1
|
Nassiri M, Gopalan V, Vakili-Azghandi M. Modifications of Ribonucleases in Order to Enhance Cytotoxicity in Anticancer Therapy. Curr Cancer Drug Targets 2022; 22:373-387. [PMID: 35240973 DOI: 10.2174/1568009622666220303101005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 11/22/2022]
Abstract
Ribonucleases (RNases) are a superfamily of enzymes that have been extensively studied since the 1960s. For a long time, this group of secretory enzymes was studied as an important model for protein chemistry such as folding, stability and enzymatic catalysis. Since it was discovered that RNases displayed cytotoxic activity against several types of malignant cells, recent investigation has focused mainly on the biological functions and medical applications of engineered RNases. In this review, we describe structures, functions and mechanisms of antitumor activity of RNases. They operate at the crossroads of transcription and translation, preferentially degrading tRNA. As a result, this inhibits protein synthesis, induces apoptosis and causes death of cancer cells. This effect can be enhanced thousands of times when RNases are conjugated with monoclonal antibodies. Such combinations, called immunoRNases, have demonstrated selective antitumor activity against cancer cells both in vitro and in animal models. This review summarizes the current status of engineered RNases and immunoRNases as promising novel therapeutic agents for different types of cancer. Also, we describe our experimental results from published or previously unpublished research and compare with other scientific information.
Collapse
Affiliation(s)
- Mohammadreza Nassiri
- Recombinant Proteins Research Group, The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
- School of Life and Environmental Sciences, The University of Sydney, Sydney 2006, NSW, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia
| | | |
Collapse
|
2
|
Discovery of antitumor effects of leczymes. Glycoconj J 2022; 39:157-165. [DOI: 10.1007/s10719-021-10033-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/18/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022]
|
3
|
A Nuclear-Directed Ribonuclease Variant Targets Cancer Stem Cells and Inhibits Migration and Invasion of Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13174350. [PMID: 34503160 PMCID: PMC8430808 DOI: 10.3390/cancers13174350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary During the past decades the achievements made in treating cancers have significantly improved the survival of patients. However, cancer is still one of the leading causes of mortality. It is suggested that treatment failure is mediated by a subpopulation of tumor cells named cancer stem cells that can survive after treatment and promote cancer relapse. Targeting these cells is important to improve cancer therapy. The aim of our study is to determine the effect of a human ribonuclease variant on breast cancer cells grown in 3D and on cancer stem cells. Moreover, we study its effect on the ability of breast cancer cells to migrate and produce metastasis, responsible for about 90% of cancer deaths. We show that this ribonuclease arrests tumor cells grown in 3D without affecting normal breast cells, and this significantly inhibits cancer stem cell development. Additionally, it reduces the migratory and invasive capacities of tumor cells. Abstract Despite the significant advances in cancer research made in recent years, this disease remains one of the leading causes of death worldwide. In part, this is due to the fact that after therapy, a subpopulation of self-renewing tumor cells can survive and promote cancer relapse, resistance to therapies and metastasis. Targeting these cancer stem cells (CSCs) is therefore essential to improve the clinical outcome of cancer patients. In this sense, multi-targeted drugs may be promising agents targeting CSC-associated multifocal effects. We have previously constructed different human pancreatic ribonuclease (RNase) variants that are cytotoxic for tumor cells due to a non-classical nuclear localization signal introduced in their sequence. These cytotoxic RNases affect the expression of multiple genes involved in deregulated metabolic and signaling pathways in cancer cells and are highly cytotoxic for multidrug-resistant tumor cell lines. Here, we show that these cytotoxic nuclear-directed RNases are highly selective for tumor cell lines grown in 3D, inhibit CSCs’ development and diminish the self-renewal capacity of the CSCs population. Moreover, these human RNase variants reduce the migration and invasiveness of highly invasive breast cancer cells and downregulate N-cadherin expression.
Collapse
|
4
|
Tatsuta T, Nakasato A, Sugawara S, Hosono M. Transcriptomic alterations in malignant pleural mesothelioma cells in response to long‑term treatment with bullfrog sialic acid‑binding lectin. Mol Med Rep 2021; 23:467. [PMID: 33880588 PMCID: PMC8097763 DOI: 10.3892/mmr.2021.12106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a universally lethal type of cancer that is increasing in incidence worldwide; therefore, the development of new drugs for MPM is an urgent task. Bullfrog sialic acid-binding lectin (cSBL) is a multifunctional protein that has carbohydrate-binding and ribonuclease activities. cSBL exerts marked antitumor activity against numerous types of cancer cells, with low toxicity to normal cells. Although in vitro and in vivo studies revealed that cSBL was effective against MPM, the mechanism by which cSBL exerts antitumor effects is not fully understood. To further understand the mechanism of action of cSBL, the present study aimed to identify the key molecules whose expression was affected by cSBL. The present study established cSBL-resistant MPM cells. Microarray analyses revealed that there were significant pleiotropic changes in the expression profiles of several genes, including multiple genes involved in metabolic pathways in cSBL-resistant cells. Furthermore, the expression of some members of the aldo-keto reductase family was revealed to be markedly downregulated in these cells. Among these, it was particularly interesting that cSBL action reduced the level of AKR1B10, which has been reported as a biomarker candidate for MPM prognosis. These findings revealed novel aspects of the effect of cSBL, which may contribute to the development of new therapeutic strategies for MPM.
Collapse
Affiliation(s)
- Takeo Tatsuta
- Division of Cell Recognition, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981‑8558, Japan
| | - Arisu Nakasato
- Division of Cell Recognition, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981‑8558, Japan
| | - Shigeki Sugawara
- Division of Cell Recognition, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981‑8558, Japan
| | - Masahiro Hosono
- Division of Cell Recognition, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981‑8558, Japan
| |
Collapse
|
5
|
García-Galindo G, Castro J, Matés J, Bravo M, Ribó M, Vilanova M, Benito A. The Selectivity for Tumor Cells of Nuclear-Directed Cytotoxic RNases Is Mediated by the Nuclear/Cytoplasmic Distribution of p27 KIP1. Molecules 2021; 26:molecules26051319. [PMID: 33801209 PMCID: PMC7957890 DOI: 10.3390/molecules26051319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/03/2022] Open
Abstract
Although single targeted anti-cancer drugs are envisaged as safer treatments because they do not affect normal cells, cancer is a very complex disease to be eradicated with a single targeted drug. Alternatively, multi-targeted drugs may be more effective and the tumor cells may be less prone to develop drug resistance although these drugs may be less specific for cancer cells. We have previously developed a new strategy to endow human pancreatic ribonuclease with antitumor action by introducing in its sequence a non-classical nuclear localization signal. These engineered proteins cleave multiple species of nuclear RNA promoting apoptosis of tumor cells. Interestingly, these enzymes, on ovarian cancer cells, affect the expression of multiple genes implicated in metabolic and signaling pathways that are critic for the development of cancer. Since most of these targeted pathways are not highly relevant for non-proliferating cells, we envisioned the possibility that nuclear directed-ribonucleases were specific for tumor cells. Here, we show that these enzymes are much more cytotoxic for tumor cells in vitro. Although the mechanism of selectivity of NLSPE5 is not fully understood, herein we show that p27KIP1 displays an important role on the higher resistance of non-tumor cells to these ribonucleases.
Collapse
Affiliation(s)
- Glòria García-Galindo
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, Maria Aurèlia Capmany 40, 17003 Girona, Spain; (G.G.-G.); (J.C.); (J.M.); (M.B.); (M.R.)
| | - Jessica Castro
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, Maria Aurèlia Capmany 40, 17003 Girona, Spain; (G.G.-G.); (J.C.); (J.M.); (M.B.); (M.R.)
- Institut d’Investigació Biomèdica de Girona Josep Trueta (IdIBGi), 17003 Girona, Spain
| | - Jesús Matés
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, Maria Aurèlia Capmany 40, 17003 Girona, Spain; (G.G.-G.); (J.C.); (J.M.); (M.B.); (M.R.)
- Institut d’Investigació Biomèdica de Girona Josep Trueta (IdIBGi), 17003 Girona, Spain
| | - Marlon Bravo
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, Maria Aurèlia Capmany 40, 17003 Girona, Spain; (G.G.-G.); (J.C.); (J.M.); (M.B.); (M.R.)
- Institut d’Investigació Biomèdica de Girona Josep Trueta (IdIBGi), 17003 Girona, Spain
| | - Marc Ribó
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, Maria Aurèlia Capmany 40, 17003 Girona, Spain; (G.G.-G.); (J.C.); (J.M.); (M.B.); (M.R.)
- Institut d’Investigació Biomèdica de Girona Josep Trueta (IdIBGi), 17003 Girona, Spain
| | - Maria Vilanova
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, Maria Aurèlia Capmany 40, 17003 Girona, Spain; (G.G.-G.); (J.C.); (J.M.); (M.B.); (M.R.)
- Institut d’Investigació Biomèdica de Girona Josep Trueta (IdIBGi), 17003 Girona, Spain
- Correspondence: (M.V.); (A.B.); Tel.: +34-972418173 (M.V.); +34-630415072 (A.B.)
| | - Antoni Benito
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, Maria Aurèlia Capmany 40, 17003 Girona, Spain; (G.G.-G.); (J.C.); (J.M.); (M.B.); (M.R.)
- Institut d’Investigació Biomèdica de Girona Josep Trueta (IdIBGi), 17003 Girona, Spain
- Correspondence: (M.V.); (A.B.); Tel.: +34-972418173 (M.V.); +34-630415072 (A.B.)
| |
Collapse
|
6
|
Castro J, Ribó M, Vilanova M, Benito A. Strengths and Challenges of Secretory Ribonucleases as AntiTumor Agents. Pharmaceutics 2021; 13:82. [PMID: 33435285 PMCID: PMC7828032 DOI: 10.3390/pharmaceutics13010082] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/25/2022] Open
Abstract
Approaches to develop effective drugs to kill cancer cells are mainly focused either on the improvement of the currently used chemotherapeutics or on the development of targeted therapies aimed at the selective destruction of cancer cells by steering specific molecules and/or enhancing the immune response. The former strategy is limited by its genotoxicity and severe side effects, while the second one is not always effective due to tumor cell heterogeneity and variability of targets in cancer cells. Between these two strategies, several approaches target different types of RNA in tumor cells. RNA degradation alters gene expression at different levels inducing cell death. However, unlike DNA targeting, it is a pleotropic but a non-genotoxic process. Among the ways to destroy RNA, we find the use of ribonucleases with antitumor properties. In the last few years, there has been a significant progress in the understanding of the mechanism by which these enzymes kill cancer cells and in the development of more effective variants. All the approaches seek to maintain the requirements of the ribonucleases to be specifically cytotoxic for tumor cells. These requirements start with the competence of the enzymes to interact with the cell membrane, a process that is critical for their internalization and selectivity for tumor cells and continue with the downstream effects mainly relying on changes in the RNA molecular profile, which are not only due to the ribonucleolytic activity of these enzymes. Although the great improvements achieved in the antitumor activity by designing new ribonuclease variants, some drawbacks still need to be addressed. In the present review, we will focus on the known mechanisms used by ribonucleases to kill cancer cells and on recent strategies to solve the shortcomings that they show as antitumor agents, mainly their pharmacokinetics.
Collapse
Affiliation(s)
- Jessica Castro
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, Carrer Maria Aurèlia Capmany, 40, 17003 Girona, Spain; (J.C.); (M.R.)
- Institut d’Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Hospital de Santa Caterina, Carrer del Dr. Castany, s/n, 17190 Salt, Spain
| | - Marc Ribó
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, Carrer Maria Aurèlia Capmany, 40, 17003 Girona, Spain; (J.C.); (M.R.)
- Institut d’Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Hospital de Santa Caterina, Carrer del Dr. Castany, s/n, 17190 Salt, Spain
| | - Maria Vilanova
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, Carrer Maria Aurèlia Capmany, 40, 17003 Girona, Spain; (J.C.); (M.R.)
- Institut d’Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Hospital de Santa Caterina, Carrer del Dr. Castany, s/n, 17190 Salt, Spain
| | - Antoni Benito
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, Carrer Maria Aurèlia Capmany, 40, 17003 Girona, Spain; (J.C.); (M.R.)
- Institut d’Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Hospital de Santa Caterina, Carrer del Dr. Castany, s/n, 17190 Salt, Spain
| |
Collapse
|
7
|
Construction of Highly Stable Cytotoxic Nuclear-Directed Ribonucleases. Molecules 2018; 23:molecules23123273. [PMID: 30544927 PMCID: PMC6321540 DOI: 10.3390/molecules23123273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/05/2018] [Accepted: 12/08/2018] [Indexed: 02/01/2023] Open
Abstract
Ribonucleases are proteins whose use is promising in anticancer therapy. We have previously constructed different human pancreatic ribonuclease variants that are selectively cytotoxic for tumor cells by introducing a nuclear localization signal into their sequence. However, these modifications produced an important decrease in their stability compromising their behavior in vivo. Here, we show that we can significantly increase the thermal stability of these cytotoxic proteins by introducing additional disulfide bonds by site-directed mutagenesis. One of these variants increases its thermal stability by around 17 °C, without affecting its catalytic activity while maintaining the cytotoxic activity against tumor cells. We also show that the most stable variant is significantly more resistant to proteolysis when incubated with proteinase K or with human sera, suggesting that its half-live could be increased in vivo once administered.
Collapse
|
8
|
Satoh T, Tatsuta T, Sugawara S, Hara A, Hosono M. Synergistic anti-tumor effect of bullfrog sialic acid-binding lectin and pemetrexed in malignant mesothelioma. Oncotarget 2018; 8:42466-42477. [PMID: 28476017 PMCID: PMC5522080 DOI: 10.18632/oncotarget.17198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/06/2017] [Indexed: 12/26/2022] Open
Abstract
Malignant mesothelioma is an aggressive cancer with limited therapeutic options. Sialic acid-binding lectin isolated from Rana catesbeiana oocytes (cSBL) is a multifunctional protein with anti-cancer activity. The effects of pemetrexed, cisplatin, and cSBL were evaluated in mesothelioma and normal mesothelial cell lines. We evaluated cytotoxicity, apoptosis, caspase-3 cleavage and activation, cell proliferation, cell cycle arrest, and levels of cell cycle proteins in H28 cells treated with pemetrexed, cisplatin, and cSBL alone or in combination. Treatment with cSBL alone was cytotoxic to mesothelioma cells. The anti-cancer effect of cSBL was observed in a broader range of cell lines and exhibited greater cancer cell selectivity than pemetrexed or cisplatin. Combination treatment with pemetrexed + cSBL resulted in greater dose-dependent cytotoxicity than pemetrexed + cisplatin, the standard of care in mesothelioma. The synergistic effect of pemetrexed + cSBL was mediated by the cytostatic effect of pemetrexed and the cytotoxic effect of cSBL. It thus appears that cSBL has therapeutic potential for the treatment of mesothelioma.
Collapse
Affiliation(s)
- Toshiyuki Satoh
- Department of Clinical Pharmacotherapeutics, Tohoku Medical and Pharmaceutical University, Aobaku, Sendai, Miyagi 981-8558, Japan.,Division of Cell Recognition Study, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Aobaku, Sendai, Miyagi 981-8558, Japan
| | - Takeo Tatsuta
- Division of Cell Recognition Study, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Aobaku, Sendai, Miyagi 981-8558, Japan
| | - Shigeki Sugawara
- Division of Cell Recognition Study, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Aobaku, Sendai, Miyagi 981-8558, Japan
| | - Akiyoshi Hara
- Department of Clinical Pharmacotherapeutics, Tohoku Medical and Pharmaceutical University, Aobaku, Sendai, Miyagi 981-8558, Japan
| | - Masahiro Hosono
- Division of Cell Recognition Study, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Aobaku, Sendai, Miyagi 981-8558, Japan
| |
Collapse
|
9
|
Vert A, Castro J, Ribó M, Vilanova M, Benito A. Transcriptional profiling of NCI/ADR-RES cells unveils a complex network of signaling pathways and molecular mechanisms of drug resistance. Onco Targets Ther 2018; 11:221-237. [PMID: 29379303 PMCID: PMC5757493 DOI: 10.2147/ott.s154378] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Ovarian cancer has the highest mortality rate among all the gynecological cancers. This is mostly due to the resistance of ovarian cancer to current chemotherapy regimens. Therefore, it is of crucial importance to identify the molecular mechanisms associated with chemoresistance. Methods NCI/ADR-RES is a multidrug-resistant cell line that is a model for the study of drug resistance in ovarian cancer. We carried out a microarray-derived transcriptional profiling analysis of NCI/ADR-RES to identify differentially expressed genes relative to its parental OVCAR-8. Results Gene-expression profiling has allowed the identification of genes and pathways that may be important for the development of drug resistance in ovarian cancer. The NCI/ADR-RES cell line has differential expression of genes involved in drug extrusion, inactivation, and efficacy, as well as genes involved in the architectural and functional reorganization of the extracellular matrix. These genes are controlled through different signaling pathways, including MAPK–Akt, Wnt, and Notch. Conclusion Our findings highlight the importance of using orthogonal therapies that target completely independent pathways to overcome mechanisms of resistance to both classical chemotherapeutic agents and molecularly targeted drugs.
Collapse
Affiliation(s)
- Anna Vert
- Protein Engineering Laboratory, Department of Biology, Faculty of Sciences, Universitat de Girona.,Biomedical Research Institute of Girona (IDIBGi), Girona, Spain
| | - Jessica Castro
- Protein Engineering Laboratory, Department of Biology, Faculty of Sciences, Universitat de Girona.,Biomedical Research Institute of Girona (IDIBGi), Girona, Spain
| | - Marc Ribó
- Protein Engineering Laboratory, Department of Biology, Faculty of Sciences, Universitat de Girona.,Biomedical Research Institute of Girona (IDIBGi), Girona, Spain
| | - Maria Vilanova
- Protein Engineering Laboratory, Department of Biology, Faculty of Sciences, Universitat de Girona.,Biomedical Research Institute of Girona (IDIBGi), Girona, Spain
| | - Antoni Benito
- Protein Engineering Laboratory, Department of Biology, Faculty of Sciences, Universitat de Girona.,Biomedical Research Institute of Girona (IDIBGi), Girona, Spain
| |
Collapse
|
10
|
Lp16-PSP, a Member of YjgF/YER057c/UK114 Protein Family Induces Apoptosis and p21WAF1/CIP1 Mediated G1 Cell Cycle Arrest in Human Acute Promyelocytic Leukemia (APL) HL-60 Cells. Int J Mol Sci 2017. [PMCID: PMC5713375 DOI: 10.3390/ijms18112407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lp16-PSP (Latcripin 16-Perchloric acid Soluble Protein) from Lentinula edodes strain C91-3 has been reported previously in our laboratory to have selective cytotoxic activity against a panel of human cell lines. Herein, we have used several parameters in order to characterize the Lp16-PSP-induced cell death using human acute promyeloid leukemia (HL-60) as a model cancer. The results of phase contrast microscopy, nuclear examination, DNA fragmentation detection and flow cytometry revealed that high doses of Lp16-PSP resulted in the induction of apoptosis in HL-60 cells. The colorimetric assay showed the activation of caspase-8, -9, and -3 cascade highlighting the involvement of Fas/FasL-related pathway. Whereas, Western blot revealed the cleavage of caspase-3, increased expression of Bax, the release of cytochrome c and decreased expression of Bcl-2 in a dose-dependent manner, suggesting the intrinsic pathway might be involved in Lp16-PSP-induced apoptosis as well. Low doses of Lp16-PSP resulted in the anchorage-independent growth inhibition, induction of G1 phase arrest, accompanied by the increased expression of p21WAF1/CIP1, along with the decreased expression of cyclin D, E, and cdk6. In addition, Lp16-PSP resulted in constitutive translocation inhibition of transcription factor nuclear factor kappa B (NF-κB) into the nucleus by decreasing the phosphorylation of IκBα. All these findings suggested Lp16-PSP as a potential agent against acute promyeloid leukemia; however, further investigations are ultimately needed.
Collapse
|
11
|
Vert A, Castro J, Ribó M, Benito A, Vilanova M. Activating transcription factor 3 is crucial for antitumor activity and to strengthen the antiviral properties of Onconase. Oncotarget 2017; 8:11692-11707. [PMID: 28035074 PMCID: PMC5355296 DOI: 10.18632/oncotarget.14302] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 11/30/2016] [Indexed: 12/18/2022] Open
Abstract
Onconase is a ribonuclease that presents both antitumor and antiviral properties linked to its ribonucleolytic activity and represents a new class of RNA-damaging drugs. It has reached clinical trials for the treatment of several cancers and human papilloma virus warts. Onconase targets different RNAs in the cell cytosol but Onconase-treated cells present features that are different from a simple arrest of protein synthesis. We have used microarray-derived transcriptional profiling to identify Onconase-regulated genes in two ovarian cancer cell lines (NCI/ADR-RES and OVCAR-8). RT-qPCR analyses have confirmed the microarray findings. We have identified a network of up-regulated genes implicated in different signaling pathways that may explain the cytotoxic effects exerted by Onconase. Among these genes, activating transcription factor 3 (ATF3) plays a central role in the key events triggered by Onconase in treated cancer cells that finally lead to apoptosis. This mechanism, mediated by ATF3, is cell-type independent. Up-regulation of ATF3 may also explain the antiviral properties of this ribonuclease because this factor is involved in halting viral genome replication, keeping virus latency or preventing viral oncogenesis. Finally, Onconase-regulated genes are different from those affected by nuclear-directed ribonucleases.
Collapse
Affiliation(s)
- Anna Vert
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, 17003, Girona, Spain.,Institut d'Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Girona, Spain
| | - Jessica Castro
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, 17003, Girona, Spain.,Institut d'Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Girona, Spain
| | - Marc Ribó
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, 17003, Girona, Spain.,Institut d'Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Girona, Spain
| | - Antoni Benito
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, 17003, Girona, Spain.,Institut d'Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Girona, Spain
| | - Maria Vilanova
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, 17003, Girona, Spain.,Institut d'Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Girona, Spain
| |
Collapse
|
12
|
Mironova N, Patutina O, Brenner E, Kurilshikov A, Vlassov V, Zenkova M. The systemic tumor response to RNase A treatment affects the expression of genes involved in maintaining cell malignancy. Oncotarget 2017; 8:78796-78810. [PMID: 29108266 PMCID: PMC5667999 DOI: 10.18632/oncotarget.20228] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/25/2017] [Indexed: 12/27/2022] Open
Abstract
Recently, pancreatic RNase A was shown to inhibit tumor and metastasis growth that accompanied by global alteration of miRNA profiles in the blood and tumor tissue (Mironova et al., 2013). Here, we performed a whole transcriptome analysis of murine Lewis lung carcinoma (LLC) after treatment of tumor-bearing mice with RNase A. We identified 966 differentially expressed transcripts in LLC tumors, of which 322 were upregulated and 644 were downregulated after RNase A treatment. Many of these genes are involved in signaling pathways that regulate energy metabolism, cell-growth promoting and transforming activity, modulation of the cancer microenvironment and extracellular matrix components, and cellular proliferation and differentiation. Following RNase A treatment, we detected an upregulation of carbohydrate metabolism, inositol phosphate cascade and oxidative phosphorylation, re-arrangement of cell adhesion, cell cycle control, apoptosis, and transcription. Whereas cancer-related signaling pathways (e.g., TGF-beta, JAK/STAT, and Wnt) were downregulated following RNase A treatment, as in the case of the PI3K/AKT pathway, which is involved in the progression of non-small lung cancer. RNase A therapy resulted in the downregulation of genes that inhibit the biogenesis of some miRNAs, particularly the let-7 miRNA family. Taken together, our data suggest that the antitumor activity and decreased invasion potential of tumor cells caused by RNase A are associated with enhanced energy cascade functioning, rearrangement of cancer-related events regulating cell growth and dissemination, and attenuation of signaling pathways having tumor-promoting activity. Thus, RNase A can be proposed as a potential component of anticancer therapy with multiple modes of action.
Collapse
Affiliation(s)
- Nadezhda Mironova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Olga Patutina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Evgenyi Brenner
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Alexander Kurilshikov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia.,Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Valentin Vlassov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Marina Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| |
Collapse
|