1 in MCF-7 human breast and HepG2 liver cancer cell lines. NR2E3 loss promotes the recruitment of LSD1, a histone demethylase of histone 3 lysine 4 di-methylation (H3K4me2), to the AHR gene promoter region, resulting in repression of AHR expression. AHR expression and responsiveness along with H3K4me2 were significantly reduced in the livers of Nr2e3rd7 (Rd7) mice that express low NR2E3 relative to the livers of wild-type mice. SP2509, an LSD1 inhibitor, fully restored AHR expression and H3K4me2 levels in Rd7 mice. Lastly, we demonstrated that both AHR and NR2E3 are significantly associated with good clinical outcomes in liver cancer. Together, our results reveal a novel link between NR2E3, AHR, and liver cancer via LSD1-mediated H3K4me2 histone modification in liver cancer development.
Collapse
|
21
|
Identification and validation of a prognostic 9-genes expression signature for gastric cancer. Oncotarget 2017; 8:73826-73836. [PMID: 29088749 PMCID: PMC5650304 DOI: 10.18632/oncotarget.17764] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 04/11/2017] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer (GC) is a common malignant tumor with high incidence and mortality. Reasonable assessment of prognosis is essential to improve the outcomes of patients. In this study, we constructed and validated a prognostic gene model to evaluate the risks of GC patients. To identify the differentially expressed genes between GC patients and controls, we extracted Gene expression profiles of GC patients (N=432) from Gene Expression Omnibus database and then stable signature genes by using Robust likelihood-based modeling with 1000 iterations. Unsupervised hierarchical clustering of all samples was performed basing on the characteristics of gene expressions. Meanwhile, the differences between the clusters were analyzed by Kaplan Meier survival analysis. A 9-genes model was obtained (frequency = 999; p=1.333628e-18), including two negative impact factors (NR1I2 and LGALSL) and 7 positive ones (C1ORF198, CST2, LAMP5, FOXS1, CES1P1, MMP7 and COL8A1). This model was verified in single factor survival analysis (p=0.004447558) and significant analysis with recurrence time (p=0.001474831) by using independent datasets from TCGA. The constructed 9-genes model was stable and effective, which might serve as prognostic signature to predict the survival of GC patients and monitor the long-term treatment of GC.
Collapse
|
22
|
Wu J, Wan F, Sheng H, Shi G, Shen Y, Lin G, Dai B, Zhu Y, Ye D. NR1H3 Expression is a Prognostic Factor of Overall Survival for Patients with Muscle-Invasive Bladder Cancer. J Cancer 2017; 8:852-860. [PMID: 28382148 PMCID: PMC5381174 DOI: 10.7150/jca.17845] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 12/22/2016] [Indexed: 12/21/2022] Open
Abstract
Background: Nuclear receptors (NRs) are a class of transcription factors that regulate many cellular functions through manipulation of gene expression and also play important roles in tumorigenesis, proliferation, progression and prognosis in various kinds of cancers according to recent studies. This work aimed to determine the predictive ability of NRs in muscle-invasive bladder cancer (MIBC). Patients and methods: A total of 308 MIBC patients with complete clinicopathological and RNASeq data from The Cancer Genome Atlas (TCGA) cohort were collected for filtration. Genes showed clear correlations with overall survival (OS) and recurrence free survival (RFS) were further validated in 123 MIBC patients recruited consecutively from 2008 to 2012 in Fudan University Shanghai Cancer Center (FUSCC) cohort. Cox proportional hazards regression model and Kaplan-Meier plot were used to assess the relative factors. Results: In TCGA cohort, we found that high NR1H3 (HR=0.779, 95% CI: 0.634 - 0.957), NR2C1 (HR=0.673, 95% CI: 0.458 - 0.989) and NR2F6 (HR=0.750, 95% CI: 0.574 - 0.980) expressions were independent factors of favorable OS, while only low NR1H3 (log-rank test, P=0.0076) and NR2F6 (log-rank test, P=0.0395) expressions had the ability to predict poor prognosis for RFS. Further, in FUSCC validating cohort, we confirmed that low NR1H3 expression level was independent factor of poor OS (HR=1.295, 95% CI: 1.064 - 1.576) and it had the ability to predict poor RFS (log-rank test, P=0.0059). Conclusions: Low NR1H3 expression level is an independent prognostic factor of poor OS, and can also predict worse RFS in MIBC patients. Our “TCGA filtrating and local database validating” model can help reveal more prognostic biomarkers and cast a new light in understanding certain gene function in MIBC.
Collapse
Affiliation(s)
- Junlong Wu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China;; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fangning Wan
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China;; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haoyue Sheng
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China;; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guohai Shi
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China;; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yijun Shen
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China;; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guowen Lin
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China;; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China;; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yiping Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China;; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China;; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Divekar SD, Tiek DM, Fernandez A, Riggins RB. Estrogen-related receptor β (ERRβ) - renaissance receptor or receptor renaissance? NUCLEAR RECEPTOR SIGNALING 2016; 14:e002. [PMID: 27507929 PMCID: PMC4978380 DOI: 10.1621/nrs.14002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/25/2016] [Indexed: 01/11/2023]
Abstract
Estrogen-related receptors (ERRs) are founding members of the orphan nuclear receptor (ONR) subgroup of the nuclear receptor superfamily. Twenty-seven years of study have yet to identify cognate ligands for the ERRs, though they have firmly placed ERRα and ERRγ at the intersection of cellular metabolism and oncogenesis. The pace of discovery for novel functions of ERRβ, however, has until recently been somewhat slower than that of its family members. ERRβ has also been largely ignored in summaries and perspectives of the ONR literature. Here, we provide an overview of established and emerging knowledge of ERRβ in mouse, man, and other species, highlighting unique aspects of ERRβ biology that set it apart from the other two estrogen-related receptors, with a focus on the impact of alternative splicing on the structure and function of this receptor.
Collapse
Affiliation(s)
- Shailaja D Divekar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC (SDD, DMT, AF, RBR)
| | - Deanna M Tiek
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC (SDD, DMT, AF, RBR)
| | - Aileen Fernandez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC (SDD, DMT, AF, RBR)
| | - Rebecca B Riggins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC (SDD, DMT, AF, RBR)
| |
Collapse
|