1
|
Similie D, Minda D, Bora L, Kroškins V, Lugiņina J, Turks M, Dehelean CA, Danciu C. An Update on Pentacyclic Triterpenoids Ursolic and Oleanolic Acids and Related Derivatives as Anticancer Candidates. Antioxidants (Basel) 2024; 13:952. [PMID: 39199198 PMCID: PMC11351203 DOI: 10.3390/antiox13080952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 09/01/2024] Open
Abstract
Cancer is a global health problem, with the incidence rate estimated to reach 40% of the population by 2030. Although there are currently several therapeutic methods, none of them guarantee complete healing. Plant-derived natural products show high therapeutic potential in the management of various types of cancer, with some of them already being used in current practice. Among different classes of phytocompounds, pentacyclic triterpenoids have been in the spotlight of research on this topic. Ursolic acid (UA) and its structural isomer, oleanolic acid (OA), represent compounds intensively studied and tested in vitro and in vivo for their anticancer and chemopreventive properties. Since natural compounds can rarely be used in practice as such due to their characteristic physico-chemical properties, to tackle this problem, their derivatization has been attempted, obtaining compounds with improved solubility, absorption, stability, effectiveness, and reduced toxicity. This review presents various UA and OA derivatives that have been synthesized and evaluated in recent studies for their anticancer potential. It can be observed that the most frequent structural transformations were carried out at the C-3, C-28, or both positions simultaneously. It has been demonstrated that conjugation with heterocycles or cinnamic acid, derivatization as hydrazide, or transforming OH groups into esters or amides increases anticancer efficacy.
Collapse
Affiliation(s)
- Diana Similie
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Daliana Minda
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Larisa Bora
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Vladislavs Kroškins
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Paula Valdena Str. 3, LV-1048 Riga, Latvia; (V.K.); (J.L.); (M.T.)
| | - Jevgeņija Lugiņina
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Paula Valdena Str. 3, LV-1048 Riga, Latvia; (V.K.); (J.L.); (M.T.)
| | - Māris Turks
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Paula Valdena Str. 3, LV-1048 Riga, Latvia; (V.K.); (J.L.); (M.T.)
| | - Cristina Adriana Dehelean
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| |
Collapse
|
2
|
Chauhan A, Pathak VM, Yadav M, Chauhan R, Babu N, Chowdhary M, Ranjan A, Mathkor DM, Haque S, Tuli HS, Ramniwas S, Yadav V. Role of ursolic acid in preventing gastrointestinal cancer: recent trends and future perspectives. Front Pharmacol 2024; 15:1405497. [PMID: 39114347 PMCID: PMC11303223 DOI: 10.3389/fphar.2024.1405497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/03/2024] [Indexed: 08/10/2024] Open
Abstract
Gastrointestinal malignancies are one of the major worldwide health concerns. In the present review, we have assessed the plausible therapeutic implication of Ursolic Acid (UA) against gastrointestinal cancer. By modulating several signaling pathways critical in cancer development, UA could offer anti-inflammatory, anti-proliferative, and anti-metastatic properties. However, being of low oral bioavailability and poor permeability, its clinical value is restricted. To deliver and protect the drug, liposomes and polymer micelles are two UA nanoformulations that can effectively increase medicine stability. The use of UA for treating cancers is safe and appropriate with low toxicity characteristics and a predictable pharmacokinetic profile. Although the bioavailability of UA is limited, its nanoformulations could emerge as an alternative to enhance its efficacy in treating GI cancers. Further optimization and validation in the clinical trials are necessary. The combination of molecular profiling with nanoparticle-based drug delivery technologies holds the potential for bringing UA to maximum efficacy, looking for good prospects with GI cancer treatment.
Collapse
Affiliation(s)
- Abhishek Chauhan
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, Uttar Pradesh, India
| | | | - Monika Yadav
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ritu Chauhan
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Neelesh Babu
- Department of Microbiology, Baba Farid Institute of Technology, Dehradun, Uttarakhand, India
| | - Manish Chowdhary
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Ambala, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Mohali, India
| | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
3
|
Sofi FA, Tabassum N. Natural product inspired leads in the discovery of anticancer agents: an update. J Biomol Struct Dyn 2023; 41:8605-8628. [PMID: 36255181 DOI: 10.1080/07391102.2022.2134212] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/03/2022] [Indexed: 10/24/2022]
Abstract
Natural products have emerged as major leads for the discovery and development of new anti-cancer drugs. The plant-derived anti-cancer drugs account for approximately 60% and the quest for new anti-cancer agents is in progress. Anti-cancer leads have been isolated from plants, animals, marine organisms, and microorganisms from time immemorial. The process of semisynthetic modifications of the parent lead has led to the generation of new anti-cancer agents with improved therapeutic efficacy and minimal side effects. The various chemo-informatics tools, bioinformatics, high-throughput screening, and combinatorial synthesis are able to deliver the new natural product lead molecules. Plant-derived anticancer agents in either late preclinical development or early clinical trials include taxol, vincristine, vinblastine, topotecan, irinotecan, etoposide, paclitaxel, and docetaxel. Similarly, anti-cancer agents from microbial sources include dactinomycin, bleomycin, mitomycin C, and doxorubicin. In this review, we highlighted the importance of natural products leads in the discovery and development of novel anti-cancer agents. The semisynthetic modifications of the parent lead to the new anti-cancer agent are also presented. Further, the leads in the preclinical settings with the potential to become effective anticancer agents are also reviewed.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Firdoos Ahmad Sofi
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Nahida Tabassum
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar, Jammu & Kashmir, India
| |
Collapse
|
4
|
Sandhu SS, Rouz SK, Kumar S, Swamy N, Deshmukh L, Hussain A, Haque S, Tuli HS. Ursolic acid: a pentacyclic triterpenoid that exhibits anticancer therapeutic potential by modulating multiple oncogenic targets. Biotechnol Genet Eng Rev 2023:1-31. [PMID: 36600517 DOI: 10.1080/02648725.2022.2162257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023]
Abstract
The world is currently facing a global challenge against neoplastic diseases. Chemotherapy, hormonal therapy, surgery, and radiation therapy are some approaches used to treat cancer. However, these treatments are frequently causing side effects in patients, such as multidrug resistance, fever, weakness, and allergy, among others side effects. As a result, current research has focused on phytochemical compounds isolated from plants to treat deadly cancers. Plants are excellent resources of bioactive molecules, and many natural molecules have exceptional anticancer properties. They produce diverse anticancer derivatives such as alkaloids, terpenoids, flavonoids, pigments, and tannins, which have powerful anticancer activities against various cancer cell lines and animal models. Because of their safety, eco-friendly, and cost-effective nature, research communities have recently focused on various phytochemical bioactive molecules. Ursolic acid (UA) and its derivative compounds have anti-inflammatory, anticancer, apoptosis induction, anti-carcinogenic, and anti-breast cancer proliferation properties. Ursolic acid (UA) can improve the clinical management of human cancer because it inhibits cancer cell viability and proliferation, preventing tumour angiogenesis and metastatic activity. Therefore, the present article focuses on numerous bioactivities of Ursolic acid (UA), which can inhibit cancer cell production, mechanism of action, and modulation of anticancer properties via regulating various cellular processes.
Collapse
Affiliation(s)
| | - Sharareh Khorami Rouz
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Suneel Kumar
- Bio-Design Innovation Centre, Rani Durgavati University, Jabalpur, India
| | - Nitin Swamy
- Fungal Biotechnology and Invertebrate Pathology Laboratory Department of Biological Sciences, Rani Durgavati University, Jabalpur, India
| | - Loknath Deshmukh
- School of Life and Allied Science, ITM University, Raipur, India
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Arabia and Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| |
Collapse
|
5
|
Fan L, Wang X, Cheng C, Wang S, Li X, Cui J, Zhang B, Shi L. Inhibitory Effect and Mechanism of Ursolic Acid on Cisplatin-Induced Resistance and Stemness in Human Lung Cancer A549 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:1307323. [PMID: 37089712 PMCID: PMC10121351 DOI: 10.1155/2023/1307323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 02/21/2023] [Accepted: 03/17/2023] [Indexed: 04/25/2023]
Abstract
The survival rate of lung cancer patients remains low largely due to chemotherapy resistance during treatment, and cancer stem cells (CSCs) may hold the key to targeting this resistance. Cisplatin is a chemotherapy drug commonly used in cancer treatment, yet the mechanisms of intrinsic cisplatin resistance have not yet been determined because lung CSCs are hard to identify. In this paper, we proposed a mechanism relating to the function of ursolic acid (UA), a new drug, in reversing the cisplatin resistance of lung cancer cells regulated by CSCs. Human lung cancer cell line A549 was selected as the model cell and treated to become a cisplatin-resistant lung cancer cell line (A549-CisR), which was less sensitive to cisplatin and showed an enhanced capability of tumor sphere formation. Furthermore, in the A549-CisR cell line expression, levels of pluripotent stem cell transcription factors Oct-4, Sox-2, and c-Myc were increased, and activation of the Jak2/Stat3 signaling pathway was promoted. When UA was applied to the cisplatin-resistant cells, levels of the pluripotent stem cell transcription factors were restrained by the inhibition of the Jak2/Stat3 signaling pathway, which reduced the enrichment of tumor stem cells, and in turn, reversed cisplatin resistance in lung cancer cells. Hence, as a potential antitumor drug, UA may be able to inhibit the enrichment of the lung CSC population by inhibiting the activation of the Jak2-Stat3 pathway and preventing the resistance of lung cancer cells to cisplatin.
Collapse
Affiliation(s)
- Luxin Fan
- Department of Respiratory, Weifang People's Hospital, Weifang 261041, China
| | - Xiaodong Wang
- Microbiological Laboratory, Weifang Inspection and Testing Center, Weifang 261100, China
| | - Congcong Cheng
- Department of Oncology, Yidu Central Hospital of Weifang, Qingzhou 262500, China
| | - Shuxiao Wang
- Intravenous Drug Dispensing Center, Second Hospital of Shandong University, Jinan 250033, China
| | - Xuesong Li
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Jiayu Cui
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Baogang Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Lihong Shi
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
6
|
Ursolic Acid Analogs as Potential Therapeutics for Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248981. [PMID: 36558113 PMCID: PMC9785537 DOI: 10.3390/molecules27248981] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Ursolic acid (UA) is a pentacyclic triterpene isolated from a large variety of vegetables, fruits and many traditional medicinal plants. It is a structural isomer of Oleanolic Acid. The medicinal application of UA has been explored extensively over the last two decades. The diverse pharmacological properties of UA include anti-inflammatory, antimicrobial, antiviral, antioxidant, anti-proliferative, etc. Especially, UA holds a promising position, potentially, as a cancer preventive and therapeutic agent due to its relatively non-toxic properties against normal cells but its antioxidant and antiproliferative activities against cancer cells. Cell culture studies have shown interference of UA with multiple pharmacological and molecular targets that play a critical role in many cells signaling pathways. Although UA is considered a privileged natural product, its clinical applications are limited due to its low absorption through the gastro-intestinal track and rapid elimination. The low bioavailability of UA limits its use as a therapeutic drug. To overcome these drawbacks and utilize the importance of the scaffold, many researchers have been engaged in designing and developing synthetic analogs of UA via structural modifications. This present review summarizes the synthetic UA analogs and their cytotoxic antiproliferative properties reported in the last two decades.
Collapse
|
7
|
Piet M, Paduch R. Ursolic and oleanolic acids in combination therapy inhibit migration of colon cancer cells through down-regulation of the uPA/uPAR-dependent MMPs pathway. Chem Biol Interact 2022; 368:110202. [PMID: 36191607 DOI: 10.1016/j.cbi.2022.110202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Colorectal cancer is one the most lethal cancers worldwide. Since chemotherapy is burdened with harmful effects, agents capable of enhancing the chemotherapeutic effect are being sought. Ursolic acid (UA) and oleanolic acid (OA) were analyzed for such properties. The aim of the study was to evaluate the ability of UA and OA administered individually and in combination with each other and/or a cytostatic drug camptothecin-11 (CPT-11) to limit the viability and migration of colorectal cancer cells. MATERIALS AND METHODS The cytotoxic effect of UA, OA and CPT-11 and impact on normal and cancer cell migration rate were assessed. Furthermore, the effect on factors crucial in cancer metastasis: MMP-2 and -9, uPA/uPAR, and E-cadherin were assessed with ELISA, Western Blotting and immunofluorescence assays. Statistical analysis was performed with One-Way Anova with Dunnett's test. RESULTS The studied compounds exhibited the most favorable properties, i.e. they reduced the viability and migration of cancer cells. Furthermore, the secretion, activity, and cellular level of cancer MMP-2 and -9 were decreased, as a result of uPA/uPAR down-regulation. The agents also increased the level of cellular E-cadherin. The effect of the studied agents on normal cells was milder. CONCLUSIONS The compounds exhibited stronger activity when administered in combination and, combined with CPT-11, enhanced anti-tumorigenic activity of the drug. The migration-limiting activity was based on down-regulation of the uPA/uPAR-dependent MMP pathway. Moreover, UA and OA exhibited a protective effect towards normal cells.
Collapse
Affiliation(s)
- Mateusz Piet
- Department of Virology and Immunology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Roman Paduch
- Department of Virology and Immunology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland; Department of General Ophthalmology, Faculty of Medicine, Medical University of Lublin, ul Chmielna 1, 20-079, Lublin, Poland.
| |
Collapse
|
8
|
Markowski A, Jaromin A, Migdał P, Olczak E, Zygmunt A, Zaremba-Czogalla M, Pawlik K, Gubernator J. Design and Development of a New Type of Hybrid PLGA/Lipid Nanoparticle as an Ursolic Acid Delivery System against Pancreatic Ductal Adenocarcinoma Cells. Int J Mol Sci 2022; 23:5536. [PMID: 35628352 PMCID: PMC9143619 DOI: 10.3390/ijms23105536] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
Despite many attempts, trials, and treatment procedures, pancreatic ductal adenocarcinoma (PDAC) still ranks among the most deadly and treatment-resistant types of cancer. Hence, there is still an urgent need to develop new molecules, drugs, and therapeutic methods against PDAC. Naturally derived compounds, such as pentacyclic terpenoids, have gained attention because of their high cytotoxic activity toward pancreatic cancer cells. Ursolic acid (UA), as an example, possesses a wide anticancer activity spectrum and can potentially be a good candidate for anti-PDAC therapy. However, due to its minimal water solubility, it is necessary to prepare an optimal nano-sized vehicle to overcome the low bioavailability issue. Poly(lactic-co-glycolic acid) (PLGA) polymeric nanocarriers seem to be an essential tool for ursolic acid delivery and can overcome the lack of biological activity observed after being incorporated within liposomes. PLGA modification, with the addition of PEGylated phospholipids forming the lipid shell around the polymeric core, can provide additional beneficial properties to the designed nanocarrier. We prepared UA-loaded hybrid PLGA/lipid nanoparticles using a nanoprecipitation method and subsequently performed an MTT cytotoxicity assay for AsPC-1 and BxPC-3 cells and determined the hemolytic effect on human erythrocytes with transmission electron microscopic (TEM) visualization of the nanoparticles and their cellular uptake. Hybrid UA-loaded lipid nanoparticles were also examined in terms of their stability, coating dynamics, and ursolic acid loading. We established innovative and repeatable preparation procedures for novel hybrid nanoparticles and obtained biologically active nanocarriers for ursolic acid with an IC50 below 20 µM, with an appropriate size for intravenous dosage (around 150 nm), high homogeneity of the sample (below 0.2), satisfactory encapsulation efficiency (up to 70%) and excellent stability. The new type of hybrid UA-PLGA nanoparticles represents a further step in the development of potentially effective PDAC therapies based on novel, biologically active, and promising triterpenoids.
Collapse
Affiliation(s)
- Adam Markowski
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland; (A.J.); (E.O.); (A.Z.); (M.Z.-C.)
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland; (A.J.); (E.O.); (A.Z.); (M.Z.-C.)
| | - Paweł Migdał
- Polish Academy of Science Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wrocław, Poland; (P.M.); (K.P.)
- Department of Environment Hygiene and Animal Welfare, Bee Division, Wroclaw University of Environmental and Life Sciences, Chelmońskiego 38C, 51-630 Wrocław, Poland
| | - Ewa Olczak
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland; (A.J.); (E.O.); (A.Z.); (M.Z.-C.)
| | - Adrianna Zygmunt
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland; (A.J.); (E.O.); (A.Z.); (M.Z.-C.)
| | - Magdalena Zaremba-Czogalla
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland; (A.J.); (E.O.); (A.Z.); (M.Z.-C.)
| | - Krzysztof Pawlik
- Polish Academy of Science Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wrocław, Poland; (P.M.); (K.P.)
| | - Jerzy Gubernator
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland; (A.J.); (E.O.); (A.Z.); (M.Z.-C.)
| |
Collapse
|
9
|
Role of Plant-Derived Active Constituents in Cancer Treatment and Their Mechanisms of Action. Cells 2022; 11:cells11081326. [PMID: 35456005 PMCID: PMC9031068 DOI: 10.3390/cells11081326] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023] Open
Abstract
Despite significant technological advancements in conventional therapies, cancer remains one of the main causes of death worldwide. Although substantial progress has been made in the control and treatment of cancer, several limitations still exist, and there is scope for further advancements. Several adverse effects are associated with modern chemotherapy that hinder cancer treatment and lead to other critical disorders. Since ancient times, plant-based medicines have been employed in clinical practice and have yielded good results with few side effects. The modern research system and advanced screening techniques for plants’ bioactive constituents have enabled phytochemical discovery for the prevention and treatment of challenging diseases such as cancer. Phytochemicals such as vincristine, vinblastine, paclitaxel, curcumin, colchicine, and lycopene have shown promising anticancer effects. Discovery of more plant-derived bioactive compounds should be encouraged via the exploitation of advanced and innovative research techniques, to prevent and treat advanced-stage cancers without causing significant adverse effects. This review highlights numerous plant-derived bioactive molecules that have shown potential as anticancer agents and their probable mechanisms of action and provides an overview of in vitro, in vivo and clinical trial studies on anticancer phytochemicals.
Collapse
|
10
|
Fakhri S, Moradi SZ, Yarmohammadi A, Narimani F, Wallace CE, Bishayee A. Modulation of TLR/NF-κB/NLRP Signaling by Bioactive Phytocompounds: A Promising Strategy to Augment Cancer Chemotherapy and Immunotherapy. Front Oncol 2022; 12:834072. [PMID: 35299751 PMCID: PMC8921560 DOI: 10.3389/fonc.2022.834072] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Background Tumors often progress to a more aggressive phenotype to resist drugs. Multiple dysregulated pathways are behind this tumor behavior which is known as cancer chemoresistance. Thus, there is an emerging need to discover pivotal signaling pathways involved in the resistance to chemotherapeutic agents and cancer immunotherapy. Reports indicate the critical role of the toll-like receptor (TLR)/nuclear factor-κB (NF-κB)/Nod-like receptor pyrin domain-containing (NLRP) pathway in cancer initiation, progression, and development. Therefore, targeting TLR/NF-κB/NLRP signaling is a promising strategy to augment cancer chemotherapy and immunotherapy and to combat chemoresistance. Considering the potential of phytochemicals in the regulation of multiple dysregulated pathways during cancer initiation, promotion, and progression, such compounds could be suitable candidates against cancer chemoresistance. Objectives This is the first comprehensive and systematic review regarding the role of phytochemicals in the mitigation of chemoresistance by regulating the TLR/NF-κB/NLRP signaling pathway in chemotherapy and immunotherapy. Methods A comprehensive and systematic review was designed based on Web of Science, PubMed, Scopus, and Cochrane electronic databases. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed to include papers on TLR/NF-κB/NLRP and chemotherapy/immunotherapy/chemoresistance by phytochemicals. Results Phytochemicals are promising multi-targeting candidates against the TLR/NF-κB/NLRP signaling pathway and interconnected mediators. Employing phenolic compounds, alkaloids, terpenoids, and sulfur compounds could be a promising strategy for managing cancer chemoresistance through the modulation of the TLR/NF-κB/NLRP signaling pathway. Novel delivery systems of phytochemicals in cancer chemotherapy/immunotherapy are also highlighted. Conclusion Targeting TLR/NF-κB/NLRP signaling with bioactive phytocompounds reverses chemoresistance and improves the outcome for chemotherapy and immunotherapy in both preclinical and clinical stages.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Akram Yarmohammadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Narimani
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Carly E. Wallace
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| |
Collapse
|
11
|
Antiangiogenic Phytochemicals Constituent of Diet as Promising Candidates for Chemoprevention of Cancer. Antioxidants (Basel) 2022; 11:antiox11020302. [PMID: 35204185 PMCID: PMC8868078 DOI: 10.3390/antiox11020302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 12/04/2022] Open
Abstract
Despite the extensive knowledge on cancer nature acquired over the last years, the high incidence of this disease evidences a need for new approaches that complement the clinical intervention of tumors. Interestingly, many types of cancer are closely related to dietary habits associated with the Western lifestyle, such as low fruit and vegetable intake. Recent advances around the old-conceived term of chemoprevention highlight the important role of phytochemicals as good candidates for the prevention or treatment of cancer. The potential to inhibit angiogenesis exhibited by many natural compounds constituent of plant foods makes them especially interesting for their use as chemopreventive agents. Here, we review the antitumoral potential, with a focus on the antiangiogenic effects, of phenolic and polyphenolic compounds, such as quercetin or myricetin; terpenoids, such as ursolic acid or kahweol; and anthraquinones from Aloe vera, in different in vitro and in vivo assays, and the available clinical data. Although clinical trials have failed to assess the preventive role of many of these compounds, encouraging preclinical data support the efficacy of phytochemicals constituent of diet in the prevention and treatment of cancer, but a deeper understanding of their mechanisms of action and better designed clinical trials are urgently needed.
Collapse
|
12
|
Wang N, Wang E, Wang R, Muhammad F, Li T, Yue J, Zhou Y, Zhi D, Li H. Ursolic acid ameliorates amyloid β-induced pathological symptoms in Caenorhabditis elegans by activating the proteasome. Neurotoxicology 2022; 88:231-240. [PMID: 34902447 DOI: 10.1016/j.neuro.2021.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/07/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Amyloid β induces pathological symptoms in various neurodegenerative disorders. It is the hallmark of these neurodegenerative disorders, such as Alzheimer's disease, and is reported to induce neurotoxicity leading to neuronal impairment. The continuous development of neurodegenerative disease accompanies pathological changes in amyloid β deposition in the brain. After amyloid β accumulates, the inadequate clearance of amyloid β further accelerates the development of events in the pathological cascade. In eukaryotes, the proteasome is responsible for the degradation of misfolded and damaged proteins to maintain proteostasis. Therefore, screening candidates that preserve proteasomal activity may promote amyloid β homeostasis, which is expected to provide new therapeutic opportunities for these neurodegenerative diseases. Ursolic acid, a natural triterpenoid, has prominent pharmacological antioxidant, anti-inflammatory, neuroprotective, and nontoxic activities. Here, we explored the protective effects of ursolic acid on amyloid β-induced pathological symptoms. METHODS This study investigated the therapeutic potential of ursolic acid and its underlying molecular mechanisms using a Caenorhabditis elegans transgenic pathological model. RESULTS In our study, ursolic acid successfully repressed amyloid β-induced paralysis and hypersensitivity to serotonin in Caenorhabditis elegans. The levels of amyloid β monomers, oligomers, and deposits were decreased after treatment with ursolic acid in transgenic nematodes overexpressing human amyloid β; however, ursolic acid did not affect exogenous transgene transcription and expression levels. Ursolic acid transcriptionally enhanced the ubiquitin-proteasome system and augmented proteasome activity in vivo. However, the proteasome inhibitor MG132 abolished the therapeutic effect of ursolic acid on behavioral paralysis, and Parkinson's disease-related-1 was required for the therapeutic effect of ursolic acid. CONCLUSIONS Our study revealed that ursolic acid prevented amyloid β-induced proteotoxic stress, specifically by reducing the amount of amyloid β and increasing proteasome activity in vivo. Furthermore, the therapeutic effect of ursolic acid on transgenic nematodes expressing amyloid β depended on the increased activity of the proteasome. This work provides an essential supplement to the information on the pharmacological mechanism of ursolic acid.
Collapse
Affiliation(s)
- Ningbo Wang
- School of Life Sciences, Lanzhou University, China
| | - Enhui Wang
- School of Life Sciences, Lanzhou University, China
| | - Ruyue Wang
- School of Life Sciences, Lanzhou University, China
| | | | - Ting Li
- School of Life Sciences, Lanzhou University, China
| | - Juan Yue
- School of Pharmacy, Lanzhou University, China
| | - Yongtao Zhou
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Clinical Center for Parkinson's Disease, Capital Medical University, Beijing, China
| | - Dejuan Zhi
- School of Pharmacy, Lanzhou University, China.
| | - Hongyu Li
- School of Life Sciences, Lanzhou University, China; School of Pharmacy, Lanzhou University, China.
| |
Collapse
|
13
|
Luan M, Wang H, Wang J, Zhang X, Zhao F, Liu Z, Meng Q. Advances in Anti-inflammatory Activity, Mechanism and Therapeutic Application of Ursolic Acid. Mini Rev Med Chem 2022; 22:422-436. [PMID: 34517797 DOI: 10.2174/1389557521666210913113522] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 06/08/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
In vivo and in vitro studies reveal that Ursolic Acid (UA) is able to counteract endogenous and exogenous inflammatory stimuli and has favorable anti-inflammatory effects. The antiinflammatory mechanisms mainly include decreasing the release of histamine in mast cells, suppressing the activities of lipoxygenase, cyclooxygenase and phospholipase, and reducing the production of nitric oxide and reactive oxygen species, blocking the activation of the signal pathway, downregulating the expression of inflammatory factors, and inhibiting the activities of elastase and complement. These mechanisms can open up new avenues for the scientific community to develop or improve novel therapeutic approaches to tackle inflammatory diseases, such as arthritis, atherosclerosis, neuroinflammation, liver diseases, kidney diseases, diabetes, dermatitis, bowel diseases, cancer. The anti-inflammatory activity, the anti-inflammatory mechanism of ursolic acid and its therapeutic applications are reviewed in this paper.
Collapse
Affiliation(s)
- Mingzhu Luan
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| | - Huiyun Wang
- College of Pharmacy, Jining Medical University, Shandong Province, 276826, P.R. China
| | - Jiazhen Wang
- The Second Hospital of Anhui Medical University, Anhui Province, 230601, P.R. China
| | - Xiaofan Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| | - Fenglan Zhao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| | - Zongliang Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| | - Qingguo Meng
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| |
Collapse
|
14
|
Evaluation of the In Vitro Cytotoxic Activity of Ursolic Acid PLGA Nanoparticles against Pancreatic Ductal Adenocarcinoma Cell Lines. MATERIALS 2021; 14:ma14174917. [PMID: 34501007 PMCID: PMC8434451 DOI: 10.3390/ma14174917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022]
Abstract
Among all the types of cancer, Pancreatic Ductal Adenocarcinoma remains one of the deadliest and hardest to fight and there is a critical unmet need for new drugs and therapies for its treatment. Naturally derived compounds, such as pentacyclic triterpenoids, have gathered attention because of their high cytotoxic potential towards pancreatic cancer cells, with a wide biological activity spectrum, with ursolic acid (UA) being one of the most interesting. However, due to its minimal water solubility, it is necessary to prepare a nanocarrier vehicle to aid in the delivery of this compound. Poly(lactic-co-glycolic acid) or PLGA polymeric nanocarriers are an essential tool for ursolic acid delivery and can overcome the lack in its biological activity observed after incorporating within liposomes. We prepared UA-PLGA nanoparticles with a PEG modification, to achieve a long circulation time, by using a nanoprecipitation method and subsequently performed an MTT cytotoxicity assay towards AsPC-1 and BxPC-3 cells, with TEM visualization of the nanoparticles and their cellular uptake. We established repeatable preparation procedures of the nanoparticles and achieved biologically active nanocarriers with an IC50 below 30 µM, with an appropriate size for intravenous dosage (around 140 nm), high sample homogeneity (below 0.2) and reasonable encapsulation efficiency (up to 50%). These results represent the first steps in the development of potentially effective PDAC therapies based on novel biologically active and promising triterpenoids.
Collapse
|
15
|
Challenges for Better Diagnosis and Management of Pancreatic and Biliary Tract Cancers Focusing on Blood Biomarkers: A Systematic Review. Cancers (Basel) 2021; 13:cancers13164220. [PMID: 34439378 PMCID: PMC8394661 DOI: 10.3390/cancers13164220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Pancreatic and biliary tract cancers are malignant tumors that have a very poor prognosis and are resistant to chemotherapy. The later a cancer is detected, the worse the prognosis becomes; therefore, early detection is important. Biomarkers are physiological indices that serve as a guide to indicate the presence or absence of a certain disease, or its progression. The purpose of our research is to summarize previously reported biomarkers for the diagnosis and prognosis of pancreatic and biliary tract cancers. Abstract Background: pancreatic cancer (PCa) and biliary tract cancer (BTC) are cancers with a poor prognosis and few effective treatments. One of the reasons for this is late detection. Many researchers are tackling to develop non-invasive biomarkers for cancer, but few are specific for PCa or BTC. In addition, genetic abnormalities occur in cancer tissues, which ultimately affect the expression of various molecules. Therefore, it is important to identify molecules that are altered in PCa and BTC. For this systematic review, a systematic review of Medline and Embase to select biomarker studies of PCa and BTC patients was conducted. Results: after reviewing 72 studies, 79 biomarker candidates were identified, including 22 nucleic acids, 43 proteins, and 14 immune cell types. Of the 72 studies, 61 examined PCa, and 11 examined BTC. Conclusion: PCa and BTC are characterized by nucleic acid, protein, and immune cell profiles that are markedly different from those of healthy subjects. These altered molecules and cell subsets may serve as cancer-specific biomarkers, particularly in blood. Further studies are needed to better understand the diagnosis and prognosis of PCa and BTC.
Collapse
|
16
|
Li ZY, Chen SY, Weng MH, Yen GC. Ursolic acid restores sensitivity to gemcitabine through the RAGE/NF-κB/MDR1 axis in pancreatic cancer cells and in a mouse xenograft model. J Food Drug Anal 2021; 29:262-274. [PMID: 35696208 PMCID: PMC9261828 DOI: 10.38212/2224-6614.3346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/16/2021] [Indexed: 12/02/2022] Open
Abstract
Gemcitabine (GEM) is a first-line drug for pancreatic cancer therapy, but GEM resistance is easily developed in patients. Growing evidence suggests that cancer chemoprevention and suppression are highly associated with dietary phytochemical and microbiota composition. Ursolic acid (UA) has anti-inflammatory and anticancer effects; however, its role in improving cancer drug resistance in vivo remains unclear. In this study, the aim was to explore the role of UA in managing drug resistance-associated molecular mechanisms and the influence of gut microbiota. The in vitro results showed that receptor for advanced glycation end products (RAGE), nuclear factor kappa B p65 (NF-κB/p65), and multidrug resistance protein 1 (MDR1) protein levels were significantly increased in GEM-resistant pancreatic cancer cells (named MIA PaCa-2 GEMR) compared to MIA PaCa-2 cells. Downregulation of RAGE, pP65, and MDR1 protein expression not only was observed following UA treatment but also was seen in MIA PaCa-2 GEMR cells after transfection with a RAGE siRNA. Remarkably, the enhanced effects of UA coupled with GEM administration dramatically suppressed the RAGE/NF-κB/MDR1 cascade and consequently inhibited subcutaneous tumor growth. Moreover, UA could increase alpha diversity and regulate the composition of gut microbiota, especially in Ruminiclostridium 6. Taken together, these results provide the first direct evidence of MDR1 attenuation and chemosensitivity enhancement through inhibition of the RAGE/NF-κB signaling pathway in vitro and in vivo, implying that UA may be used as an adjuvant for the treatment of pancreatic cancer in the future.
Collapse
Affiliation(s)
| | | | - Ming-Hong Weng
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung, 40227,
Taiwan
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung, 40227,
Taiwan
| |
Collapse
|
17
|
Li W, Luo L, Shi W, Yin Y, Gao S. Ursolic acid reduces Adriamycin resistance of human ovarian cancer cells through promoting the HuR translocation from cytoplasm to nucleus. ENVIRONMENTAL TOXICOLOGY 2021; 36:267-275. [PMID: 33009882 DOI: 10.1002/tox.23032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Ursolic acid (UA) has been shown to suppress various tumor progression, however, its roles in Adriamycin resistance of human ovarian cancer (OC) cells are still unclear. This work aims to investigate the effects of UA on the Adriamycin resistance of human OC cells. Here, we constructed Adriamycin-resistant OC SKOV3-Adr cells and found that UA attenuated Adriamycin resistance in SKOV3-Adr cells. Additionally, UA enhanced Adriamycin sensitivity in the parental SKOV3 and another OC cell line A2780 cells. Mechanistic studies showed that HuR mRNA level was similar between SKOV3 and SKOV3-Adr cells, but the cytoplasmic expression of HuR protein was increased in SKOV3-Adr cells compared with that in SKOV3 cells, and subsequently enhancing the mRNA stability of multidrug resistance gene 1 (MDR1). Moreover, UA had no effects on HuR expression, but promoted the cytoplasm-nucleus translocation of HuR protein, decreased MDR1 mRNA stability and thus reduced MDR1 expression. Furthermore, overexpression of MDR1 rescued the effects of UA on Adriamycin resistance and sensitivity. This work reveals a novel HuR/MDR1 axis responsible for UA-mediated attenuation on Adriamycin resistance in OC cells.
Collapse
Affiliation(s)
- Wei Li
- Department of Gynaecology, The Forth Hospital Affiliated to Jiangsu University, Zhenjiang, China
| | - Lanlan Luo
- Department of Obstetrics and Gynecology, Jiangsu Taizhou People's Hospital, Taizhou, China
| | - Wenyin Shi
- Department of Gynaecology, the Fourth People's Hospital Affiliated to Jiangsu University, 20 Zhengdong Road, Zhenjiang, 212001, China
| | - Yujun Yin
- Department of Obstetrics and Gynecology, Dantu District People's Hospital of Zhenjiang, Zhenjiang, China
| | - Shan Gao
- Department of Obstetrics and Gynecology, Second Provincial People's Hospital of Gansu, the Affiliated Hospital of Northwest Minzu University, Lanzhou, China
| |
Collapse
|
18
|
Ladurner A, Schwarz PF, Dirsch VM. Natural products as modulators of retinoic acid receptor-related orphan receptors (RORs). Nat Prod Rep 2021; 38:757-781. [PMID: 33118578 DOI: 10.1039/d0np00047g] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: 1994 to 2020 Retinoic acid receptor-related orphan receptors (RORs) belong to a subfamily of the nuclear receptor superfamily and possess prominent roles in circadian rhythm, metabolism, inflammation, and cancer. They have been subject of research for over two decades and represent attractive but challenging drug targets. Natural products were among the first identified ligands of RORs and continue to be of interest to this day. This review focuses on ligands and indirect modulators of RORs from natural sources and explores their roles in a therapeutic context.
Collapse
Affiliation(s)
- Angela Ladurner
- Department of Pharmacognosy, University of Vienna, Vienna, Austria.
| | - Patrik F Schwarz
- Department of Pharmacognosy, University of Vienna, Vienna, Austria.
| | - Verena M Dirsch
- Department of Pharmacognosy, University of Vienna, Vienna, Austria.
| |
Collapse
|
19
|
Masuelli L, Benvenuto M, Focaccetti C, Ciuffa S, Fazi S, Bei A, Miele MT, Piredda L, Manzari V, Modesti A, Bei R. Targeting the tumor immune microenvironment with "nutraceuticals": From bench to clinical trials. Pharmacol Ther 2020; 219:107700. [PMID: 33045254 DOI: 10.1016/j.pharmthera.2020.107700] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
Abstract
The occurrence of immune effector cells in the tissue microenvironment during neoplastic progression is critical in determining tumor growth outcomes. On the other hand, tumors may also avoid immune system-mediated elimination by recruiting immunosuppressive leukocytes and soluble factors, which coordinate a tumor microenvironment that counteracts the efficiency of the antitumor immune response. Checkpoint inhibitor therapy results have indicated a way forward via activation of the immune system against cancer. Widespread evidence has shown that different compounds in foods, when administered as purified substances, can act as immunomodulators in humans and animals. Although there is no universally accepted definition of nutraceuticals, the term identifies a wide category of natural compounds that may impact health and disease statuses and includes purified substances from natural sources, plant extracts, dietary supplements, vitamins, phytonutrients, and various products with combinations of functional ingredients. In this review, we summarize the current knowledge on the immunomodulatory effects of nutraceuticals with a special focus on the cancer microenvironment, highlighting the conceptual benefits or drawbacks and subtle cell-specific effects of nutraceuticals for envisioning future therapies employing nutraceuticals as chemoadjuvants.
Collapse
Affiliation(s)
- Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Monica Benvenuto
- Saint Camillus International University of Health and Medical Sciences, via di Sant'Alessandro 8, 00131 Rome, Italy; Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy; Department of Human Science and Promotion of the Quality of Life, San Raffaele University Rome, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Sara Ciuffa
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Sara Fazi
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Arianna Bei
- Medical School, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Lucia Piredda
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Vittorio Manzari
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy; CIMER, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
20
|
Khwaza V, Oyedeji OO, Aderibigbe BA. Ursolic Acid-Based Derivatives as Potential Anti-Cancer Agents: An Update. Int J Mol Sci 2020; 21:E5920. [PMID: 32824664 PMCID: PMC7460570 DOI: 10.3390/ijms21165920] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/12/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
Ursolic acid is a pharmacologically active pentacyclic triterpenoid derived from medicinal plants, fruit, and vegetables. The pharmacological activities of ursolic acid have been extensively studied over the past few years and various reports have revealed that ursolic acid has multiple biological activities, which include anti-inflammatory, antioxidant, anti-cancer, etc. In terms of cancer treatment, ursolic acid interacts with a number of molecular targets that play an essential role in many cell signaling pathways. It suppresses transformation, inhibits proliferation, and induces apoptosis of tumor cells. Although ursolic acid has many benefits, its therapeutic applications in clinical medicine are limited by its poor bioavailability and absorption. To overcome such disadvantages, researchers around the globe have designed and developed synthetic ursolic acid derivatives with enhanced therapeutic effects by structurally modifying the parent skeleton of ursolic acid. These structurally modified compounds display enhanced therapeutic effects when compared to ursolic acid. This present review summarizes various synthesized derivatives of ursolic acid with anti-cancer activity which were reported from 2015 to date.
Collapse
Affiliation(s)
| | | | - Blessing A. Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa; (V.K.); (O.O.O.)
| |
Collapse
|
21
|
Khatoon E, Banik K, Harsha C, Sailo BL, Thakur KK, Khwairakpam AD, Vikkurthi R, Devi TB, Gupta SC, Kunnumakkara AB. Phytochemicals in cancer cell chemosensitization: Current knowledge and future perspectives. Semin Cancer Biol 2020; 80:306-339. [DOI: 10.1016/j.semcancer.2020.06.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
|
22
|
Choudhari AS, Mandave PC, Deshpande M, Ranjekar P, Prakash O. Phytochemicals in Cancer Treatment: From Preclinical Studies to Clinical Practice. Front Pharmacol 2020; 10:1614. [PMID: 32116665 PMCID: PMC7025531 DOI: 10.3389/fphar.2019.01614] [Citation(s) in RCA: 475] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/10/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer is a severe health problem that continues to be a leading cause of death worldwide. Increasing knowledge of the molecular mechanisms underlying cancer progression has led to the development of a vast number of anticancer drugs. However, the use of chemically synthesized drugs has not significantly improved the overall survival rate over the past few decades. As a result, new strategies and novel chemoprevention agents are needed to complement current cancer therapies to improve efficiency. Naturally occurring compounds from plants known as phytochemicals, serve as vital resources for novel drugs and are also sources for cancer therapy. Some typical examples include taxol analogs, vinca alkaloids such as vincristine, vinblastine, and podophyllotoxin analogs. These phytochemicals often act via regulating molecular pathways which are implicated in growth and progression of cancer. The specific mechanisms include increasing antioxidant status, carcinogen inactivation, inhibiting proliferation, induction of cell cycle arrest and apoptosis; and regulation of the immune system. The primary objective of this review is to describe what we know to date of the active compounds in the natural products, along with their pharmacologic action and molecular or specific targets. Recent trends and gaps in phytochemical based anticancer drug discovery are also explored. The authors wish to expand the phytochemical research area not only for their scientific soundness but also for their potential druggability. Hence, the emphasis is given to information about anticancer phytochemicals which are evaluated at preclinical and clinical level.
Collapse
Affiliation(s)
- Amit S Choudhari
- Combi-Chem Bio-Resource Center, Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune, India
| | - Pallavi C Mandave
- Interactive Research School of Health Affairs, Bharati Vidyapeeth Deemed University, Pune, India
| | - Manasi Deshpande
- Department of Dravyaguna Vigan, Ayurved Pharmacology, College of Ayurved, Bharati Vidyapeeth Deemed University, Pune, India
| | | | - Om Prakash
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
23
|
Pei Y, Zhang Y, Zheng K, Shang G, Wang Y, Wang W, Qiu E, Zhang X. Ursolic acid suppresses the biological function of osteosarcoma cells. Oncol Lett 2019; 18:2628-2638. [PMID: 31404298 DOI: 10.3892/ol.2019.10561] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/29/2019] [Indexed: 12/11/2022] Open
Abstract
Osteosarcoma is a highly malignant tumour that occurs in adolescents. Upregulation or the constitutive activation of epidermal growth factor receptor (EGFR) is a hallmark of osteosarcoma. To investigate the effect of ursolic acid on the biological function of osteosarcoma, MTT assay was used to detect the effect of ursolic acid on the proliferation of HOS and MG63 cells, while flow cytometry was used to analyse the effect on the cell cycle and apoptosis. Transwell and Matrigel assays were used to detect the effect of ursolic acid on cell migration and invasion, respectively. Western blot analysis and reverse transcription-quantitative polymerase chain reaction were used to detect the effects of different concentrations of ursolic acid on EGFR signaling pathway-related proteins, cell cycle, apoptosis and cell migration-related proteins. After overexpression or silencing of EGFR, the effects of ursolic acid on EGFR pathway and cell biological function were subsequently detected, using the same methods. The present study identified that ursolic acid had inhibitory effects on the growth and metastatic ability of osteosarcoma cells by suppressing EGFR.
Collapse
Affiliation(s)
- Yi Pei
- Department of Bone and Soft Tissue Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Yueyan Zhang
- Department of Clinical Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Ke Zheng
- Department of Bone and Soft Tissue Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Guanning Shang
- Department of Bone and Soft Tissue Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Yuming Wang
- Department of Bone and Soft Tissue Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Wei Wang
- Department of Bone and Soft Tissue Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Enduo Qiu
- Department of Bone and Soft Tissue Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Xiaojing Zhang
- Department of Bone and Soft Tissue Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
24
|
Lin L, Hou G, Han D, Kang J, Wang Q. Ursolic Acid Protected Lung of Rats From Damage Induced by Cigarette Smoke Extract. Front Pharmacol 2019; 10:700. [PMID: 31281258 PMCID: PMC6595172 DOI: 10.3389/fphar.2019.00700] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 05/29/2019] [Indexed: 12/12/2022] Open
Abstract
Background: We found previously that ursolic acid (UA) administration could alleviate cigarette smoke-induced emphysema in rats partly through the unfolded protein response (UPR) PERK-CHOP and Nrf2 pathways, thus alleviating endoplasmic reticulum stress (ERS)-associated oxidative stress and cell apoptosis. We hypothesized that other UPR pathways may play similar roles in cigarette smoke extract (CSE)-induced emphysema. So, we sought to investigate the dynamic changes and effects of UPR and the downstream apoptotic pathways. Further, we investigated whether UA could alleviate CSE-induced emphysema and airway remodelling in rats, whether and when it exerts its effects through UPR pathways as well as Smads pathways. Methods: One hundred eight Sprague Dawley (SD) rats were randomly divided into three groups: Sham group, CSE group, and UA group, and each group was further divided into three subgroups, administered CSE (vehicle) for 2, 3, or 4 weeks; each subgroup had 12 rats. We examined pathological changes, analyzed the three UPR signaling pathways and subsequent ERS, intrinsic and extrinsic apoptotic pathway indicators, as well as activation of Smad2,3 molecules in rat lungs. Results: Exposure to CSE for 3 or 4 weeks could apparently induce emphysema and airway remodeling in rats, including gross and microscopic changes, alteration of mean alveolar number (MAN), mean linear intercept (MLI), and mean airway thickness in lung tissue sections. UA intervention could significantly alleviate CSE-induced emphysema and airway remodeling in rats. UA exerted its effects through ameliorating apoptosis by down regulating UPR signalling pathways and subsequent apoptosis pathways, as well as, downregulating p-Smad2 and p-Smad3 molecules. Conclusions: UA attenuated CSE-induced emphysema and airway remodeling, exerting its effects partly through regulation of three UPR pathways, amelioration downstream apoptotic pathways, and alleviating activation of Smad2 and Smad3.
Collapse
Affiliation(s)
- Li Lin
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, China
| | - Gang Hou
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, China
| | - Dan Han
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, China
| | - Jian Kang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, China
| | - Qiuyue Wang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
25
|
Chan EWC, Soon CY, Tan JBL, Wong SK, Hui YW. Ursolic acid: An overview on its cytotoxic activities against breast and colorectal cancer cells. JOURNAL OF INTEGRATIVE MEDICINE 2019; 17:155-160. [PMID: 30928277 DOI: 10.1016/j.joim.2019.03.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/18/2019] [Indexed: 12/22/2022]
Abstract
Ursolic acid (UA) is a pentacyclic triterpene of the ursane type. As a common chemical constituent among species of the family Lamiaceae, UA possesses a broad spectrum of pharmacological properties. This overview focuses on the anticancer properties of UA against breast cancer (BC) and colorectal cancer (CRC) that are most common among women and men, respectively. In vitro studies have shown that UA inhibited the growth of BC and CRC cell lines through various molecular targets and signaling pathways. There are several in vivo studies on the cytotoxic activity of UA against BC and CRC. UA also inhibits the growth of other types of cancer. Studies on structural modifications of UA have shown that the -OH groups at C3 and at C28 are critical factors influencing the cytotoxic activity of UA and its derivatives. Some needs for future research are suggested. Sources of information were from ScienceDirect, Google Scholar and PubMed.
Collapse
Affiliation(s)
- Eric Wei Chiang Chan
- Faculty of Applied Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Chu Yong Soon
- Faculty of Applied Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Joash Ban Lee Tan
- School of Science, Monash University Sunway, 46150 Petaling Jaya, Selangor, Malaysia
| | - Siu Kuin Wong
- School of Science, Monash University Sunway, 46150 Petaling Jaya, Selangor, Malaysia
| | - Yew Woh Hui
- Xiamen University Malaysia, Bandar Sunsuria, 43900 Sepang, Selangor, Malaysia
| |
Collapse
|
26
|
Mu H, Liu H, Zhang J, Huang J, Zhu C, Lu Y, Shi Y, Wang Y. Ursolic acid prevents doxorubicin-induced cardiac toxicity in mice through eNOS activation and inhibition of eNOS uncoupling. J Cell Mol Med 2019; 23:2174-2183. [PMID: 30609217 PMCID: PMC6378202 DOI: 10.1111/jcmm.14130] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 11/21/2018] [Accepted: 12/09/2018] [Indexed: 12/12/2022] Open
Abstract
In addition to the known antitumour effects of ursolic acid (UA), increasing evidence indicates that this molecule plays a role in cardiac protection. In this study, the effects of ursolic acid on the heart in mice treated with doxorubicin (DOX) were assessed. The results showed that ursolic acid improved left ventrical fractional shortening (LVFS) and left ventrical ejection fraction (LVEF) of the heart, increased nitrogen oxide (NO) levels, inhibited reactive oxygen species (ROS) production and decreased cardiac apoptosis in mice treated with doxorubicin. Mechanistically, ursolic acid increased AKT and endothelial nitric-oxide synthase (eNOS) phosphorylation levels, and enhanced eNOS expression, while inhibiting doxorubicin induced eNOS uncoupling through NADPH oxidase 4 (NOX4) down-regulation. These effects of ursolic acid resulted in heart protection from doxorubicin-induced injury. Therefore, ursolic acid may be considered a potential therapeutic agent for doxorubicin-associated cardiac toxicity in clinical practice.
Collapse
Affiliation(s)
- Haiman Mu
- First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
- Graduated School of Jinzhou Medical UniversityJinzhouChina
| | - Haiwen Liu
- First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| | - Jiayi Zhang
- First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| | - Jianhua Huang
- First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
- Life Science Institute of Jinzhou Medical UniversityJinzhouChina
| | - Chen Zhu
- First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
- Graduated School of Jinzhou Medical UniversityJinzhouChina
| | - Yue Lu
- Graduated School of Jinzhou Medical UniversityJinzhouChina
| | - Yueping Shi
- First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| | - Yi Wang
- First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| |
Collapse
|
27
|
Zong L, Cheng G, Liu S, Pi Z, Liu Z, Song F. Reversal of multidrug resistance in breast cancer cells by a combination of ursolic acid with doxorubicin. J Pharm Biomed Anal 2019; 165:268-275. [PMID: 30572191 DOI: 10.1016/j.jpba.2018.11.057] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 12/16/2022]
Abstract
Multidrug resistance (MDR) has seriously affected or hindered the effect of chemotherapy. Ursolic acid (UA) as a natural compound exhibits a number of potential biological effects including antitumor. Searching for the reversal agents from the natural products has been an effective strategy recently applied in overcoming the MDR. So in this study, the reversal effect of UA on the MDR and involved mechanisms were investigated via a multidrug-resistant MCF-7/ADR cells model and ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analytical methods. The synergistic effects were yielded by the combination of UA and Dox based on the investigation of the intracellular accumulation, the P-glycoprotein (P-gp) mediated transport, the energy metabolism including glycolysis, tricarboxylic acid (TCA) cycle, and glutamine metabolism as well as related amino acid metabolism. Obtained results showed that the UA could increase amount of doxorubicin (Dox) entering the cell to accumulate in nuclei, decrease the efflux ratio of digoxin comparable to the effects of the known inhibitor verapamil by acting as a P-gp substrate, decrease the content of intracellular alanine, lactate, pyruvate, glucose, α-ketoglutarate, glutamate, glutamine, aspartate, serine, and glycine. Taken together, inhibition of P-gp function and disruption of the metabolism of energy and related amino acids could be the key mechanisms by which UA could reverse the MDR. The findings also indicated that UA could be a potential alternative adjuvant antitumour herbal medicine to resensitize cells with MDR to chemotherapeutic agents.
Collapse
Affiliation(s)
- Li Zong
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Guorong Cheng
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; University of Science and Technology of China, Hefei 230029, China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zifeng Pi
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
28
|
Liu P, Du R, Yu X. Ursolic Acid Exhibits Potent Anticancer Effects in Human Metastatic Melanoma Cancer Cells (SK-MEL-24) via Apoptosis Induction, Inhibition of Cell Migration and Invasion, Cell Cycle Arrest, and Inhibition of Mitogen-Activated Protein Kinase (MAPK)/ERK Signaling Pathway. Med Sci Monit 2019; 25:1283-1290. [PMID: 30772887 PMCID: PMC6388547 DOI: 10.12659/msm.913069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/01/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Ursolic acid is an important bioactive triterpenoid that has been reported to be of tremendous pharmacological importance. However, the anticancer potential of ursolic acid has not been examined against metastatic melanoma cells. Therefore, in this study we examined the anticancer potential of ursolic acid and its mode of action. MATERIAL AND METHODS WST-1 and colony formation assays were used for cell viability assessment. Cell cycle analysis was performed by flow cytometry. Apoptosis was detected by AO/EB staining using fluorescence microscopy. Cell migration and invasion were assessed by Boyden chamber assay. Protein expression was checked by Western blotting. RESULTS The results revealed that ursolic acid exerts significant (p<0.01) growth-inhibitory effects on SK-MEL-24 cells. The IC₅₀ of ursolic acid against SK-MEL-24 cells was 25 µM. Our investigation of the underlying mechanism revealed that ursolic acid prompts apoptotic cell death of the SK-MEL-24 cells, which was linked with increased expression of Bax and Caspase 3 and 9, and decreased expression of Bcl-2. Ursolic acid also halted the SK-MEL-24 cells at G0/G1 phase of the cell cycle and also downregulated the expression of Cyclin B1 and Cdc25. Ursolic acid significantly (p<0.01) inhibited the migration and invasion of SK-MEL-2 cells, indicative of its anti-metastatic potential. Finally, ursolic acid inhibited the MAPK/ERK pathway by suppressing the expression of p-P38 and p-ERK. CONCLUSIONS Ursolic acid appears to be a potent molecule for the treatment of melanoma.
Collapse
Affiliation(s)
- Pengcheng Liu
- Department of Hand and Pediatric Surgery, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
- Jilin Province Key Laboratory of Tissue Repair, Reconstruction and Regeneration, Changchun, Jilin, P.R. China
| | - Ruili Du
- Department of Clinical Laboratory Medicine, The Second Hospital of Changchun City, Changchun, Jilin, P.R. China
| | - Xin Yu
- Department of Hand and Pediatric Surgery, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
- Jilin Province Key Laboratory of Tissue Repair, Reconstruction and Regeneration, Changchun, Jilin, P.R. China
| |
Collapse
|
29
|
Zou J, Lin J, Li C, Zhao R, Fan L, Yu J, Shao J. Ursolic Acid in Cancer Treatment and Metastatic Chemoprevention: From Synthesized Derivatives to Nanoformulations in Preclinical Studies. Curr Cancer Drug Targets 2019; 19:245-256. [PMID: 30332961 DOI: 10.2174/1568009618666181016145940] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/15/2018] [Accepted: 06/22/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Cancer metastasis has emerged as a major public health threat that causes majority of cancer fatalities. Traditional chemotherapeutics have been effective in the past but suffer from low therapeutic efficiency and harmful side-effects. Recently, it has been reported ursolic acid (UA), one of the naturally abundant pentacyclic triterpenes, possesses a wide range of biological activities including anti-inflammatory, anti-atherosclerotic, and anti-cancer properties. More importantly, UA has the features of low toxicity, liver protection and the potential of anti-cancer metastasis. OBJECTIVE This article aimed at reviewing the great potential of UA used as a candidate drug in the field of cancer therapy relating to suppression of tumor initiation, progression and metastasis. METHODS Selective searches were conducted in Pubmed, Google Scholar and Web of Science using the keywords and subheadings from database inception to December 2017. Systemic reviews are summarized here. RESULTS UA has exhibited chemopreventive and therapeutic effects of cancer mainly through inducing apoptosis, inhibiting cell proliferation, preventing tumor angiogenesis and metastatic. UA nanoformulations could enhance the solubility and bioavailability of UA as well as exhibit better inhibitory effect on tumor growth and metastasis. CONCLUSION The information presented in this article can provide useful references for further studies on making UA a promising anti-cancer drug, especially as a prophylactic metastatic agent for clinical applications.
Collapse
Affiliation(s)
- Junjie Zou
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Juanfang Lin
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Chao Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Ruirui Zhao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Lulu Fan
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jesse Yu
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States
| | - Jingwei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
30
|
Pięt M, Paduch R. Ursolic and Oleanolic Acids as Potential Anticancer Agents Acting in the Gastrointestinal Tract. MINI-REV ORG CHEM 2018. [DOI: 10.2174/1570193x15666180612090816] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background:Cancer is one of the main causes of death worldwide. Contemporary therapies, including chemo- and radiotherapy, are burdened with severe side effects. Thus, there exists an urgent need to develop therapies that would be less devastating to the patient’s body. Such novel approaches can be based on the anti-tumorigenic activity of particular compounds or may involve sensitizing cells to chemotherapy and radiotherapy or reducing the side-effects of regular treatment.Objective:Natural-derived compounds are becoming more and more popular in cancer research. Examples of such substances are Ursolic Acid (UA) and Oleanolic Acid (OA), plant-derived pentacyclic triterpenoids which possess numerous beneficial properties, including anti-tumorigenic activity.Results:In recent years, ursolic and oleanolic acids have been demonstrated to exert a range of anticancer effects on various types of tumors. These compounds inhibit the viability and proliferation of cancer cells, prevent their migration and metastasis and induce their apoptosis. Both in vitro and in vivo studies indicate that UA and OA are promising anti-cancer agents that can prevent carcinogenesis at each step. Furthermore, cancers at all stages are susceptible to the activity of these compounds. </P><P> Neoplasms that are formed in the gastrointestinal tract, i.e. gastric, colorectal, pancreatic, and liver cancers, are among the most common and most lethal malignancies. Their localization in the digestive system, however, facilitates the action of orally-administered (potential) anti-cancer agents, making chemopreventive drugs more accessible.In this paper, the anti-tumorigenic effect of ursolic and oleanolic acids on gastric, colon, pancreatic, and liver cancers, as well as the mechanisms underlying this process, are presented.
Collapse
Affiliation(s)
- Mateusz Pięt
- Department of Virology and Immunology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Roman Paduch
- Department of Virology and Immunology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| |
Collapse
|
31
|
An Array of Bioactive Compounds From Australian Eucalypts and Their Relevance in Pancreatic Cancer Therapeutics. Pancreas 2018; 47:690-707. [PMID: 29894418 DOI: 10.1097/mpa.0000000000001074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer (PC) is one of the most devastating human cancers, and despite the significant advances in the current therapeutic options, the overall survival rate for PC has remained static for the past 50 years. Plant-derived bioactive compounds play a vital role in cancer therapeutics by providing new lead compounds for future drug development. Therefore, the isolation, characterization, and identification of new bioactive compounds for the prevention and treatment of cancer continue to be an important aspect of natural product research. Many in vitro and in vivo studies published in the last few decades have established strong links between the phytochemical profile of eucalypts and anticancer activity. However, only a small number of these reports have attempted to demonstrate a relationship between the biological activity of eucalypt extracts and PC. This review focuses on potential anti-PC effects of an array of bioactive compounds present in various species of eucalypts. It also highlights the necessity for further in vitro and in vivo studies to develop a complete understanding of the potential this group of plants has for the development of potent and specific chemotherapeutic drugs for PC.
Collapse
|
32
|
Choi WH, Lee IA. Evaluation of Anti- Toxoplasma gondii Effect of Ursolic Acid as a Novel Toxoplasmosis Inhibitor. Pharmaceuticals (Basel) 2018; 11:E43. [PMID: 29747388 PMCID: PMC6026977 DOI: 10.3390/ph11020043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022] Open
Abstract
This study was carried out to evaluate the anti-parasitic effect of ursolic acid against Toxoplasma gondii (T. gondii) that induces toxoplasmosis, particularly in humans. The anti-parasitic effects of ursolic acid against T. gondii-infected cells and T. gondii were evaluated through different specific assays, including immunofluorescence staining and animal testing. Ursolic acid effectively inhibited the proliferation of T. gondii when compared with sulfadiazine, and consistently induced anti-T. gondii activity/effect. In particular, the formation of parasitophorous vacuole membrane (PVM) in host cells was markedly decreased after treating ursolic acid, which was effectively suppressed. Moreover, the survival rate of T. gondii was strongly inhibited in T. gondii group treated with ursolic acid, and then 50% inhibitory concentration (IC50) against T. gondii was measured as 94.62 μg/mL. The T. gondii-infected mice treated with ursolic acid indicated the same survival rates and activity as the normal group. These results demonstrate that ursolic acid causes anti-T. gondii action and effect by strongly blocking the proliferation of T. gondii through the direct and the selective T. gondii-inhibitory ability as well as increases the survival of T. gondii-infected mice. This study shows that ursolic acid has the potential to be used as a promising anti-T. gondii candidate substance for developing effective anti-parasitic drugs.
Collapse
Affiliation(s)
- Won Hyung Choi
- Marine Bio Research & Education Center, Kunsan National University, 558 Daehak-ro, Gunsan-si, Jeollabuk-do 54150, Korea.
| | - In Ah Lee
- Department of Chemistry, College of Natural Science, Kunsan National University, 558 Daehak-ro, Gunsan-si, Jeollabuk-do 54150, Korea.
| |
Collapse
|
33
|
Zhang Z, Zhang H, Chen R, Wang Z. Oral supplementation with ursolic acid ameliorates sepsis-induced acute kidney injury in a mouse model by inhibiting oxidative stress and inflammatory responses. Mol Med Rep 2018; 17:7142-7148. [PMID: 29568928 PMCID: PMC5928665 DOI: 10.3892/mmr.2018.8767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 08/16/2017] [Indexed: 02/07/2023] Open
Abstract
Ursolic acid (UA) as a multiple bioactive native compound has recently been demonstrated to treat sepsis in animal models. However, the beneficial effects of UA in sepsis‑induced acute kidney injury (AKI) are not completely understood. In the present study, the effect of UA on sepsis‑induced AKI in cecal ligation and puncture (CLP) surgery mice was investigated. Renal histomorphological analysis was performed by hematoxylin and eosin staining. The expression of inflammatory markers in the kidney of septic mice was measured by reverse transcription‑quantitative polymerase chain reaction and western blotting. The results demonstrated that UA administration improved survival in septic mice induced by CLP surgery. The treatment with UA revealed protection against AKI induced by CLP surgery, including the alleviation of glomerular damage and vacuolization in the proximal tubules. In addition, the effects of UA on oxidative stress and inflammation in septic mice were determined. The findings suggested that UA may protect against sepsis‑induced AKI by inhibiting reactive oxygen species and inflammatory cytokines, including tumor necrosis factor‑α, interleukin (IL)‑1β and IL‑6, in the kidney from septic mice. Finally, UA inhibited CLP‑induced activation of nuclear factor‑κB signaling in the kidney from septic mice. The findings of the present study demonstrated that UA may be used as a potential therapeutic agent for complications of sepsis, especially for sepsis-induced AKI.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Department of Critical Care Medicine, Beijing Tsinghua Changgung Hospital, Beijing 102218, P.R. China
| | - Hong Zhang
- Department of Applied Chemistry, Peking University, Beijing 100871, P.R. China
| | - Rui Chen
- Department of Critical Care Medicine, Beijing Tsinghua Changgung Hospital, Beijing 102218, P.R. China
| | - Zhong Wang
- Department of Critical Care Medicine, Beijing Tsinghua Changgung Hospital, Beijing 102218, P.R. China
| |
Collapse
|
34
|
Ramirez CN, Li W, Zhang C, Wu R, Su S, Wang C, Gao L, Yin R, Kong ANT. Correction to: In Vitro-In Vivo Dose Response of Ursolic Acid, Sulforaphane, PEITC, and Curcumin in Cancer Prevention. AAPS JOURNAL 2018; 20:27. [PMID: 29411155 DOI: 10.1208/s12248-018-0190-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The citation of the author name "Ah-Ng Tony Kong" in PubMed is not the author's preference. Instead of "Kong AT", the author prefers "Kong AN".
Collapse
Affiliation(s)
- Christina N Ramirez
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Cellular and Molecular Pharmacology Program, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, 08854, USA
| | - Wenji Li
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Chengyue Zhang
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Graduate Program in Pharmaceutical Sciences, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Renyi Wu
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Shan Su
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Chao Wang
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Linbo Gao
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Ran Yin
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Ah-Ng Tony Kong
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA. .,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA. .,Graduate Program in Pharmaceutical Sciences, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA. .,Ernest Mario School of Pharmacy, Room 228, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA.
| |
Collapse
|
35
|
Rajagopal C, Lankadasari MB, Aranjani JM, Harikumar KB. Targeting oncogenic transcription factors by polyphenols: A novel approach for cancer therapy. Pharmacol Res 2018; 130:273-291. [PMID: 29305909 DOI: 10.1016/j.phrs.2017.12.034] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/30/2017] [Accepted: 12/31/2017] [Indexed: 02/06/2023]
Abstract
Inflammation is one of the major causative factor of cancer and chronic inflammation is involved in all the major steps of cancer initiation, progression metastasis and drug resistance. The molecular mechanism of inflammation driven cancer is the complex interplay between oncogenic and tumor suppressive transcription factors which include FOXM1, NF-kB, STAT3, Wnt/β- Catenin, HIF-1α, NRF2, androgen and estrogen receptors. Several products derived from natural sources modulate the expression and activity of multiple transcription factors in various tumor models as evident from studies conducted in cell lines, pre-clinical models and clinical samples. Further combination of these natural products along with currently approved cancer therapies added an additional advantage and they considered as promising targets for prevention and treatment of inflammation and cancer. In this review we discuss the application of multi-targeting natural products by analyzing the literature and future directions for their plausible applications in drug discovery.
Collapse
Affiliation(s)
- Chitra Rajagopal
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
| | - Manendra Babu Lankadasari
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
| | - Jesil Mathew Aranjani
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - K B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India.
| |
Collapse
|
36
|
Zhang Y, Huang L, Shi H, Chen H, Tao J, Shen R, Wang T. Ursolic acid enhances the therapeutic effects of oxaliplatin in colorectal cancer by inhibition of drug resistance. Cancer Sci 2018; 109:94-102. [PMID: 29034540 PMCID: PMC5765292 DOI: 10.1111/cas.13425] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 12/13/2022] Open
Abstract
It has been reported that ursolic acid has anti-tumor activity and it enhances the therapeutic effect of oxaliplatin in colorectal cancer (CRC). However, the underlying mechanisms remain unknown. In the present study, the mechanisms of the enhancement of therapeutic effects through use of ursolic acid were investigated. We treated CRC cell lines HCT8 and SW480 with ursolic acid and oxaliplatin and monitored the effects on cell proliferation, apoptosis, reactive oxygen species (ROS) production and drug resistance gene production. We discovered that treatment with a combination of ursolic acid and oxaliplatin resulted in significant inhibition of cell proliferation, significantly increased apoptosis and ROS production, and significant inhibition of drug resistance gene expression. Our study provided evidence that ursolic acid enhances the therapeutic effects of oxaliplatin in colorectal cancer by ROS-mediated inhibition of drug resistance.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Endoscopy SurgeryWuxi People's HospitalAffiliated to Nanjing Medical UniversityWuxiChina
| | - Longchang Huang
- Department of Endoscopy SurgeryWuxi People's HospitalAffiliated to Nanjing Medical UniversityWuxiChina
| | - Haoze Shi
- Department of Endoscopy SurgeryWuxi People's HospitalAffiliated to Nanjing Medical UniversityWuxiChina
| | - Hang Chen
- Department of Endoscopy SurgeryWuxi People's HospitalAffiliated to Nanjing Medical UniversityWuxiChina
| | - Jianxin Tao
- Department of Endoscopy SurgeryWuxi People's HospitalAffiliated to Nanjing Medical UniversityWuxiChina
| | - Renhui Shen
- Department of Endoscopy SurgeryWuxi People's HospitalAffiliated to Nanjing Medical UniversityWuxiChina
| | - Tong Wang
- Department of Endoscopy SurgeryWuxi People's HospitalAffiliated to Nanjing Medical UniversityWuxiChina
| |
Collapse
|
37
|
Ramirez CN, Li W, Zhang C, Wu R, Su S, Wang C, Gao L, Yin R, Kong AN. In Vitro-In Vivo Dose Response of Ursolic Acid, Sulforaphane, PEITC, and Curcumin in Cancer Prevention. AAPS J 2017; 20:19. [PMID: 29264822 PMCID: PMC6021020 DOI: 10.1208/s12248-017-0177-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023] Open
Abstract
According to the National Center of Health Statistics, cancer was the culprit of nearly 600,000 deaths in 2016 in the USA. It is by far one of the most heterogeneous diseases to treat. Treatment for metastasized cancers remains a challenge despite modern diagnostics and treatment regimens. For this reason, alternative approaches are needed. Chemoprevention using dietary phytochemicals such as triterpenoids, isothiocyanates, and curcumin in the prevention of initiation and/or progression of cancer poses a promising alternative strategy. However, significant challenges exist in the extrapolation of in vitro cell culture data to in vivo efficacy in animal models and to humans. In this review, the dose at which these phytochemicals elicit a response in vitro and in vivo of a multitude of cellular signaling pathways will be reviewed highlighting Nrf2-mediated antioxidative stress, anti-inflammation, epigenetics, cytoprotection, differentiation, and growth inhibition. The in vitro-in vivo dose response of phytochemicals can vary due, in part, to the cell line/animal model used, the assay system of the biomarker used for the readout, chemical structure of the functional analog of the phytochemical, and the source of compounds used for the treatment study. While the dose response varies across different experimental designs, the chemopreventive efficacy appears to remain and demonstrate the therapeutic potential of triterpenoids, isothiocyanates, and curcumin in cancer prevention and in health in general.
Collapse
Affiliation(s)
- Christina N Ramirez
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Cellular and Molecular Pharmacology Program, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, 08854, USA
| | - Wenji Li
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Chengyue Zhang
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Graduate Program in Pharmaceutical Sciences, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Renyi Wu
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Shan Su
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Chao Wang
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Linbo Gao
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Ran Yin
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Ah-Ng Kong
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.
- Graduate Program in Pharmaceutical Sciences, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.
- Ernest Mario School of Pharmacy, Room 228, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA.
| |
Collapse
|
38
|
The effects of novel chitosan-targeted gemcitabine nanomedicine mediating cisplatin on epithelial mesenchymal transition, invasion and metastasis of pancreatic cancer cells. Biomed Pharmacother 2017; 96:650-658. [DOI: 10.1016/j.biopha.2017.10.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/26/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022] Open
|
39
|
Cyclooxygenase-2 mediated synergistic effect of ursolic acid in combination with paclitaxel against human gastric carcinoma. Oncotarget 2017; 8:92770-92777. [PMID: 29190954 PMCID: PMC5696220 DOI: 10.18632/oncotarget.21576] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/03/2017] [Indexed: 12/11/2022] Open
Abstract
Ursolic acid (UA) induces apoptosis in gastric cancer cells by inhibiting cyclooxygenase-2 (COX-2). Paclitaxel (PTX) is an important chemotherapy agent used to treat solid tumors. We evaluated the in vitro antitumor activity of UA in combination with PTX against gastric cancer cells and investigated the mechanisms underlying the combined effects. A cytotoxicity test and flow cytometry were utilized to study the effects of UA and PTX on proliferation and apoptosis, respectively. To further elucidate the mechanism, Western blot analysis was used to assess changes in the expression of a series of related proteins, including COX-2, proliferating cell nuclear antigen (PCNA), Bcl-2, and Bax. UA and PTX dose- and time-dependently inhibited BGC-823 and SGC-7901 gastric cancer cell proliferation. Combined delivery of UA and PTX synergistically reduced cell proliferation and induced apoptosis in these cells by lowering COX-2, PCNA, and Bcl-2 expression and by increasing Bax expression. These results indicate that the synergistic inhibition of proliferation and induction of apoptosis by UA and PTX may be induced by reducing COX-2 expression in gastric cancer cells.
Collapse
|
40
|
Fajardo-Sánchez E, Galiano V, Villalaín J. Location of the bioactive pentacyclic triterpene ursolic acid in the membrane. A molecular dynamics study. J Biomol Struct Dyn 2017; 35:2688-2700. [PMID: 27569018 DOI: 10.1080/07391102.2016.1229219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 08/18/2016] [Indexed: 12/13/2022]
Abstract
Ursolic acid (URS), an ursane-representative bioactive pentacyclic triterpene, is a plant secondary metabolite presenting a great number of pharmacological beneficial properties. Due to the prominent hydrophobic character of URS and its high phospholipid/water partition coefficient, some of its possible effects on biological systems might be related to its capacity to interact with and locate into the membrane as well as interact specifically with its components. In this work, we have studied the location and orientation of URS in the membrane by molecular dynamics simulations. At the end of the simulation, URS locates near the surface in vicinity to the phospholipid headgroups but its orientation depends on lipid composition, its final average orientation being a nearly parallel one in POPC but a nearly perpendicular one in POPC/POPE/POPG/PSM/Chol. Furthermore, in the complex lipid system URS seems to interact specifically with POPE, PSM, and Chol excluding POPG from its surroundings, which could lead to phase separation and domain formation. The different disposition of URS in the membrane and its specific interaction with certain lipid types could lead to a significant perturbation of the membrane structure. The important pharmacological activities of URS would rely on the effects it exerts on the membrane structure in general and the existence of specific interactions with specific lipids in particular.
Collapse
Affiliation(s)
- Emmanuel Fajardo-Sánchez
- a Molecular and Cellular Biology Institute , Universitas "Miguel Hernández" , E-03202 Elche-Alicante , Spain
| | - Vicente Galiano
- b Physics and Computer Architecture Department , Universitas "Miguel Hernández" , E-03202 Elche-Alicante , Spain
| | - José Villalaín
- a Molecular and Cellular Biology Institute , Universitas "Miguel Hernández" , E-03202 Elche-Alicante , Spain
| |
Collapse
|
41
|
Wang S, Wang H, Lu Y. Tianfoshen oral liquid: a CFDA approved clinical traditional Chinese medicine, normalizes major cellular pathways disordered during colorectal carcinogenesis. Oncotarget 2017; 8:14549-14569. [PMID: 28099904 PMCID: PMC5362425 DOI: 10.18632/oncotarget.14675] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/09/2017] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer remains the third leading cause of cancer death worldwide, suggesting exploration of novel therapeutic avenues may be useful. In this study, therefore, we determined whether Tianfoshen oral liquid, a Chinese traditional medicine that has been used to treat non-small cell lung cancer, would be therapeutically beneficial for colorectal cancer patients. Our data show that Tianfoshen oral liquid effectively inhibits growth of colorectal cancer cells both in vitro and in vivo. We further employed a comprehensive strategy that included chemoinformatics, bioinformatics and network biology methods to unravel novel insights into the active compounds of Tianfoshen oral liquid and to identify the common therapeutic targets and processes for colorectal cancer treatment. We identified 276 major candidate targets for Tianfoshen oral liquid that are central to colorectal cancer progression. Gene enrichment analysis showed that these targets were associated with cell cycle, apoptosis, cancer-related angiogenesis, and chronic inflammation and related signaling pathways. We also validated experimentally the inhibitory effects of Tianfoshen oral liquid on these pathological processes, both in vitro and in vivo. In addition, we demonstrated that Tianfoshen oral liquid suppressed multiple relevant key players that sustain and promote colorectal cancer, which is suggests the potential therapeutic efficacy of Tianfoshen oral liquid in future colorectal cancer treatments.
Collapse
Affiliation(s)
- Siliang Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Hengbin Wang
- Changshu Leiyunshang Pharmaceutical Co., Ltd., Changshu, 215500, P. R. China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| |
Collapse
|
42
|
Liu T, Ma H, Shi W, Duan J, Wang Y, Zhang C, Li C, Lin J, Li S, Lv J, Lin L. Inhibition of STAT3 signaling pathway by ursolic acid suppresses growth of hepatocellular carcinoma. Int J Oncol 2017; 51:555-562. [PMID: 28714512 DOI: 10.3892/ijo.2017.4035] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 05/19/2017] [Indexed: 11/05/2022] Open
Abstract
The signal transducer and activator of transcription 3 (STAT3) has been found to be constitutively active in liver cancer. There is no STAT3 inhibitors approved to be used clinically for the treatment or prevention of liver cancer. Some dietary compounds including ursolic acid (UA) have been reported to inhibit the growth of cancer cells. However, whether UA could inhibit STAT3 phosphorylation in hepatocellular carcinoma has not been reported. The inhibitory effects of UA on STAT3 phosphorylation, along with cell viability, migration, colony formation in vitro, as well as tumor growth in vivo were examined in human liver cancer cell lines. Our data showed that UA inhibited the P-STAT3 induced by interleukin-6 (IL-6) in Hep3B liver cancer cells which express very low basal level of P-STAT3. The constitutive STAT3 phosphorylation was also inhibited by UA in HEPG2, 7721 and Huh7 human liver cancer cell lines. UA decreased the expression of downstream target genes of STAT3, such as Bcl-2, Bcl-xl and survivin in general, with difference in these cell lines. UA also suppressed cell viability, cell migration and colony formation in liver cancer cells. Furthermore, UA suppressed STAT3 phosphorylation and HEPG2 tumor growth by oral daily treatment in vivo. UA, which exists widely in fruits and herbs, could inhibit STAT3 activation and the growth of human liver cancer cells in vitro and in vivo. It might be a potential health care product that could be used daily for prevention, as well as a promising candidate for chemotherapy of liver cancer.
Collapse
Affiliation(s)
- Tianshu Liu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Haiyan Ma
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Wei Shi
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Jialin Duan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Yina Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Chenglong Li
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sheng Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Jiagao Lv
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Li Lin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| |
Collapse
|
43
|
Lin L, Yin Y, Hou G, Han D, Kang J, Wang Q. Ursolic acid attenuates cigarette smoke-induced emphysema in rats by regulating PERK and Nrf2 pathways. Pulm Pharmacol Ther 2017; 44:111-121. [PMID: 28347799 DOI: 10.1016/j.pupt.2017.03.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/28/2017] [Accepted: 03/23/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Ursolic acid (UA) is widely distributed in natural plants to against oxidation, virus, inflammation, tumor, and has been widely used in the pharmaceutical and cosmetics. However, its effect on emphysema of chronic obstructive pulmonary disease (COPD) is unknown. Unfolded protein response is involved in pathogenesis of COPD through PERK pathway. Nuclear erythroid-related factor 2 (Nrf2) regulates antioxidant defensive mechanism in COPD. This study was to explore effect and mechanism of UA on cigarette smoke (CS)-induced rat emphysema. MATERIALS AND METHODS 50 Wistar rats were divided into 5 groups (n = 10 each): rats were exposed to CS for 12 weeks in absence (CS group) or presence of UA at different doses. Control group was treated with UA vehicle only. Histopathology, apoptosis, key protein expression of PERK and Nrf2 pathway were determined in lung tissues. Oxidative stress levels in lung were represented by 8-OHdG, MDA and GSH levels. RESULTS Emphysema-related pathology, based on inter-alveolar wall distance and alveolar density, was less severe in UA groups than in CS group. Compared with CS group, UA treatment down-regulated PERK pathway protein expression, up-regulated expression of Bcl-2 and down-regulated expression of Bax, Cleaved-Caspase3 and Cleaved-Caspase12. Moreover, UA decreased number of apoptotic cells in rat lungs. UA also up-regulated protein expression of Nrf2/ARE pathway and GSH level, decreased expression of oxidant stress factor 8-OHdG and MDA. These improvements were in accordance with attenuation of severity of emphysema. CONCLUSIONS UA attenuates CS-induced rat emphysema by down-regulating PERK pathway to alleviate CS-induced apoptosis in lung, and up-regulating Nrf2 pathway to improve cigarette smoke-induced oxidant stress in rat lungs.
Collapse
Affiliation(s)
- Li Lin
- Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yan Yin
- Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang 110001, China
| | - Gang Hou
- Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang 110001, China
| | - Dan Han
- Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang 110001, China
| | - Jian Kang
- Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang 110001, China
| | - Qiuyue Wang
- Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
44
|
Jesus JA, Fragoso TN, Yamamoto ES, Laurenti MD, Silva MS, Ferreira AF, Lago JHG, Santos-Gomes G, Passero LFD. Therapeutic effect of ursolic acid in experimental visceral leishmaniasis. Int J Parasitol Drugs Drug Resist 2017; 7:1-11. [PMID: 27984757 PMCID: PMC5156607 DOI: 10.1016/j.ijpddr.2016.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/01/2016] [Indexed: 12/14/2022]
Abstract
Leishmaniasis is an important neglected tropical disease, affecting more than 12 million people worldwide. The available treatments are not well tolerated and present diverse side effects in patients, justifying the search for new therapeutic compounds. In the present study, the therapeutic potential and toxicity of ursolic acid (UA), isolated from the leaves of Baccharis uncinella C. DC. (Asteraceae), were evaluated in experimental visceral leishmaniasis. To evaluate the therapeutic potential of UA, hamsters infected with L. (L.) infantum were treated daily during 15 days with 1.0 or 2.0 mg UA/kg body weight, or with 5.0 mg amphotericin B/kg body weight by intraperitoneal route. Fifteen days after the last dose, the parasitism of the spleen and liver was stimated and the main histopathological alterations were recorded. The proliferation of splenic mononuclear cells was evaluated and IFN-γ, IL-4, and IL-10 gene expressions were analyzed in spleen fragments. The toxicity of UA and amphotericin B were evaluated in healthy golden hamsters by histological analysis and biochemical parameters. Animals treated with UA had less parasites in the spleen and liver when compared with the infected control group, and they also showed preservation of white and red pulps, which correlate with a high rate of proliferation of splenic mononuclear cells, IFN-γ mRNA and iNOS production. Moreover, animals treated with UA did not present alterations in the levels of AST, ALT, creatinine and urea. Taken together, these findings indicate that UA is an interesting natural compound that should be considered for the development of prototype drugs against visceral leishmaniasis.
Collapse
Affiliation(s)
- Jéssica A Jesus
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455. Cerqueira César, São Paulo, 01246-903, SP, Brazil; Center of Natural Sciences and Humanities, Federal University of ABC, Santo Andre, São Paulo, 09210-180, Brazil
| | - Thais N Fragoso
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455. Cerqueira César, São Paulo, 01246-903, SP, Brazil
| | - Eduardo S Yamamoto
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455. Cerqueira César, São Paulo, 01246-903, SP, Brazil
| | - Márcia D Laurenti
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455. Cerqueira César, São Paulo, 01246-903, SP, Brazil
| | - Marcelo S Silva
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008 Lisboa, Portugal; Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Rua General Gustavo Cordeiro de Farias, 384, 59012-570 Natal, Brazil
| | - Aurea F Ferreira
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455. Cerqueira César, São Paulo, 01246-903, SP, Brazil
| | - João Henrique G Lago
- Center of Natural Sciences and Humanities, Federal University of ABC, Santo Andre, São Paulo, 09210-180, Brazil
| | - Gabriela Santos-Gomes
- Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Rua General Gustavo Cordeiro de Farias, 384, 59012-570 Natal, Brazil
| | - Luiz Felipe D Passero
- São Paulo State University (Unesp), Institute of Biosciences, São Vicente, Praça Infante Dom Henrique, s/n, 11330-900 São Vicente, SP, Brazil.
| |
Collapse
|
45
|
Zhou ZH, Yang J, Kong AN. Phytochemicals in Traditional Chinese Herbal Medicine: Cancer Prevention and Epigenetics Mechanisms. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40495-017-0086-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
46
|
Garcia-Cremades M, Pitou C, Iversen PW, Troconiz IF. Characterizing Gemcitabine Effects Administered as Single Agent or Combined with Carboplatin in Mice Pancreatic and Ovarian Cancer Xenografts: A Semimechanistic Pharmacokinetic/Pharmacodynamics Tumor Growth-Response Model. J Pharmacol Exp Ther 2016; 360:445-456. [DOI: 10.1124/jpet.116.237610] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/22/2016] [Indexed: 12/15/2022] Open
|
47
|
Zhang RX, Li Y, Tian DD, Liu Y, Nian W, Zou X, Chen QZ, Zhou LY, Deng ZL, He BC. Ursolic acid inhibits proliferation and induces apoptosis by inactivating Wnt/β-catenin signaling in human osteosarcoma cells. Int J Oncol 2016; 49:1973-1982. [PMID: 27665868 DOI: 10.3892/ijo.2016.3701] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/01/2016] [Indexed: 11/06/2022] Open
Abstract
Although multiple chemotherapeutic agents have been used for osteosarcoma (OS) treatment, their mechanisms need further study. Ursolic acid (UA), a pentacyclic triterpenoid, can reduce cell proliferation and induce apoptosis in various cancer cells, such as OS. However, the exact mechanism underlying this function remains unclear. In this study, we investigated the anti‑proliferative effect of UA in human OS 143B cells and dissected the possible molecular mechanism underlying this effect. We demonstrated that UA can reduce cell proliferation, induce apoptosis and arrest cell cycle in 143B cells, as well as inhibit OS tumor growth in a mouse xenograft model. Using a luciferase reporter assay, we found that the Wnt/β‑catenin signaling is inhibited by UA in 143B cells. Correspondingly, the expression level and nuclear translocation of β‑catenin are both decreased by UA. Exogenous expression of β‑catenin attenuates the anticancer effect of UA in 143B cells, while knockdown of β‑catenin enhances this effect. UA increases the expression level of p53 in a concentration‑dependent manner, and inhibition of p53 reduces the anticancer effect of UA in 143B cells. Moreover, inhibition of p53 partly reverses the UA‑induced downregulation of β‑catenin, as do the targets of Wnt/β‑catenin signaling, such as c‑Myc and cyclin D1. Our findings indicated that UA can inhibit the proliferation of 143B OS cells through inactivation of Wnt/β-catenin signaling, which may be mediated partly by upregulating the expression of p53.
Collapse
Affiliation(s)
- Ran-Xi Zhang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, P.R. China
| | - Yang Li
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, P.R. China
| | - Dong-Dong Tian
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, P.R. China
| | - Yang Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Wu Nian
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, P.R. China
| | - Xiang Zou
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, P.R. China
| | - Qian-Zhao Chen
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, P.R. China
| | - Lin-Yun Zhou
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, P.R. China
| | - Zhong-Liang Deng
- Department of Orthopaedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Bai-Cheng He
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
48
|
Gao JL, Shui YM, Jiang W, Huang EY, Shou QY, Ji X, He BC, Lv GY, He TC. Hypoxia pathway and hypoxia-mediated extensive extramedullary hematopoiesis are involved in ursolic acid's anti-metastatic effect in 4T1 tumor bearing mice. Oncotarget 2016; 7:71802-71816. [PMID: 27708244 PMCID: PMC5342124 DOI: 10.18632/oncotarget.12375] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/24/2016] [Indexed: 01/13/2023] Open
Abstract
Hypoxic in the tumor mass is leading to the myeloproliferative-like disease (leukemoid reaction) and anemia of body, which characterized by strong extensive extramedullary hematopoiesis (EMH) in spleen. As the key transcription factor of hypoxia, hypoxia-inducible factor-1 (HIF-1) activates the expression of genes essential for EMH processes including enhanced blood cell production and angiogenesis. We found ursolic acid (UA), a natural pentacyclic triterpenoid carboxylic acid, inhibited growth of breast cancer both in vivo and in vitro. The suppression was mediated through the inhibition of multiple cell pathways linked to inflammation, proliferation, angiogenesis, and metastasis. UA also suppressed the leukemoid reaction and the EMH phenomenon of the tumor bearing mice without any significant suppression on body weight (i.p. by 20 mg/kg for 28 days). This is associated with the significant decrease in white blood cells (WBC), platelets (PLT) and spleen weight. During this process, we also detected the down-regulation of cell proliferative genes (PCNA, and β-catenin), and metastatic genes (VEGF, and HIF-1α), as well as the depression of nuclear protein intensity of HIF-1α. Furthermore, the expression of E2F1, p53 and MDM2 genes were increased in UA group when the VEGF and HIF-1α was over-expressed. Cancer cells were sensitive to UA treating after the silencing of HIF-1α and the response of Hypoxic pathway reporter to UA was suppressed when HIF-1α was over expressed. Overall, our results from experimental and predictive studies suggest that the anticancer activity of UA may be at least in part caused by suppressing the cancer hypoxia and hypoxia-mediated EMH.
Collapse
Affiliation(s)
- Jian-Li Gao
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yan-Mei Shui
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Wei Jiang
- Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - En-Yi Huang
- Chongqing Medical University, Chongqing 400016, China
| | - Qi-Yang Shou
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xin Ji
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Bai-Cheng He
- Chongqing Medical University, Chongqing 400016, China
| | - Gui-Yuan Lv
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
49
|
Shan JZ, Xuan YY, Zhang Q, Huang JJ. Ursolic acid sensitized colon cancer cells to chemotherapy under hypoxia by inhibiting MDR1 through HIF-1α. J Zhejiang Univ Sci B 2016; 17:672-82. [PMID: 27604859 PMCID: PMC5018614 DOI: 10.1631/jzus.b1600266] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/08/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To explore the efficacy of ursolic acid in sensitizing colon cancer cells to chemotherapy under hypoxia and its underlying mechanisms. METHODS Three colon cancer cell lines (RKO, LoVo, and SW480) were used as in vitro models. 5-Fluorouracil (5-FU) and oxaliplatin were used as chemotherapeutic drugs. Cell viability and apoptosis were tested to evaluate the sensitivity of colon cancer cells to chemotherapy. The transcription and expression levels of hypoxia-inducible factor-1α (HIF-1α), multidrug resistance gene 1 (MDR1), and vascular endothelial growth factors (VEGF) were assessed by quantitative real-time polymerase chain reaction (qRT-PCR) and immunoblotting. Cycloheximide and MG132 were used to inhibit protein synthesis and degradation, respectively. In vitro tube formation assay was used to evaluate angiogenesis. RESULTS We demonstrated the chemosensitizing effects of ursolic acid with 5-FU and oxaliplatin in three colon cancer cell lines under hypoxia. This effect was correlated to its inhibition of MDR1 through HIF-1α. Moreover, ursolic acid was capable of inhibiting HIF-1α accumulation with little effects on its constitutional expression in normoxia. In addition, ursolic acid also down-regulated VEGF and inhibited tumor angiogenesis. CONCLUSIONS Ursolic acid exerted chemosensitizing effects in colon cancer cells under hypoxia by inhibiting HIF-1α accumulation and the subsequent expression of the MDR1 and VEGF.
Collapse
Affiliation(s)
- Jian-zhen Shan
- Department of Medical Oncology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yan-yan Xuan
- Cancer Institute of Zhejiang University, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou 310009, China
| | - Qi Zhang
- Department of General Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jian-jin Huang
- Department of Medical Oncology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
50
|
Jianxin C, Qingxia X, Junhui W, Qinhong Z. A Case of Recurrent Hepatocellular Carcinoma Acquiring Complete Remission of Target Lesion With Treatment With Traditional Chinese Medicine. Integr Cancer Ther 2016; 16:597-604. [PMID: 27444311 PMCID: PMC5739135 DOI: 10.1177/1534735416660617] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide. Although surgery is known as the most promising radical treatment, a high recurrent or metastatic rate after surgery has limited its clinical efficacy. Sorafenib, a target agent, has seemed to be the only option for metastatic HCC patients to date, but none of clinical trials showed it could prolong the overall survival (OS) of advanced HCC to 1 year. How to prolong the OS and improve cure rate of HCC patients is still beset with difficulties. This report presents a rare case of recurrent HCC patient with complete regression of target lesion with 2 years of Chinese herbal treatment. A 64-year-old Chinese man with hepatitis B virus–associated chronic hepatitis presented HCC has been clinically diagnosed tumor relapse and omentum metastasis with computed tomography and α-fetoprotein blood test 4 months after surgery. It was decided the patient would receive traditional Chinese medicine treatment because of poor prognosis. After approximately 2 years of treatment, recurrent hepatic tumor and omentum metastasis have been found in complete regression. The patient remains alive over 31 months after relapse.
Collapse
Affiliation(s)
| | - Xu Qingxia
- 1 Quzhou People's Hospital, Zhejiang, China
| | - Wang Junhui
- 2 Department of Radiation Oncology, Quzhou People's Hospital, Zhejiang, China
| | | |
Collapse
|