1
|
Gudur AK, Kale SR, Gudur RA, Bhosale SJ, Datkhile KD. Genetic Polymorphisms of XPC, XPD, XPG Genes and their Association with Radiotherapy Induced Toxicity among Head and Neck Cancer Patients: A Hospital Based Study from Maharashtra. Asian Pac J Cancer Prev 2024; 25:191-199. [PMID: 38285784 PMCID: PMC10911723 DOI: 10.31557/apjcp.2024.25.1.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/24/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND The present study was planned to investigate possible association of single nucleotide polymorphisms (SNPs) of nucleotide excision repair (NER) genes such as XPC, XPD, XPG with acute radiation induced toxicities such as skin reactions and oral mucositis in normal tissue from head and neck cancer (HNC) patients receiving radiotherapy. Methods: Two hundred and fifty HNC patients receiving radiotherapy were enrolled in this study and the acute toxicity reactions and radiation response were recorded. Association of SNPs rs2228001 of XPC, rs238406, rs13181 of XPD and rs17655 of XPG gene with normal tissue reactions in the form of dermatitis and mucositis were studied by PCR-RFLP and direct DNA sequencing. RESULTS The results of univariate analysis of SNPs of XPC, XPD and XPG showed that XPC polymorphism at codon 939 of exon 15 (A>C) was not associated with dermatitis (OR=0.30, 95% CI: 0.06-1.39; p=0.125), or oral mucositis (OR=1.14, 95% CI: 0.41-3.20; p=0.793). The XPD codon 156 of exon 6 (C>A) and codon 751 of exon-23 A>C) polymorphism showed no association with radiosensitivity in HNC patients (OR=1.50, 95% CI: 0.60-3.71; p=0.080) for dermatitis, (OR=1.54, 95% CI: 0.66-3.61; p=0.312) for oral mucositis. The 1104 Asp variant genotype or allele of XPG (OR=1.35 95% CI: 0.50-3.64; p=0.541) showed no association with degree of radiotherapy associated dermatitis or mucositis (OR=0.80, 95% CI: 0.32-2.03; p=0.648) in HNC patients. The variant C allele of 2920 A/C genotype of XPC gene at codon 939 of exon 15, found protective with developing skin reactions with grade >1 (OR=0.60, 95% CI: 0.36-0.97; p=0.039) in HNC patients treated with radiotherapy. CONCLUSION The results obtained in this study concluded that the SNPs rs2228001of XPC, rs238406, rs13181 SNPs of XPD and rs17655 SNP of XPG are not associated with normal tissue toxicity in HNC patients treated with radiotherapy. Radiotherapy with high radiation dose was significantly associated with oral mucositis in response to radiotherapy.
Collapse
Affiliation(s)
- Anand K. Gudur
- Department of Oncology, Krishna Vishwa Vidyapeeth “Deemed to be University”, Taluka-Karad, Dist- Satara, Maharashtra) India.
| | - Shivani R. Kale
- Department of Molecular Biology & Genetics, Krishna Vishwa Vidyapeeth “Deemed to be University”, Taluka-Karad, Dist- Satara,Maharashtra, India.
| | - Rashmi A. Gudur
- Department of Oncology, Krishna Vishwa Vidyapeeth “Deemed to be University”, Taluka-Karad, Dist- Satara, Maharashtra) India.
| | - Suresh J. Bhosale
- Department of Oncology, Krishna Vishwa Vidyapeeth “Deemed to be University”, Taluka-Karad, Dist- Satara, Maharashtra) India.
| | - Kailas D. Datkhile
- Department of Molecular Biology & Genetics, Krishna Vishwa Vidyapeeth “Deemed to be University”, Taluka-Karad, Dist- Satara,Maharashtra, India.
| |
Collapse
|
2
|
Scott EN, Joseph AA, Dhanda A, Tanoshima R, Brooks B, Rassekh SR, Ross CJD, Carleton BC, Loucks CM. Systematic Critical Review of Genetic Factors Associated with Cisplatin-induced Ototoxicity: Canadian Pharmacogenomics Network for Drug Safety 2022 Update. Ther Drug Monit 2023; 45:714-730. [PMID: 37726872 DOI: 10.1097/ftd.0000000000001113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/01/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Cisplatin is commonly used to treat solid tumors; however, its use can be complicated by drug-induced hearing loss (ie, ototoxicity). The presence of certain genetic variants has been associated with the development/occurrence of cisplatin-induced ototoxicity, suggesting that genetic factors may be able to predict patients who are more likely to develop ototoxicity. The authors aimed to review genetic associations with cisplatin-induced ototoxicity and discuss their clinical relevance. METHODS An updated systematic review was conducted on behalf of the Canadian Pharmacogenomics Network for Drug Safety, based on the Preferred Reporting Items for Systematic reviews and Meta-Analyses 2020 statement. Pharmacogenomic studies that reported associations between genetic variation and cisplatin-induced ototoxicity were included. The evidence on genetic associations was summarized and evaluated, and knowledge gaps that can be used to inform future pharmacogenomic studies identified. RESULTS Overall, 40 evaluated reports, considering 47 independent patient populations, captured associations involving 24 genes. Considering GRADE criteria, genetic variants in 2 genes were strongly (ie, odds ratios ≥3) and consistently (ie, replication in ≥3 independent populations) predictive of cisplatin-induced ototoxicity. Specifically, an ACYP2 variant has been associated with ototoxicity in both children and adults, whereas TPMT variants are relevant in children. Encouraging evidence for associations involving several other genes also exists; however, further research is necessary to determine potential clinical relevance. CONCLUSIONS Genetic variation in ACYP2 and TPMT may be helpful in predicting patients at the highest risk of developing cisplatin-induced ototoxicity. Further research (including replication studies considering diverse pediatric and adult patient populations) is required to determine whether genetic variation in additional genes may help further identify patients most at risk.
Collapse
Affiliation(s)
- Erika N Scott
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Akshaya A Joseph
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, UBC, Vancouver, British Columbia, Canada
| | - Angie Dhanda
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, UBC, Vancouver, British Columbia, Canada
| | - Reo Tanoshima
- Department of Pediatrics, Yokohama City University Hospital, Yokohama, Japan
- YCU Center for Novel and Exploratory Clinical Trials, Yokohama City University Hospital, Yokohama, Japan
| | - Beth Brooks
- Audiology and Speech Pathology Department, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
- School of Audiology and Speech Science, UBC, Vancouver, British Columbia, Canada
| | - S Rod Rassekh
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Division of Oncology, Hematology and Bone Marrow Transplant, British Columbia Children's Hospital and UBC, Vancouver, British Columbia, Canada
| | - Colin J D Ross
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Faculty of Pharmaceutical Sciences, UBC, Vancouver, British Columbia, Canada
| | - Bruce C Carleton
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, UBC, Vancouver, British Columbia, Canada
- Pharmaceutical Outcomes Programme, British Columbia Children's Hospital, Vancouver, British Columbia, Canada; and
| | - Catrina M Loucks
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, UBC, Vancouver, British Columbia, Canada
- Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, UBC, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Ferreira AMC, Altemani JMC, Macedo LT, Lourenço GJ, Lima CSP. Genetic variability in cisplatin metabolic pathways and outcome of locally advanced head and neck squamous cell carcinoma patients. Sci Rep 2023; 13:16762. [PMID: 37798436 PMCID: PMC10556039 DOI: 10.1038/s41598-023-44040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 10/03/2023] [Indexed: 10/07/2023] Open
Abstract
Advanced head and neck squamous cell carcinoma (HNSCC) patients have been treated with cisplatin (CDDP) chemoradiation, and the variability of treatment effects has been attributed to single nucleotide variants (SNVs) in genes of metabolic pathways. This study investigated the roles of GSTM1, GSTT1, GSTP1 c.313A>G, XPC c.2815A>C, XPD c.934G>A and c.2251A>C, XPF c.2505T>C, ERCC1 c.354C>T, MLH1 c.93G>A, MSH2 c.211+9C>G, MSH3 c.3133G>A, EXO1 c.1765G>A, TP53 c.215G>C, CASP3 c.-1191A>G and c.-182-247G>T, FAS c.-1378G>A and c.-671A>G and FASL c.-844C>T SNVs in outcome of 109 patients treated with CDDP chemoradiation. Genotypes were identified in genomic DNA by PCR-based methods. Conventional criteria and tests analyzed response and survival. Patients with XPC c.2815AC or CC had 3.43 times more chances of presenting partial response or stable disease. Patients with FAS c.-671GG, GSTM1 present plus XPC c.2815AA, or plus XPD c.934GG, or plus XPD c.2251AA, or plus TP53 c.215GC or CC, and XPD c.2251AA plus XPF c.2505TT had up to 2.70 and 2.37 times more chances of presenting tumor progression and evolving to death, respectively. Our data indicate, for the first time, preliminary evidence that combined SNVs of CDDP metabolism act as independent prognostic factors and can be used to select patients for distinct treatments.
Collapse
Affiliation(s)
- Ana Maria Castro Ferreira
- Laboratory of Cancer Genetics, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - João Maurício Carrasco Altemani
- Department of Anesthesiology, Oncology and Radiology, Faculty of Medical Sciences, University of Campinas, Rua Alexander Fleming, 181, Cidade Universitária "Zeferino Vaz", Barão Geraldo, Campinas, São Paulo, CEP: 13083-970, Brazil
| | - Ligia Traldi Macedo
- Laboratory of Cancer Genetics, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Gustavo Jacob Lourenço
- Laboratory of Cancer Genetics, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Carmen Silvia Passos Lima
- Laboratory of Cancer Genetics, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil.
- Department of Anesthesiology, Oncology and Radiology, Faculty of Medical Sciences, University of Campinas, Rua Alexander Fleming, 181, Cidade Universitária "Zeferino Vaz", Barão Geraldo, Campinas, São Paulo, CEP: 13083-970, Brazil.
| |
Collapse
|
4
|
Association of Clinical Aspects and Genetic Variants with the Severity of Cisplatin-Induced Ototoxicity in Head and Neck Squamous Cell Carcinoma: A Prospective Cohort Study. Cancers (Basel) 2023; 15:cancers15061759. [PMID: 36980643 PMCID: PMC10046479 DOI: 10.3390/cancers15061759] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Background: Cisplatin (CDDP) is a major ototoxic chemotherapy agent for head and neck squamous cell carcinoma (HNSCC) treatment. Clinicopathological features and genotypes encode different stages of CDDP metabolism, as their coexistence may influence the prevalence and severity of hearing loss. Methods: HNSCC patients under CDDP chemoradiation were prospectively provided with baseline and post-treatment audiometry. Clinicopathological features and genetic variants encoding glutathione S-transferases (GSTT1, GSTM1, GSTP1), nucleotide excision repair (XPC, XPD, XPF, ERCC1), mismatch repair (MLH1, MSH2, MSH3, EXO1), and apoptosis (P53, CASP8, CASP9, CASP3, FAS, FASL)-related proteins were analyzed regarding ototoxicity. Results: Eighty-nine patients were included, with a cumulative CDDP dose of 260 mg/m2. Moderate/severe ototoxicity occurred in 26 (29%) patients, particularly related to hearing loss at frequencies over 3000 Hertz. Race, body-mass index, and cumulative CDDP were independent risk factors. Patients with specific isolated and combined genotypes of GSTM1, GSTP1 c.313A>G, XPC c.2815A>C, XPD c.934G>A, EXO1 c.1762G>A, MSH3 c.3133A>G, FASL c.-844A>T, and P53 c.215G>C SNVs had up to 32.22 higher odds of presenting moderate/severe ototoxicity. Conclusions: Our data present, for the first time, the association of combined inherited nucleotide variants involved in CDDP efflux, DNA repair, and apoptosis with ototoxicity, which could be potential predictors in future clinical and genomic models.
Collapse
|
5
|
Gene polymorphisms and prognosis of head and neck squamous cell carcinoma: a systematic review. Rep Pract Oncol Radiother 2022; 27:1045-1057. [PMID: 36632296 PMCID: PMC9826662 DOI: 10.5603/rpor.a2022.0109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/03/2022] [Indexed: 12/12/2022] Open
Abstract
Background Head and neck squamous cell carcinomas (HNSCCs) are associated with variable prognosis even with similar clinical characteristics and treatments. Gene polymorphisms have been suggested as prognostic factors for HNSCC which can justified this variable prognosis. So, the aim was to review literatures on gene polymorphisms and prognosis of HNSCCs. Materials and methods A systematic search was conducted using PubMed, Web of science, SCOPUS, Google Scholar and Cochrane library databases to find all related articles published up to December 2021 in the field of gene polymorphisms and HNSCC prognosis. Results Of 1029 initial searched articles, 71 articles were selected for inclusion in this systematic review. About 93 genes and 204 polymorphisms have been discussed in these articles. Among the most studied polymorphisms, the XRCC1 Arg399Gln and Arg194Trp polymorphisms were not associated with survival in most studies; the ERCC1 C19007T polymorphism had no significant association in any of the studies. Different gene polymorphisms of glutathione s-transferase family, including GSTM1 deletion, GSTT1 deletion and GSTP1 A313G, were not associated with survival in included studies. There are conflicting results regarding the association between polymorphisms such as ERCC2 A35931C, Asp312Asn, ERCC5 rs1047768 and rs17655 with HNSCC prognosis. Less studied polymorphisms, such as hOGG1 rs1052133 or the VEGF rs699947, were generally not associated with HNSCC prognosis. Conclusion Reviewed articles reported varied and contradictory results regarding the association of gene polymorphisms and HNSCC prognosis, which necessitates further studies along with meta-analysis on the results of such studies.
Collapse
|
6
|
Hurkmans EGE, Brand ACAM, Verdonschot JAJ, te Loo DMWM, Coenen MJH. Pharmacogenetics of chemotherapy treatment response and -toxicities in patients with osteosarcoma: a systematic review. BMC Cancer 2022; 22:1326. [PMID: 36536332 PMCID: PMC9761983 DOI: 10.1186/s12885-022-10434-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Osteosarcoma is the most common bone tumor in children and adolescents. Despite multiagent chemotherapy, only 71% of patients survives and these survivors often experience long-term toxicities. The main objective of this systematic review is to provide an overview of the discovery of novel associations of germline polymorphisms with treatment response and/or chemotherapy-induced toxicities in osteosarcoma. METHODS: MEDLINE and Embase were systematically searched (2010-July 2022). Genetic association studies were included if they assessed > 10 germline genetic variants in > 5 genes in relevant drug pathways or if they used a genotyping array or other large-scale genetic analysis. Quality was assessed using adjusted STrengthening the REporting of Genetic Association studies (STREGA)-guidelines. To find additional evidence for the identified associations, literature was searched to identify replication studies. RESULTS After screening 1999 articles, twenty articles met our inclusion criteria. These range from studies focusing on genes in relevant pharmacokinetic pathways to whole genome sequencing. Eleven articles reported on doxorubicin-induced cardiomyopathy. For seven genetic variants in CELF4, GPR35, HAS3, RARG, SLC22A17, SLC22A7 and SLC28A3, replication studies were performed, however without consistent results. Ototoxicity was investigated in one study. Five small studies reported on mucosistis or bone marrow, nephro- and/or hepatotoxicity. Six studies included analysis for treatment efficacy. Genetic variants in ABCC3, ABCC5, FasL, GLDC, GSTP1 were replicated in studies using heterogeneous efficacy outcomes. CONCLUSIONS Despite that results are promising, the majority of associations were poorly reproducible due to small patient cohorts. For the future, hypothesis-generating studies in large patient cohorts will be necessary, especially for cisplatin-induced ototoxicity as these are largely lacking. In order to form large patient cohorts, national and international collaboration will be essential.
Collapse
Affiliation(s)
- Evelien G. E. Hurkmans
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Annouk C. A. M. Brand
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Job A. J. Verdonschot
- grid.412966.e0000 0004 0480 1382Department of Clinical Genetics and Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - D. Maroeska W. M. te Loo
- grid.10417.330000 0004 0444 9382Department of Pediatrics, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Marieke J. H. Coenen
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands ,grid.5645.2000000040459992XDepartment of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
7
|
Ferracini AC, Lopes-Aguiar L, Lourenço GJ, Yoshida A, Lima CSP, Sarian LO, Derchain S, Kroetz DL, Mazzola PG. GSTP1 and ABCB1 Polymorphisms Predicting Toxicities and Clinical Management on Carboplatin and Paclitaxel-Based Chemotherapy in Ovarian Cancer. Clin Transl Sci 2020; 14:720-728. [PMID: 33326171 PMCID: PMC7993324 DOI: 10.1111/cts.12937] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Variation in drug disposition genes might contribute to susceptibility to toxicities and interindividual differences in clinical management on chemotherapy for epithelial ovarian cancer (EOC). This study was designed to explore the association of GST and ABCB1 genetic variation with hematologic and neurologic toxicity, changes in chemotherapy, and disease prognosis in Brazilian women with EOC. A total of 112 women with a confirmed histological diagnosis of EOC treated with carboplatin/paclitaxel were enrolled (2014–2019). The samples were analyzed by multiplex polymerase chain reaction (PCR) for the deletion of GSTM1 and GSTT1 genes. GSTP1 (c.313A>G/rs1695) and ABCB1 (c.1236C>T/rs1128503; c.3435C>T/rs1045642; c.2677G>T>A/rs2032582) single nucleotide polymorphisms (SNPs) were detected by real‐time PCR. Subjects with the GSTP1 c.313A>G had reduced risk of anemia (odds ratio (OR): 0.17, 95% confidence interval (CI): 0.04–0.69, P = 0.01, dominant model) and for thrombocytopenia (OR: 0.27, 95% CI: 0.12–0.64, P < 0.01; OR 0.18, 95% CI 0.03–0.85, P = 0.03, either dominant or recessive model), respectively. The GSTP1 c.313A>G AG genotype was associated with a lower risk of dose delay (OR: 0.35, 95% CI: 0.13–0.90, P = 0.03). The ABCB1 c.1236C>T was associated with increased risk of thrombocytopenia (OR: 0.15, 95% CI: 0.03–0.82, P = 0.03), whereas ABCB1 c.3435C>T had increased risk of grade 2 and 3 neurotoxicity (OR: 3.61, 95% CI: 1.08–121.01, P = 0.03) in recessive model (CC + CT vs. TT). This study suggests that GSTP1 c.313A>G, ABCB1 c.1236C>T, and c.3435C>T SNP detection is a potential predictor of hematological toxicity and neurotoxicity and could help predict the clinical management of women with EOC.
Collapse
Affiliation(s)
- Amanda Canato Ferracini
- Postgraduate Program in Medical Sciences, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil.,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Leisa Lopes-Aguiar
- Laboratory of Cancer Genetics, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Gustavo Jacob Lourenço
- Laboratory of Cancer Genetics, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Adriana Yoshida
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Carmen Silva Passos Lima
- Laboratory of Cancer Genetics, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Luis Otávio Sarian
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Sophie Derchain
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Deanna L Kroetz
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | | |
Collapse
|
8
|
Costa EFD, Lima TRP, Lopes-Aguiar L, Nogueira GAS, Visacri MB, Quintanilha JCF, Pincinato EC, Calonga L, Mariano FV, Altemani AMDAM, Altemani JMC, Moriel P, Chone CT, Ramos CD, Lima CSP. FAS and FASL variations in outcomes of tobacco- and alcohol-related head and neck squamous cell carcinoma patients. Tumour Biol 2020; 42:1010428320938494. [PMID: 32628088 DOI: 10.1177/1010428320938494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy and cisplatin lead to cell killing in head and neck squamous cell carcinoma patients, but adverse events and response to treatment are not the same in patients with similar clinicopathological aspects. The aim of this prospective study was to evaluate the roles of TP53 c.215G > C, FAS c.-671A > G, FAS c.-1378G > A, FASL c.-844 C > T, CASP3 c.-1191A > G, and CASP3 c.-182-247G > T single nucleotide variants in toxicity, response rate, and survival of cisplatin chemoradiation-treated head and neck squamous cell carcinoma patients. Genomic DNA was analyzed by polymerase chain reaction for genotyping. Differences between groups of patients were analyzed by chi-square test or Fisher's exact test, multiple logistic regression analysis, and Cox hazards model. One hundred nine patients with head and neck squamous cell carcinoma were enrolled in study. All patients were smokers and/or alcoholics. Patients with FAS c.-671GG genotype, FAS c.-671AG or GG genotype, and FASL c.-844CC genotype had 5.52 (95% confidence interval (CI): 1.42-21.43), 4.03 (95% CI: 1.51-10.79), and 5.77 (95% CI: 1.23-27.04) more chances of presenting chemoradiation-related anemia of grades 2-4, lymphopenia of grade 3 or 4, and ototoxicity of all grades, respectively, than those with the remaining genotypes. FAS c.-671GG genotype was also seen as an independent predictor of shorter event-free survival (hazard ratio (HR): 2.05; P = 0.007) and overall survival (HR: 1.83; P = 0.02) in our head and neck squamous cell carcinoma patients. These findings present, for the first time, preliminary evidence that inherited abnormalities in apoptosis pathway, related to FAS c.-671A > G and FASL c.-844 C > T single nucleotide variants, can alter toxicity and survival of tobacco- and alcohol-related head and neck squamous cell carcinoma patients homogeneously treated with cisplatin chemoradiation.
Collapse
Affiliation(s)
| | - Tathiane Regine Penna Lima
- Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Leisa Lopes-Aguiar
- Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | | | - Marília Berlofa Visacri
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | | | - Eder Carvalho Pincinato
- Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Luciane Calonga
- Department of Ophthalmology and Otorhinolaryngology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Fernanda Viviane Mariano
- Department of Pathology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | | | | | - Patrícia Moriel
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Carlos Takahiro Chone
- Department of Ophthalmology and Otorhinolaryngology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Celso Dario Ramos
- Department of Radiology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Carmen Silvia Passos Lima
- Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
9
|
Guberina M, Sak A, Pöttgen C, Tinhofer-Keilholz I, Budach V, Balermpas P, Von der Grün J, Rödel CM, Gkika E, Grosu AL, Abdollahi A, Debus J, Belka C, Pigorsch S, Combs SE, Mönnich D, Zips D, De-Colle C, Welz S, Linge A, Lohaus F, Baretton G, Gauler T, Baumann M, Krause M, Schuler M, Bankfalvi A, Höing B, Lang S, Stuschke M. ERCC2 gene single-nucleotide polymorphism as a prognostic factor for locally advanced head and neck carcinomas after definitive cisplatin-based radiochemotherapy. THE PHARMACOGENOMICS JOURNAL 2020; 21:37-46. [PMID: 32546699 PMCID: PMC7840506 DOI: 10.1038/s41397-020-0174-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 05/09/2020] [Accepted: 05/28/2020] [Indexed: 11/10/2022]
Abstract
Identifying patients with locally advanced head and neck carcinoma on high risk of recurrence after definitive concurrent radiochemotherapy is of key importance for the selection for consolidation therapy and for individualized treatment intensification. In this multicenter study we analyzed recurrence-associated single-nucleotide polymorphisms (SNPs) in DNA repair genes in tumor DNA from 132 patients with locally advanced head and neck carcinoma (LadHnSCC). Patients were treated with definitive radiotherapy and simultaneous cisplatin-based chemotherapy at six partner sites of the German Cancer Consortium (DKTK) Radiation Oncology Group from 2005 to 2011. For validation, a group of 20 patients was available. Score selection method using proportional hazard analysis and leave-one-out cross-validation were performed to identify markers associated with outcome. The SNPs rs1799793 and rs13181 were associated with survival and the same SNPs and in addition rs17655 with freedom from loco-regional relapse (ffLRR) in the trainings datasets from all patients. The homozygote major rs1799793 genotype at the ERCC2 gene was associated with better (Hazard ratio (HR): 0.418 (0.234-0.744), p = 0.003) and the homozygote minor rs13181 genotype at ERCC2 with worse survival (HR: 2.074, 95% CI (1.177-3.658), p = 0.017) in comparison to the other genotypes. At the ffLRR endpoint, rs1799793 and rs13181 had comparable prognostic value. The rs1799793 and rs13181 genotypes passed the leave-one-out cross-validation procedure and associated with survival and ffLRR in patients with LadHnSCC treated with definitive radiochemotherapy. While findings were confirmed in a small validation dataset, further validation is underway within a prospective biomarker study of the DKTK.
Collapse
Affiliation(s)
- Maja Guberina
- Department of Radiotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Ali Sak
- Department of Radiotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christoph Pöttgen
- Department of Radiotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ingeborg Tinhofer-Keilholz
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiooncology and Radiotherapy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Volker Budach
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiooncology and Radiotherapy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Panagiotis Balermpas
- German Cancer Consortium (DKTK), Partner Site Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiotherapy and Oncology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Jens Von der Grün
- German Cancer Consortium (DKTK), Partner Site Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiotherapy and Oncology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Claus Michael Rödel
- German Cancer Consortium (DKTK), Partner Site Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiotherapy and Oncology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, Medical Center, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, Medical Center, Medical Faculty, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Consortium (DKTK), Partner Site Heidelberg, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), University of Heidelberg Medical School, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion Therapy Center (HIT), University of Heidelberg Medical School, Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Medicine and University Hospital, Technische Universität Dresden, Partner Site Dresden, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Translational Radiation Oncology, University of Heidelberg Medical School, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Debus
- German Cancer Consortium (DKTK), Partner Site Heidelberg, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), University of Heidelberg Medical School, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion Therapy Center (HIT), University of Heidelberg Medical School, Heidelberg, Germany.,Translational Radiation Oncology, University of Heidelberg Medical School, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, University of Heidelberg Medical School and German Cancer Research Center (DKF), Heidelberg, Germany
| | - Claus Belka
- German Cancer Consortium (DKTK), Partner Site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiotherapy and Radiation Oncology, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany.,Clinical Cooperation Group Personalized Radiotherapy in Head and Neck Cancer, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Steffi Pigorsch
- German Cancer Consortium (DKTK), Partner Site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, Technische Universität München, Munich, Germany
| | - Stephani E Combs
- German Cancer Consortium (DKTK), Partner Site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, Technische Universität München, Munich, Germany.,Department of Radiation Sciences (DRS), Institut für Innovative Radiotherapie (iRT), Helmholtz Zentrum Munich, Neuherberg, Germany
| | - David Mönnich
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, Faculty of Medicine and University Hospital Tübingen, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Daniel Zips
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, Faculty of Medicine and University Hospital Tübingen, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Chiara De-Colle
- Department of Radiation Oncology, Faculty of Medicine and University Hospital Tübingen, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Stefan Welz
- Department of Radiation Oncology, Faculty of Medicine and University Hospital Tübingen, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Annett Linge
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Dresden, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fabian Lohaus
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Dresden, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gustavo Baretton
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Tumor and Normal Tissue Bank, University Cancer Centre (UCC), University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
| | - Thomas Gauler
- Department of Radiotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michael Baumann
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Dresden, Technische Universität Dresden, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
| | - Mechthild Krause
- National Center for Tumor Diseases (NCT), Medicine and University Hospital, Technische Universität Dresden, Partner Site Dresden, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany.,OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Dresden, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
| | - Martin Schuler
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, and German Cancer Research Center (DKFZ), Essen, Germany.,Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, Essen, Germany.,Division of Thoracic Oncology, University Medicine Essen-Ruhrlandklinik, University Duisburg-Essen, Essen, Germany
| | - Agnes Bankfalvi
- Institute for Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Benedikt Höing
- Department of Otorhinolaryngology, University Hospital Essen, University Hospital Duisburg-Essen, Essen, Germany
| | - Stephan Lang
- Department of Otorhinolaryngology, University Hospital Essen, University Hospital Duisburg-Essen, Essen, Germany
| | - Martin Stuschke
- Department of Radiotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, and German Cancer Research Center (DKFZ), Essen, Germany
| |
Collapse
|
10
|
Ezzeldin N, El-Lebedy D, Mohammed A. Gene-environment and gene-gene interactions between CHRNA3 rs1051730, XRCC1 rs25487, and ERCC1 rs735482 variants highly elevate the risk of lung cancer. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2019. [DOI: 10.1186/s43042-019-0034-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Gene-gene and gene-environment interactions play an important role in cancer susceptibility. In this work, we studied the association of XRCC1 rs25487, ERCC1 rs735482, and CHRNA3 rs1051730 variants with lung cancer and assessed the modulatory effect of potential interaction between these variants on disease risk.
Results
In this study, 86 primary lung cancer patients and 64 control subjects were genotyped for CHRNA3 rs1051730, XRCC1 rs25487, and ERCC1 rs735482 by real-time PCR. The frequency of the three studied variants was higher among lung cancer patients than in control subjects, but with no statistical significance. ERCC1 rs735482 variant was associated with 6.9-fold increased risk to develop lung cancer among smokers (p = 0.03). Concomitant presence of CHRNA3 and ERCC1 wild alleles was associated with 2.7-fold elevated risk of lung cancer (p < 0.0001), while concomitant presence of CHRNA3 rs1051730 variant allele with ERCC1 wild allele was associated with 20-fold elevated risk (p < 0.000). Concomitant presence of both variants, ERCC1 rs735482 and CHRNA3 rs1051730, was associated with 9.9-fold elevated risk (p < 0.0001). Meanwhile, the concomitant presence of XRCC1 rs25487 with either ERCC1 rs735482 or CHRNA3 rs1051730 or both was not associated with increased risk of the disease.
Conclusion
Our results emphasize the role of gene-gene interaction in the pathogenesis of lung cancer. Large-scale further studies to clarify the underlying mechanisms are needed.
Collapse
|
11
|
Pincinato EC, Costa EFD, Lopes-Aguiar L, Nogueira GAS, Lima TRP, Visacri MB, Costa APL, Lourenço GJ, Calonga L, Mariano FV, Altemani AMAM, Coutinho-Camillo C, Chone CT, Ramos CD, Altemani JMC, Moriel P, Lima CSP. GSTM1, GSTT1 and GSTP1 Ile105Val polymorphisms in outcomes of head and neck squamous cell carcinoma patients treated with cisplatin chemoradiation. Sci Rep 2019; 9:9312. [PMID: 31249357 PMCID: PMC6597539 DOI: 10.1038/s41598-019-45808-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 06/14/2019] [Indexed: 01/09/2023] Open
Abstract
Cisplatin (CDDP) combined with radiotherapy (RT) is employed in head and neck squamous cell carcinoma (HNSCC) with variable toxicities and clinical response. Glutathione S-transferases (GSTs) participate in CDDP excretion from cells, and genes encoding GSTs, GSTM1, GSTT1and GSTP1, are polymorphic in humans. This prospective study aimed to evaluate the roles of GSTM1, GSTT1, and GSTP1 Ile105Val polymorphisms in outcomes of HNSCC patients treated with CDDP chemoradiation. Ninety patients were genotyped by multiplex PCR. Urinary CDDP measurements were performed by HPLC. Treatment side effects and response were analysed by conventional criteria. Patients with GSTT1 genes showed 7.23- and 5.37-fold higher likelihood of presenting vomiting and ototoxicity, lower glomerular filtration rate (GFR), and lower elimination of CDDP in urine relative to patients with deleted genes. Patients harbouring the GSTP1 IleVal or ValVal genotypes showed 4.28-fold higher likelihood of presenting grade 2 or 3 vomiting and lower GFR with treatment than those harbouring the IleIle genotype. In multivariate Cox analysis, patients with the GSTP1 105ValVal genotype had 3.87 more chance of presenting disease progression than those with the IleIle or IleVal genotype (p < 0.01). Our findings provide preliminary evidence that inherited abnormalities in CDDP metabolism, related to GSTT1 and GSTP1 Ile105Val polymorphisms, alter outcomes of HNSCC patients treated with CDDP and RT.
Collapse
Affiliation(s)
- Eder C Pincinato
- Clinical Oncology Service, Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
- Health and Biological Science Center, Faculty of Pharmacy, Mackenzie Presbyterian University, São Paulo, São Paulo, Brazil
| | - Ericka F D Costa
- Clinical Oncology Service, Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Leisa Lopes-Aguiar
- Clinical Oncology Service, Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Guilherme A S Nogueira
- Clinical Oncology Service, Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Tathiane R P Lima
- Clinical Oncology Service, Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Marília B Visacri
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Anna P L Costa
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Gustavo J Lourenço
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Luciane Calonga
- Department of Ophthalmology and Otolaryngology, School of Medical Sciences, University of Campinas, University of Campinas, Campinas, São Paulo, Brazil
| | - Fernanda V Mariano
- Department of Pathology, School of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Albina M A M Altemani
- Department of Pathology, School of Medical Sciences, University of Campinas, São Paulo, Brazil
| | | | - Carlos T Chone
- Department of Ophthalmology and Otolaryngology, School of Medical Sciences, University of Campinas, University of Campinas, Campinas, São Paulo, Brazil
| | - Celso D Ramos
- Department of Radiology, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - João M C Altemani
- Department of Radiology, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Patrícia Moriel
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Carmen S P Lima
- Clinical Oncology Service, Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
12
|
Driessen CM, Ham JC, Te Loo M, van Meerten E, van Lamoen M, Hakobjan MH, Takes RP, van der Graaf WT, Kaanders JH, Coenen MJH, van Herpen CM. Genetic Variants as Predictive Markers for Ototoxicity and Nephrotoxicity in Patients with Locally Advanced Head and Neck Cancer Treated with Cisplatin-Containing Chemoradiotherapy (The PRONE Study). Cancers (Basel) 2019; 11:cancers11040551. [PMID: 30999660 PMCID: PMC6520709 DOI: 10.3390/cancers11040551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/20/2019] [Accepted: 04/15/2019] [Indexed: 01/11/2023] Open
Abstract
Ototoxicity and nephrotoxicity are potentially irreversible side effects of chemoradiotherapy with cisplatin in locally advanced head and neck cancer (LAHNC) patients. Several predictive genetic variants have been described, but as yet none in LAHNC patients. The aim of this study is to investigate genetic variants as predictors for ototoxicity and nephrotoxicity in LAHNC patients treated with cisplatin-containing chemoradiotherapy. Our prospective cohort of 92 patients was genotyped for 10 genetic variants and evaluated for their association with cisplatin-induced ototoxicity (ACYP2, COMT, TPMT and WFS1) and nephrotoxicity (OCT2, MATE and XPD). Ototoxicity was determined by patient-reported complaints as well as tone audiometrical assessments. Nephrotoxicity was defined as a decrease of ≥25% in creatinine clearance during treatment compared to baseline. A significant association was observed between carriership of the A allele for rs1872328 in the ACYP2 gene and cisplatin-induced clinically determined ototoxicity (p = 0.019), and not for ototoxicity measured by tone audiometrical assessments (p = 0.449). Carriership of a T allele for rs316019 in the OCT2 gene was significantly associated with nephrotoxicity at any time during chemoradiotherapy (p = 0.022), but not with nephrotoxicity at the end of the chemoradiotherapy. In conclusion, we showed prospectively that in LAHNC patients genetic variants in ACYP2 are significantly associated with clinically determined ototoxicity. Validation studies are necessary to prove the added value for individualized treatments plans in these patients.
Collapse
Affiliation(s)
- Chantal M Driessen
- Department of Medical Oncology, Radboud University Medical Center, Postbox 9101, 6500 HB Nijmegen, The Netherlands.
| | - Janneke C Ham
- Department of Medical Oncology, Radboud University Medical Center, Postbox 9101, 6500 HB Nijmegen, The Netherlands.
| | - Maroeska Te Loo
- Department of Pediatric Hematology and Oncology, Radboud University Medical Center, Postbox 9101, 6500 HB Nijmegen, The Netherlands.
| | - Esther van Meerten
- Department of Medical Oncology, Erasmus MC Cancer Institute, Postbox 2040, 3000 CA Rotterdam, The Netherlands.
| | - Maurits van Lamoen
- Department of Otorhinolaryngology and Head and Neck Surgery, Radboud University Medical Center, Postbox 9101, 6500 HB Nijmegen, The Netherlands.
| | - Marina H Hakobjan
- Department of Human Genetics, Radboud Institute of Health Sciences, Radboud University Medical Center, Postbox 9101, 6500 HB Nijmegen, The Netherlands.
| | - Robert P Takes
- Department of Otorhinolaryngology and Head and Neck Surgery, Radboud University Medical Center, Postbox 9101, 6500 HB Nijmegen, The Netherlands.
| | - Winette T van der Graaf
- Department of Medical Oncology, Radboud University Medical Center, Postbox 9101, 6500 HB Nijmegen, The Netherlands.
| | - Johannes H Kaanders
- Department of Radiation Oncology, Radboud University Medical Center, Postbox 9101, 6500 HB Nijmegen, The Netherlands.
| | - Marieke J H Coenen
- Department of Human Genetics, Radboud Institute of Health Sciences, Radboud University Medical Center, Postbox 9101, 6500 HB Nijmegen, The Netherlands.
| | - Carla M van Herpen
- Department of Medical Oncology, Radboud University Medical Center, Postbox 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
13
|
Role of epigenetic mechanisms in cisplatin-induced toxicity. Crit Rev Oncol Hematol 2019; 137:131-142. [PMID: 31014509 DOI: 10.1016/j.critrevonc.2019.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/13/2019] [Accepted: 03/13/2019] [Indexed: 12/16/2022] Open
Abstract
Cisplatin (CDDP) is a highly effective antineoplastic agent, widely used in the treatment of various malignant tumors. However, its major problems are side effects associated to toxicity. Considerable inter-individual differences have been reported for CDDP-induced toxicity due to genetic and epigenetic factors. Genetic causes are well described; however, epigenetic modifications are not fully addressed. In the last few years, many evidences were found linking microRNA to the development of CDDP-mediated toxicity, particularly nephrotoxicity. In this review, we described how genetic and epigenetic modifications can be important determinants for the development of toxicity in patients treated with CDDP, and how these alterations may be interesting biomarkers for monitoring toxicity induced by CDDP. Considering the validation in different studies, we suggest that miR-34a, -146b, -378a, -192, and -193 represent an attractive study group to evaluate potential biomarkers to detect CDDP-related nephrotoxicity.
Collapse
|
14
|
Tserga E, Nandwani T, Edvall NK, Bulla J, Patel P, Canlon B, Cederroth CR, Baguley DM. The genetic vulnerability to cisplatin ototoxicity: a systematic review. Sci Rep 2019; 9:3455. [PMID: 30837596 PMCID: PMC6401165 DOI: 10.1038/s41598-019-40138-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 01/28/2019] [Indexed: 12/16/2022] Open
Abstract
Ototoxicity is one of the major side-effects of platinum-based chemotherapy, in particular cisplatin (cis-diammine dichloroplatinum II). To our knowledge, no systematic review has previously provided a quantitative summary estimate of the impact of genetics upon the risk of developing hearing loss. We searched Embase, Medline, ASSIA, Pubmed, Scopus, and Web of Science, for studies documenting the genetic risk of ototoxicity in patients with cancer treated with cisplatin. Titles/abstracts and full texts were reviewed for inclusion. Meta-analytic estimates of risk (Odds Ratio) from the pooled data were calculated for studies that have been repeated twice or more. The search identified 3891 papers, of which 30 were included. The majority were retrospective (44%), ranging from n = 39 to n = 317, some including only patients younger than 25 years of age (33%), and some on both genders (80%). The most common cancers involved were osteosarcoma (53%), neuroblastoma (37%), prostate (17%) and reproductive (10%). Most studies performed genotyping, though only 5 studies performed genome-wide association studies. Nineteen single-nucleotide polymorphisms (SNPs) from 15 genes were repeated more than twice. Meta-analysis of group data indicated that rs1872328 on ACYP2, which plays a role in calcium homeostasis, increases the risk of ototoxicity by 4.61 (95% CI: 3.04-7.02; N = 696, p < 0.0001) as well as LRP2 rs4668123 shows a cumulated Odds Ratio of 3.53 (95% CI: 1.48-8.45; N = 118, p = 0.0059), which could not be evidenced in individual studies. Despite the evidence of heterogeneity across studies, these meta-analytic results from 30 studies are consistent with a view of a genetic predisposition to platinum-based chemotherapy mediated ototoxicity. These new findings are informative and encourage the genetic screening of cancer patients in order to identify patients with greater vulnerability of developing hearing loss, a condition having a potentially large impact on quality of life. More studies are needed, with larger sample size, in order to identify additional markers of ototoxic risk associated with platinum-based chemotherapy and investigate polygenic risks, where multiple markers may exacerbate the side-effects.
Collapse
Affiliation(s)
- Evangelia Tserga
- Experimental Audiology, Biomedicum, Karolinska Institutet, Solnavägen 9, 171 65, Stockholm, Sweden
| | - Tara Nandwani
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Niklas K Edvall
- Experimental Audiology, Biomedicum, Karolinska Institutet, Solnavägen 9, 171 65, Stockholm, Sweden
| | - Jan Bulla
- Department of Mathematics, University of Bergen, Bergen, Norway.,Department of Psychiatry and Psychotherapy, University Regensburg, Universitätsstraße 84, 93053, Regensburg, Germany
| | - Poulam Patel
- Division of Oncology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Barbara Canlon
- Experimental Audiology, Biomedicum, Karolinska Institutet, Solnavägen 9, 171 65, Stockholm, Sweden
| | - Christopher R Cederroth
- Experimental Audiology, Biomedicum, Karolinska Institutet, Solnavägen 9, 171 65, Stockholm, Sweden
| | - David M Baguley
- Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK. .,NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK.
| |
Collapse
|
15
|
Senghore T, Chien HT, Wang WC, Chen YX, Young CK, Huang SF, Yeh CC. Polymorphisms in ERCC5 rs17655 and ERCC1 rs735482 Genes Associated with the Survival of Male Patients with Postoperative Oral Squamous Cell Carcinoma Treated with Adjuvant Concurrent Chemoradiotherapy. J Clin Med 2019; 8:jcm8010033. [PMID: 30609649 PMCID: PMC6351919 DOI: 10.3390/jcm8010033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/19/2018] [Accepted: 12/25/2018] [Indexed: 01/13/2023] Open
Abstract
The nucleotide excision repair (NER) pathway plays a major role in the repair of DNA damaged by exogenous agents, such as chemotherapeutic and radiotherapeutic agents. Thus, we investigated the association between key potentially functional single nucleotide polymorphisms (SNPs) in the NER pathway and clinical outcomes in oral squamous cell carcinoma (OSCC) patients treated with concurrent chemoradiotherapy (CCRT). Thirteen SNPs in five key NER genes were genotyped in 319 male OSCC patients using iPLEX MassARRAY. Cox proportional hazards models and Kaplan–Meier survival curves were used to estimate the risk of death or recurrence. Carriers of the XPC rs2228000 TT genotype showed a borderline significant increased risk of poor overall survival under the recessive model (hazard ratio (HR) = 1.81, 95% confidence interval (CI) = 0.99–3.29). The CC genotypes of ERCC5 rs17655 (HR = 1.54, 95% CI = 1.03–2.29) and ERCC1 rs735482 (HR = 1.65, 95% CI = 1.06–2.58) were associated with an increased risk of worse disease-free survival under the recessive model. In addition, participants carrying both the CC genotypes of ERCC5 rs17655 and ERCC1 rs735482 exhibited an enhanced susceptibility for recurrence (HR = 2.60, 95% CI = 1.11–6.09). However, no statistically significant interaction was observed between them. Our findings reveal that the ERCC5 rs17655 CC and ERCC1 rs735482 CC genotypes were associated with an increased risk of recurrence in male patients with OSCC treated with CCRT. Therefore, CCRT may not be beneficial, and alternative treatments are required for such patients.
Collapse
Affiliation(s)
- Thomas Senghore
- School of Public Health, College of Public Health, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Nursing, School of Medicine and Allied Health Sciences, University of The Gambia, Independence Drive, Banjul, P.O. Box 1646, The Gambia.
| | - Huei-Tzu Chien
- Department of Public Health, Chang Gung University, Tao-Yuan 33305, Taiwan.
- Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan.
| | - Wen-Chang Wang
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| | - You-Xin Chen
- School of Public Health, College of Public Health, Taipei Medical University, Taipei 11031, Taiwan.
| | - Chi-Kuang Young
- Department of Otolaryngology, Chang Gung Memorial Hospital, Keelung 20401, Taiwan.
| | - Shiang-Fu Huang
- Department of Public Health, Chang Gung University, Tao-Yuan 33305, Taiwan.
- Department of Otolaryngology, Head and Neck Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan.
| | - Chih-Ching Yeh
- School of Public Health, College of Public Health, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Public Health, College of Public Health, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
16
|
Lui G, Bouazza N, Denoyelle F, Moine M, Brugières L, Chastagner P, Corradini N, Entz-Werle N, Vérité C, Landmanparker J, Sudour-Bonnange H, Pasquet M, Verschuur A, Faure-Conter C, Doz F, Tréluyer JM. Association between genetic polymorphisms and platinum-induced ototoxicity in children. Oncotarget 2018; 9:30883-30893. [PMID: 30112115 PMCID: PMC6089394 DOI: 10.18632/oncotarget.25767] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022] Open
Abstract
Platinum is extensively used in the treatment of several childhood cancers. However, ototoxicity is one of the most notable adverse effects, especially in children. Several studies suggest that genetics may predict its occurrence. Here, polymorphisms associated with platinum-induced ototoxicity were selected from the literature and were investigated in a pediatric population treated with platinum-based agents. In this retrospective study, patients treated with cisplatin and/or carboplatin were screened. The patients with pre- and post-treatment audiogram (Brock criteria) available were included. We selected polymorphisms that have previously been associated with cisplatin ototoxicity with a minor allele frequency ≥30%. Deletion of GSTM1 and GSTT1, rs1799735 (GSTM3), rs1695 (GSTP1), rs4880 (SOD2), rs2228001 (XPC), rs1799793 (XPD) and rs4788863 (SLC16A5) were investigated. Data of one hundred and six children matching the eligible criteria were analyzed. Thirty-three patients (31%) developed ototoxicity (with a Brock grade ≥2). The probability of hearing loss increased significantly in patients carrying the null genotype for GSTT1 (P = 0.03), A/A genotype at rs1695 (P = 0.01), and C/C genotype at rs1799793 (P = 0.008). We also showed an association of the cumulative doses of carboplatin with cisplatin ototoxicity (P <0.05). To conclude, deletion of GSTT1, rs1695 and rs1799793 may constitute potential predictors of platinum-induced ototoxicity.
Collapse
Affiliation(s)
- Gabrielle Lui
- University of Paris Descartes, EA 7323, Sorbonne Paris-Cité, France.,CIC-1419 Inserm, Cochin-Necker, Paris, France
| | - Naïm Bouazza
- University of Paris Descartes, EA 7323, Sorbonne Paris-Cité, France.,CIC-1419 Inserm, Cochin-Necker, Paris, France.,Clinical Research Unit of Paris Descartes Necker Cochin, AP-HP, Paris, France
| | - Françoise Denoyelle
- Department of Pediatric Otolaryngology, Necker Children's Hospital, Paris, France
| | - Marion Moine
- University of Paris Descartes, EA 7323, Sorbonne Paris-Cité, France
| | - Laurence Brugières
- Department of Children and Adolescents Oncology, Gustave Roussy, Villejuif, France
| | - Pascal Chastagner
- Department of Pediatric Onco-Hematology, Children's Hospital, Vandoeuvre Les Nancy, France
| | - Nadège Corradini
- Pediatric Oncology Department, Mother-Children Hospital, Nantes, France
| | | | - Cécile Vérité
- Pediatric Hematology Department, Bordeaux University Hospital, Bordeaux, France
| | - Judith Landmanparker
- Sorbonne University, Department of Pediatric Hematology Oncology, APHP, Trousseau Hospital, Paris, France
| | - Hélène Sudour-Bonnange
- Pediatric Oncology Unit, Children, Adolescents and Young Adults Unit, Oscar Lambret Center, Lille, France
| | - Marlène Pasquet
- Children's Hospital, University Hospital of Toulouse, Toulouse, France
| | - Arnauld Verschuur
- Pediatric Oncology Department, La Timone Children's Hospital, Marseilles, France
| | | | - François Doz
- Oncology Center SIREDO, Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Curie Institute, Paris, France.,Paris Descartes University, Paris, France
| | - Jean-Marc Tréluyer
- University of Paris Descartes, EA 7323, Sorbonne Paris-Cité, France.,CIC-1419 Inserm, Cochin-Necker, Paris, France.,Clinical Research Unit of Paris Descartes Necker Cochin, AP-HP, Paris, France.,Department of Clinical Pharmacology, Cochin Hospital AP-HP, Paris, France
| |
Collapse
|
17
|
Zheng Y, Deng Z, Yin J, Wang S, Lu D, Wen X, Li X, Xiao D, Hu C, Chen X, Zhang W, Zhou H, Liu Z. The association of genetic variations in DNA repair pathways with severe toxicities in NSCLC patients undergoing platinum‐based chemotherapy. Int J Cancer 2017; 141:2336-2347. [PMID: 28791697 DOI: 10.1002/ijc.30921] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/25/2017] [Accepted: 07/25/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Yi Zheng
- Department of Clinical PharmacologyXiangya Hospital, Central South UniversityChangsha410008 People's Republic of China
- Hunan Key Laboratory of PharmacogeneticsInstitute of Clinical Pharmacology, Central South UniversityChangsha410078 People's Republic of China
- Key Laboratory of Hunan Province for Traditional Chinese Medicine in Obstetrics and Gynecology Research, Hunan Provincial Maternal and Child Health Care HospitalChangsha410008 People's Republic of China
| | - Zheng Deng
- Department of Respiratory MedicineXiangya Hospital, Central South UniversityChangsha Hunan410008 People's Republic of China
| | - Jiye Yin
- Department of Clinical PharmacologyXiangya Hospital, Central South UniversityChangsha410008 People's Republic of China
- Hunan Key Laboratory of PharmacogeneticsInstitute of Clinical Pharmacology, Central South UniversityChangsha410078 People's Republic of China
| | - Shiming Wang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary AnthropologyInstitute of Genetics, School of Life Sciences, Fudan UniversityShanghai20000 People's Republic of China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary AnthropologyInstitute of Genetics, School of Life Sciences, Fudan UniversityShanghai20000 People's Republic of China
| | - Xiaoke Wen
- Key Laboratory of Hunan Province for Traditional Chinese Medicine in Obstetrics and Gynecology Research, Hunan Provincial Maternal and Child Health Care HospitalChangsha410008 People's Republic of China
| | - Xiangping Li
- Department of PharmacyXiangya Hospital, Central South UniversityChangsha410008 People's Republic of China
| | - Di Xiao
- Department of PharmacyXiangya Hospital, Central South UniversityChangsha410008 People's Republic of China
| | - Chengping Hu
- Department of Respiratory MedicineXiangya Hospital, Central South UniversityChangsha Hunan410008 People's Republic of China
| | - Xiang Chen
- Department of DermatologyXiangya Hospital, Central South UniversityChangsha Hunan410008 People's Republic of China
| | - Wei Zhang
- Department of Clinical PharmacologyXiangya Hospital, Central South UniversityChangsha410008 People's Republic of China
- Hunan Key Laboratory of PharmacogeneticsInstitute of Clinical Pharmacology, Central South UniversityChangsha410078 People's Republic of China
| | - Honghao Zhou
- Department of Clinical PharmacologyXiangya Hospital, Central South UniversityChangsha410008 People's Republic of China
- Hunan Key Laboratory of PharmacogeneticsInstitute of Clinical Pharmacology, Central South UniversityChangsha410078 People's Republic of China
| | - Zhaoqian Liu
- Department of Clinical PharmacologyXiangya Hospital, Central South UniversityChangsha410008 People's Republic of China
- Hunan Key Laboratory of PharmacogeneticsInstitute of Clinical Pharmacology, Central South UniversityChangsha410078 People's Republic of China
| |
Collapse
|
18
|
Carron J, Lopes-Aguiar L, Costa EFD, Nogueira GAS, Lima TRP, Pincinato EC, Visacri MB, Quintanilha JCF, Moriel P, Lourenço GJ, Lima CSP. GSTP1c.313A>G,XPDc.934G>A,XPFc.2505T>C andCASP9c.-1339A>G Polymorphisms and Severity of Vomiting in Head and Neck Cancer Patients treated with Cisplatin Chemoradiation. Basic Clin Pharmacol Toxicol 2017; 121:520-525. [DOI: 10.1111/bcpt.12842] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/29/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Juliana Carron
- Faculty of Medical Sciences; Laboratory of Cancer Genetics; University of Campinas; Campinas São Paulo Brazil
| | - Leisa Lopes-Aguiar
- Faculty of Medical Sciences; Laboratory of Cancer Genetics; University of Campinas; Campinas São Paulo Brazil
| | | | | | - Tathiane Regine Penna Lima
- Faculty of Medical Sciences; Laboratory of Cancer Genetics; University of Campinas; Campinas São Paulo Brazil
| | - Eder Carvalho Pincinato
- Faculty of Medical Sciences; Laboratory of Cancer Genetics; University of Campinas; Campinas São Paulo Brazil
| | | | | | - Patrícia Moriel
- Faculty of Pharmaceutical Sciences; University of Campinas; Campinas São Paulo Brazil
| | - Gustavo Jacob Lourenço
- Faculty of Medical Sciences; Laboratory of Cancer Genetics; University of Campinas; Campinas São Paulo Brazil
| | - Carmen Silvia Passos Lima
- Faculty of Medical Sciences; Laboratory of Cancer Genetics; University of Campinas; Campinas São Paulo Brazil
| |
Collapse
|
19
|
Costa EFD, Santos ES, Liutti VT, Leal F, Santos VCA, Rinck-Junior JA, Mariano FV, Coutinho-Camillo CM, Altemani A, Lima CSP, Lourenço GJ. Association between polymorphisms in genes related to DNA base-excision repair with risk and prognosis of oropharyngeal squamous cell carcinoma. J Cancer Res Clin Oncol 2016; 142:1917-26. [DOI: 10.1007/s00432-016-2202-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/22/2016] [Indexed: 12/13/2022]
|
20
|
Single nucleotide polymorphisms in DNA repair genes and putative cancer risk. Arch Toxicol 2016; 90:2369-88. [PMID: 27334373 DOI: 10.1007/s00204-016-1771-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/15/2016] [Indexed: 02/07/2023]
Abstract
Single nucleotide polymorphisms (SNPs) are the most frequent type of genetic alterations between individuals. An SNP located within the coding sequence of a gene may lead to an amino acid substitution and in turn might alter protein function. Such a change in protein sequence could be functionally relevant and therefore might be associated with susceptibility to human diseases, such as cancer. DNA repair mechanisms are known to play an important role in cancer development, as shown in various human cancer syndromes, which arise due to mutations in DNA repair genes. This leads to the question whether subtle genetic changes such as SNPs in DNA repair genes may contribute to cancer susceptibility. In numerous epidemiological studies, efforts have been made to associate specific SNPs in DNA repair genes with altered DNA repair and cancer. The present review describes some of the common and most extensively studied SNPs in DNA repair genes and discusses whether they are functionally relevant and subsequently increase the likelihood that cancer will develop.
Collapse
|