1
|
Karami Fath M, Nazari A, Parsania N, Behboodi P, Ketabi SS, Razmjouei P, Farzam F, Shafagh SG, Nabi Afjadi M. Centromeres in cancer: Unraveling the link between chromosomal instability and tumorigenesis. Med Oncol 2024; 41:254. [PMID: 39352464 DOI: 10.1007/s12032-024-02524-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/23/2024] [Indexed: 11/14/2024]
Abstract
Centromeres are critical structures involved in chromosome segregation, maintaining genomic stability, and facilitating the accurate transmission of genetic information. They are key in coordinating the assembly and help keep the correct structure, location, and function of the kinetochore, a proteinaceous structure vital for ensuring proper chromosome segregation during cell division. Abnormalities in centromere structure can lead to aneuploidy or chromosomal instability, which have been implicated in various diseases, including cancer. Accordingly, abnormalities in centromeres, such as structural rearrangements and dysregulation of centromere-associated proteins, disrupt gene function, leading to uncontrolled cell growth and tumor progression. For instance, altered expression of CENP-A, CENP-E, and others such as BUB1, BUBR1, MAD1, and INCENP, have been shown to ascribe to centromere over-amplification, chromosome missegregation, aneuploidy, and chromosomal instability; this, in turn, can culminate in tumor progression. These centromere abnormalities also promoted tumor heterogeneity by generating genetically diverse cell populations within tumors. Advanced techniques like fluorescence in situ hybridization (FISH) and chromosomal microarray analysis are crucial for detecting centromere abnormalities, enabling accurate cancer classification and tailored treatment strategies. Researchers are exploring strategies to disrupt centromere-associated proteins for targeted cancer therapies. Thus, this review explores centromere abnormalities in cancer, their molecular mechanisms, diagnostic implications, and therapeutic targeting. It aims to advance our understanding of centromeres' role in cancer and develop advanced diagnostic tools and targeted therapies for improved cancer management and treatment.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Ahmad Nazari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Noushin Parsania
- Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Paria Behboodi
- Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Pegah Razmjouei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Yang YH, Wei YL, She ZY. Kinesin-7 CENP-E in tumorigenesis: Chromosome instability, spindle assembly checkpoint, and applications. Front Mol Biosci 2024; 11:1366113. [PMID: 38560520 PMCID: PMC10978661 DOI: 10.3389/fmolb.2024.1366113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Kinesin motors are a large family of molecular motors that walk along microtubules to fulfill many roles in intracellular transport, microtubule organization, and chromosome alignment. Kinesin-7 CENP-E (Centromere protein E) is a chromosome scaffold-associated protein that is located in the corona layer of centromeres, which participates in kinetochore-microtubule attachment, chromosome alignment, and spindle assembly checkpoint. Over the past 3 decades, CENP-E has attracted great interest as a promising new mitotic target for cancer therapy and drug development. In this review, we describe expression patterns of CENP-E in multiple tumors and highlight the functions of CENP-E in cancer cell proliferation. We summarize recent advances in structural domains, roles, and functions of CENP-E in cell division. Notably, we describe the dual functions of CENP-E in inhibiting and promoting tumorigenesis. We summarize the mechanisms by which CENP-E affects tumorigenesis through chromosome instability and spindle assembly checkpoints. Finally, we overview and summarize the CENP-E-specific inhibitors, mechanisms of drug resistances and their applications.
Collapse
Affiliation(s)
- Yu-Hao Yang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, China
| | - Ya-Lan Wei
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, China
- College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, China
| |
Collapse
|
3
|
Goncharov NV, Kovalskaia VA, Romanishin AO, Shved NA, Belousov AS, Tiasto VS, Gulaia VS, Neergheen VS, Rummun N, Liskovykh M, Larionov V, Kouprina N, Kumeiko VV. Novel assay to measure chromosome instability identifies Punica granatum extract that elevates CIN and has a potential for tumor- suppressing therapies. Front Bioeng Biotechnol 2022; 10:989932. [PMID: 36601386 PMCID: PMC9806258 DOI: 10.3389/fbioe.2022.989932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
Human artificial chromosomes (HACs) have provided a useful tool to study kinetochore structure and function, gene delivery, and gene expression. The HAC propagates and segregates properly in the cells. Recently, we have developed an experimental high-throughput imaging (HTI) HAC-based assay that allows the identification of genes whose depletion leads to chromosome instability (CIN). The HAC carries a GFP transgene that facilitates quantitative measurement of CIN. The loss of HAC/GFP may be measured by flow cytometry or fluorescence scanning microscope. Therefore, CIN rate can be measured by counting the proportion of fluorescent cells. Here, the HAC/GFP-based assay has been adapted to screen anticancer compounds for possible induction or elevation of CIN. We analyzed 24 cytotoxic plant extracts. Punica granatum leaf extract (PLE) indeed sharply increases CIN rate in HT1080 fibrosarcoma cells. PLE treatment leads to cell cycle arrest, reduction of mitotic index, and the increased numbers of micronuclei (MNi) and nucleoplasmic bridges (NPBs). PLE-mediated increased CIN correlates with the induction of double-stranded breaks (DSBs). We infer that the PLE extract contains a component(s) that elevate CIN, making it a candidate for further study as a potential cancer treatment. The data also provide a proof of principle for the utility of the HAC/GFP-based system in screening for natural products and other compounds that elevate CIN in cancer cells.
Collapse
Affiliation(s)
- Nikolay V. Goncharov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Russian Academy of Sciences, Vladivostok, Russia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | | | | | - Nikita A. Shved
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Russian Academy of Sciences, Vladivostok, Russia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Andrei S. Belousov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Vladlena S. Tiasto
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Valeriia S. Gulaia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Vidushi S. Neergheen
- Biopharmaceutical Unit, Centre for Biomedical and Biomaterials Research (CBBR), University of Mauritius, Réduit, Mauritius
| | - Nawraj Rummun
- Biopharmaceutical Unit, Centre for Biomedical and Biomaterials Research (CBBR), University of Mauritius, Réduit, Mauritius
| | - Mikhail Liskovykh
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Vadim V. Kumeiko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Russian Academy of Sciences, Vladivostok, Russia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
4
|
Rasool R, Ullah I, Mubeen B, Alshehri S, Imam SS, Ghoneim MM, Alzarea SI, Al-Abbasi FA, Murtaza BN, Kazmi I, Nadeem MS. Theranostic Interpolation of Genomic Instability in Breast Cancer. Int J Mol Sci 2022; 23:ijms23031861. [PMID: 35163783 PMCID: PMC8836911 DOI: 10.3390/ijms23031861] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is a diverse disease caused by mutations in multiple genes accompanying epigenetic aberrations of hazardous genes and protein pathways, which distress tumor-suppressor genes and the expression of oncogenes. Alteration in any of the several physiological mechanisms such as cell cycle checkpoints, DNA repair machinery, mitotic checkpoints, and telomere maintenance results in genomic instability. Theranostic has the potential to foretell and estimate therapy response, contributing a valuable opportunity to modify the ongoing treatments and has developed new treatment strategies in a personalized manner. “Omics” technologies play a key role while studying genomic instability in breast cancer, and broadly include various aspects of proteomics, genomics, metabolomics, and tumor grading. Certain computational techniques have been designed to facilitate the early diagnosis of cancer and predict disease-specific therapies, which can produce many effective results. Several diverse tools are used to investigate genomic instability and underlying mechanisms. The current review aimed to explore the genomic landscape, tumor heterogeneity, and possible mechanisms of genomic instability involved in initiating breast cancer. We also discuss the implications of computational biology regarding mutational and pathway analyses, identification of prognostic markers, and the development of strategies for precision medicine. We also review different technologies required for the investigation of genomic instability in breast cancer cells, including recent therapeutic and preventive advances in breast cancer.
Collapse
Affiliation(s)
- Rabia Rasool
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (R.R.); (I.U.); (B.M.)
| | - Inam Ullah
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (R.R.); (I.U.); (B.M.)
| | - Bismillah Mubeen
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (R.R.); (I.U.); (B.M.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.)
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology (AUST), Abbottabad 22310, Pakistan;
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Correspondence: (I.K.); (M.S.N.)
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Correspondence: (I.K.); (M.S.N.)
| |
Collapse
|
5
|
Medium levels of transcription and replication related chromosomal instability are associated with poor clinical outcome. Sci Rep 2021; 11:23429. [PMID: 34873180 PMCID: PMC8648741 DOI: 10.1038/s41598-021-02787-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/08/2021] [Indexed: 11/09/2022] Open
Abstract
Genomic instability (GI) influences treatment efficacy and resistance, and an accurate measure of it is lacking. Current measures of GI are based on counts of specific structural variation (SV) and mutational signatures. Here, we present a holistic approach to measuring GI based on the quantification of the steady-state equilibrium between DNA damage and repair as assessed by the residual breakpoints (BP) remaining after repair, irrespective of SV type. We use the notion of Hscore, a BP "hotspotness" magnitude scale, to measure the propensity of genomic structural or functional DNA elements to break more than expected by chance. We then derived new measures of transcription- and replication-associated GI that we call iTRAC (transcription-associated chromosomal instability index) and iRACIN (replication-associated chromosomal instability index). We show that iTRAC and iRACIN are predictive of metastatic relapse in Leiomyosarcoma (LMS) and that they may be combined to form a new classifier called MAGIC (mixed transcription- and replication-associated genomic instability classifier). MAGIC outperforms the gold standards FNCLCC and CINSARC in stratifying metastatic risk in LMS. Furthermore, iTRAC stratifies chemotherapeutic response in LMS. We finally show that this approach is applicable to other cancers.
Collapse
|
6
|
Abe T, Suzuki Y, Ikeya T, Hirota K. Targeting chromosome trisomy for chromosome editing. Sci Rep 2021; 11:18054. [PMID: 34508128 PMCID: PMC8433146 DOI: 10.1038/s41598-021-97580-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/25/2021] [Indexed: 11/09/2022] Open
Abstract
A trisomy is a type of aneuploidy characterised by an additional chromosome. The additional chromosome theoretically accepts any kind of changes since it is not necessary for cellular proliferation. This advantage led us to apply two chromosome manipulation methods to autosomal trisomy in chicken DT40 cells. We first corrected chromosome 2 trisomy to disomy by employing counter-selection markers. Upon construction of cells carrying markers targeted in one of the trisomic chromosome 2s, cells that have lost markers integrated in chromosome 2 were subsequently selected. The loss of one of the chromosome 2s had little impacts on the proliferative capacity, indicating unsubstantial role of the additional chromosome 2 in DT40 cells. We next tested large-scale truncations of chromosome 2 to make a mini-chromosome for the assessment of chromosome stability by introducing telomere repeat sequences to delete most of p-arm or q-arm of chromosome 2. The obtained cell lines had 0.7 Mb mini-chromosome, and approximately 0.2% of mini-chromosome was lost per cell division in wild-type background while the rate of chromosome loss was significantly increased by the depletion of DDX11, a cohesin regulatory protein. Collectively, our findings propose that trisomic chromosomes are good targets to make unique artificial chromosomes.
Collapse
Affiliation(s)
- Takuya Abe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan.
| | - Yuya Suzuki
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Teppei Ikeya
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| |
Collapse
|
7
|
Bryukhovetskiy I, Pak O, Khotimchenko Y, Bryukhovetskiy A, Sharma A, Sharma HS. Personalized therapy and stem cell transplantation for pro-inflammatory modulation of cancer stem cells microenvironment in glioblastoma: Review. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 151:67-98. [PMID: 32448615 DOI: 10.1016/bs.irn.2020.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive types of brain tumor in humans. The prognosis for patients with GBM is unfavorable and treatment is largely ineffective, where modern treatment regimens typically increase survival by 15 months. GBM relapse and progression are associated with cancer stem cells (CSCs). The present review provides a critical analysis of the primary reasons underlying the lack of effectiveness of modern CSC management methods. An emphasis is placed on the role of the blood-brain barrier in the development of treatment resistance. The existing methods for increasing the efficiency of antitumor genotoxic therapy are also described, and a strategy for personalized regulation of CSC based on post-genome technologies is suggested. The hypothesis that GBM cells employ a special mechanism for DNA repair based on their interactions with normal stem cells, is presented and the function of the tumor microenvironment in fulfilling the antitumor potential of normal stem cells is explained. Additionally, the mechanisms by which cancer stem cells regulate glioblastoma progression and recurrence are described based on novel biomedical technologies.
Collapse
Affiliation(s)
- Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia.
| | - Oleg Pak
- Medical Center, Far Eastern Federal University, Vladivostok, Russia
| | - Yuri Khotimchenko
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Andrey Bryukhovetskiy
- NeuroVita Clinic of Interventional and Restorative Neurology and Therapy, Moscow, Russia
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, S-75185 Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, S-75185 Uppsala, Sweden
| |
Collapse
|
8
|
Kouprina N, Liskovykh M, Petrov N, Larionov V. Human artificial chromosome (HAC) for measuring chromosome instability (CIN) and identification of genes required for proper chromosome transmission. Exp Cell Res 2019; 387:111805. [PMID: 31877307 DOI: 10.1016/j.yexcr.2019.111805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 01/24/2023]
Abstract
Chromosomal instability (CIN) is one of the characteristics of cancer inherent for tumor initiation and progression, which is defined as a persistent, high rate of gain/loss of whole chromosomes. In the vast majority of human tumors the molecular basis of CIN remains unknown. The development of a conceptually simple colony color sectoring assay that measures yeast artificial chromosome (YAC) loss provided a powerful genetic tool to assess the rate of chromosome mis-segregation and also identified 937 yeast genes involved in this process. Similarly, a human artificial chromosome (HAC)-based assay has been recently developed and applied to quantify chromosome mis-segregation events in human cells. This assay allowed identification of novel human CIN genes in the library of protein kinases. Among them are PINK1, TRIO, IRAK1, PNCK, and TAOK1. The HAC-based assay may be applied to screen siRNA, shRNA and CRISPR-based libraries to identify the complete spectrum of CIN genes. This will reveal new insights into mechanisms of chromosome segregation and may expedite the development of novel therapeutic strategies to target the CIN phenotype in cancer cells.
Collapse
Affiliation(s)
- Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| | - Mikhail Liskovykh
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Nikolai Petrov
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
9
|
Liskovykh M, Goncharov NV, Petrov N, Aksenova V, Pegoraro G, Ozbun LL, Reinhold WC, Varma S, Dasso M, Kumeiko V, Masumoto H, Earnshaw WC, Larionov V, Kouprina N. A novel assay to screen siRNA libraries identifies protein kinases required for chromosome transmission. Genome Res 2019; 29:1719-1732. [PMID: 31515286 PMCID: PMC6771407 DOI: 10.1101/gr.254276.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/21/2019] [Indexed: 12/30/2022]
Abstract
One of the hallmarks of cancer is chromosome instability (CIN), which leads to aneuploidy, translocations, and other chromosome aberrations. However, in the vast majority of human tumors the molecular basis of CIN remains unknown, partly because not all genes controlling chromosome transmission have yet been identified. To address this question, we developed an experimental high-throughput imaging (HTI) siRNA assay that allows the identification of novel CIN genes. Our method uses a human artificial chromosome (HAC) expressing the GFP transgene. When this assay was applied to screen an siRNA library of protein kinases, we identified PINK1, TRIO, IRAK1, PNCK, and TAOK1 as potential novel genes whose knockdown induces various mitotic abnormalities and results in chromosome loss. The HAC-based assay can be applied for screening different siRNA libraries (cell cycle regulation, DNA damage response, epigenetics, and transcription factors) to identify additional genes involved in CIN. Identification of the complete spectrum of CIN genes will reveal new insights into mechanisms of chromosome segregation and may expedite the development of novel therapeutic strategies to target the CIN phenotype in cancer cells.
Collapse
Affiliation(s)
- Mikhail Liskovykh
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Nikolay V. Goncharov
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;,School of Biomedicine, Far Eastern Federal University, A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, 690000, Russia
| | - Nikolai Petrov
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Vasilisa Aksenova
- Division of Molecular and Cellular Biology, National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Gianluca Pegoraro
- High-Throughput Imaging Facility, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Laurent L. Ozbun
- High-Throughput Imaging Facility, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - William C. Reinhold
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sudhir Varma
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Vadim Kumeiko
- School of Biomedicine, Far Eastern Federal University, A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, 690000, Russia
| | - Hiroshi Masumoto
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818d, Japan
| | - William C. Earnshaw
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
10
|
Cherry AE, Vicente JJ, Xu C, Morrison RS, Ong SE, Wordeman L, Stella N. GPR124 regulates microtubule assembly, mitotic progression, and glioblastoma cell proliferation. Glia 2019; 67:1558-1570. [PMID: 31058365 PMCID: PMC6557680 DOI: 10.1002/glia.23628] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/25/2019] [Accepted: 04/05/2019] [Indexed: 01/26/2023]
Abstract
GPR124 is involved in embryonic development and remains expressed by select organs. The importance of GPR124 during development suggests that its aberrant expression might participate in tumor growth. Here we show that both increases and decreases in GPR124 expression in glioblastoma cells reduce cell proliferation by differentially altering the duration mitotic progression. Using mass spectrometry-based proteomics, we discovered that GPR124 interacts with ch-TOG, a known regulator of both microtubule (MT)-plus-end assembly and mitotic progression. Accordingly, changes in GPR124 expression and ch-TOG similarly affect MT assembly measured by real-time microscopy in cells. Our study describes a novel molecular interaction involving GPR124 and ch-TOG at the plasma membrane that controls glioblastoma cell proliferation by modifying MT assembly rates and controlling the progression of distinct phases of mitosis.
Collapse
Affiliation(s)
- Allison E. Cherry
- Department of Pharmacology, University of Washington, Seattle, Washington
| | - Juan Jesus Vicente
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Cong Xu
- Department of Pharmacology, University of Washington, Seattle, Washington
| | | | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, Washington
| | - Linda Wordeman
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Nephi Stella
- Department of Pharmacology, University of Washington, Seattle, Washington
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
11
|
Yu KW, Zhong N, Xiao Y, She ZY. Mechanisms of kinesin-7 CENP-E in kinetochore-microtubule capture and chromosome alignment during cell division. Biol Cell 2019; 111:143-160. [PMID: 30784092 DOI: 10.1111/boc.201800082] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/31/2019] [Indexed: 02/06/2023]
Abstract
Chromosome congression is essential for faithful chromosome segregation and genomic stability in cell division. Centromere-associated protein E (CENP-E), a plus-end-directed kinesin motor, is required for congression of pole-proximal chromosomes in metaphase. CENP-E accumulates at the outer plate of kinetochores and mediates the kinetochore-microtubule capture. CENP-E also transports the chromosomes along spindle microtubules towards the equatorial plate. CENP-E interacts with Bub1-related kinase, Aurora B and core kinetochore components during kinetochore-microtubule attachment. In this review, we introduce the structures and mechanochemistry of kinesin-7 CENP-E. We highlight the complicated interactions between CENP-E and partner proteins during chromosome congression. We summarise the detailed roles and mechanisms of CENP-E in mitosis and meiosis, including the kinetochore-microtubule capture, chromosome congression/alignment in metaphase and the regulation of spindle assembly checkpoint. We also shed a light on the roles of CENP-E in tumourigenesis and CENP-E's specific inhibitors.
Collapse
Affiliation(s)
- Kai-Wei Yu
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Ning Zhong
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Yu Xiao
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| |
Collapse
|
12
|
Detecting Chromosome Instability in Cancer: Approaches to Resolve Cell-to-Cell Heterogeneity. Cancers (Basel) 2019; 11:cancers11020226. [PMID: 30781398 PMCID: PMC6406658 DOI: 10.3390/cancers11020226] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023] Open
Abstract
Chromosome instability (CIN) is defined as an increased rate of chromosome gains and losses that manifests as cell-to-cell karyotypic heterogeneity and drives cancer initiation and evolution. Current research efforts are aimed at identifying the etiological origins of CIN, establishing its roles in cancer pathogenesis, understanding its implications for patient prognosis, and developing novel therapeutics that are capable of exploiting CIN. Thus, the ability to accurately identify and evaluate CIN is critical within both research and clinical settings. Here, we provide an overview of quantitative single cell approaches that evaluate and resolve cell-to-cell heterogeneity and CIN, and discuss considerations when selecting the most appropriate approach to suit both research and clinical contexts.
Collapse
|
13
|
Kouprina N, Pommier Y, Larionov V. Novel screen for anti-cancer drugs that elevate chromosome instability (CIN) using human artificial chromosome (HAC). Oncotarget 2018; 9:36833-36835. [PMID: 30627324 PMCID: PMC6305142 DOI: 10.18632/oncotarget.26406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/16/2018] [Indexed: 11/25/2022] Open
Abstract
Human artificial chromosomes (HACs) bearing functional kinetochores have been exploited as promising systems for gene delivery and expression and in studies of different epigenetic modifications on kinetochore structure and function. The HAC-based technology has been also used to develop drug screening and assessment strategies to manipulate the CIN (chromosome instability) phenotype in cancer cells. More recently, we designed a new protocol for systematic analysis of compounds specifically targeting telomeres and telomerase. This approach used two isogenic cell lines containing a circular HAC (lacking telomeres) and a linear HAC (containing telomeres): compounds that target telomerase or telomeres should preferentially induce loss of the linear HAC but not the circular HAC. This platform enables identification and ranking of compounds that greatly increase chromosome mis-segregation rates as a result of telomere dysfunction and may expedite the development of new therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Natalay Kouprina
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Vladimir Larionov
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Lee HS, Carmena M, Liskovykh M, Peat E, Kim JH, Oshimura M, Masumoto H, Teulade-Fichou MP, Pommier Y, Earnshaw WC, Larionov V, Kouprina N. Systematic Analysis of Compounds Specifically Targeting Telomeres and Telomerase for Clinical Implications in Cancer Therapy. Cancer Res 2018; 78:6282-6296. [PMID: 30166419 PMCID: PMC6214708 DOI: 10.1158/0008-5472.can-18-0894] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/25/2018] [Accepted: 08/28/2018] [Indexed: 12/24/2022]
Abstract
The targeting of telomerase and telomere maintenance mechanisms represents a promising therapeutic approach for various types of cancer. In this work, we designed a new protocol to screen for and rank the efficacy of compounds specifically targeting telomeres and telomerase. This approach used two isogenic cell lines containing a circular human artificial chromosome (HAC, lacking telomeres) and a linear HAC (containing telomeres) marked with the EGFP transgene; compounds that target telomerase or telomeres should preferentially induce loss of the linear HAC but not the circular HAC. Our assay allowed quantification of chromosome loss by routine flow cytometry. We applied this dual-HAC assay to rank a set of known and newly developed compounds, including G-quadruplex (G4) ligands. Among the latter group, two compounds, Cu-ttpy and Pt-ttpy, induced a high rate of linear HAC loss with no significant effect on the mitotic stability of a circular HAC. Analysis of the mitotic phenotypes induced by these drugs revealed an elevated rate of chromatin bridges in late mitosis and cytokinesis as well as UFB (ultrafine bridges). Chromosome loss after Pt-ttpy or Cu-ttpy treatment correlated with the induction of telomere-associated DNA damage. Overall, this platform enables identification and ranking of compounds that greatly increase chromosome mis-segregation rates as a result of telomere dysfunction and may expedite the development of new therapeutic strategies for cancer treatment.Significance: An assay provides a unique opportunity to screen thousands of chemical compounds for their ability to inactivate replication of telomeric ends in cancer cells and holds potential to lay the foundation for the discovery of new treatments for cancer. Cancer Res; 78(21); 6282-96. ©2018 AACR.
Collapse
Affiliation(s)
- Hee-Sheung Lee
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD
| | - Mar Carmena
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, King's Buildings, University of Edinburgh, Max Born Crescent, Edinburgh, Scotland
| | - Mikhail Liskovykh
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD
| | - Emma Peat
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, King's Buildings, University of Edinburgh, Max Born Crescent, Edinburgh, Scotland
| | - Jung-Hyun Kim
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD
| | - Mitsuo Oshimura
- Institute of Regenerative Medicine and Biofunction, Tottori University, Tottori, Japan
| | - Hiroshi Masumoto
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Marie-Paule Teulade-Fichou
- Chemistry Modelling and Imaging for Biology, CNRS UMR 9187- INSERM U1196 Institute Curie, Research Center, Campus University Paris-Sud, Orsay, France
| | - Yves Pommier
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, King's Buildings, University of Edinburgh, Max Born Crescent, Edinburgh, Scotland
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD.
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD.
| |
Collapse
|
15
|
Wu Y, Tan L, Chen J, Li H, Ying H, Jiang Y, Wu Q, Yu G, Tian Y, Yu J, Zeng T, Yan L, Liu C. MAD2 Combined with Mitotic Spindle Apparatus (MSA) and Anticentromere Antibody (ACA) for Diagnosis of Small Cell Lung Cancer (SCLC). Med Sci Monit 2018; 24:7541-7547. [PMID: 30346937 PMCID: PMC6354645 DOI: 10.12659/msm.909772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND MAD2 is the gene controlling mitosis. Many studies have assessed MAD2 in various types of carcinoma. Antinuclear mitotic spindle apparatus antibody (MSA) and anticentromere antibody (ACA) are related mitotic antibodies, playing roles in autoimmune diseases and carcinomas, but the expression of MAD2, MSA, and ACA in SCLC is unclear. MATERIAL AND METHODS We enrolled 70 SCLC patients, 72 non-small cell lung cancer (NSCLC) patients, and 65 pulmonary nodule (PN) patients. MAD2 expression was measured through agarose electrophoresis and qt-PCR. Antinuclear mitotic spindle apparatus antibody (MSA) and anticentromere antibody (ACA) were detected by indirect immunofluorescence (IIF). RESULTS MAD2 was found both in SCLC and NSCLC. Interestingly, there was a significant difference found between SCLC and NSCLC using qt-PCR (P<0.05). The area under the ROC curve of MAD2 expression was 0.799, with medium diagnostic value. MAD2 expression was related to age, lymphatic metastasis, and survival time, but not with sex. The positivity for MSA and ACA by IIF assay were 37.20% and 34.00%, respectively, in the SCLC group, which were higher than in the NSCLC and pulmonary nodule groups (P<0.05). The kappa values of MSA and ACA with MAD2 expression were 0.73 and 0.65, respectively, with moderate consistency. Combining MAD2 with MSA and ACA enhanced the sensitivity and specificity for diagnosing SCLC. CONCLUSIONS MAD2 expression was found to be involved in carcinogenesis and prognosis of SCLC. The combination of MAD2 with MSA and ACA is useful for early diagnosis and shows promise in treatment of SCLC.
Collapse
Affiliation(s)
- Yang Wu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Laboratory Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Liming Tan
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Laboratory Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Juanjuan Chen
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Laboratory Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Hua Li
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Laboratory Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Houqun Ying
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Laboratory Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Yongqing Jiang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Laboratory Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Qiong Wu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Laboratory Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Guofang Yu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Laboratory Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Yongjian Tian
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Laboratory Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Jianlin Yu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Laboratory Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Tingting Zeng
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Laboratory Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Linxian Yan
- Department of Medical Supply, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Chuan Liu
- Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, Jiangxi, China (mainland)
| |
Collapse
|
16
|
Kouprina N, Petrov N, Molina O, Liskovykh M, Pesenti E, Ohzeki JI, Masumoto H, Earnshaw WC, Larionov V. Human Artificial Chromosome with Regulated Centromere: A Tool for Genome and Cancer Studies. ACS Synth Biol 2018; 7:1974-1989. [PMID: 30075081 PMCID: PMC6154217 DOI: 10.1021/acssynbio.8b00230] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since their description in the late 1990s, Human Artificial Chromosomes (HACs) bearing functional kinetochores have been considered as promising systems for gene delivery and expression. More recently a HAC assembled from a synthetic alphoid DNA array has been exploited in studies of centromeric chromatin and in assessing the impact of different epigenetic modifications on kinetochore structure and function in human cells. This HAC was termed the alphoidtetO-HAC, as the synthetic monomers each contained a tetO sequence in place of the CENP-B box that can be targeted specifically with tetR-fusion proteins. Studies in which the kinetochore chromatin of the alphoidtetO-HAC was specifically modified, revealed that heterochromatin is incompatible with centromere function and that centromeric transcription is important for centromere assembly and maintenance. In addition, the alphoidtetO-HAC was modified to carry large gene inserts that are expressed in target cells under conditions that recapitulate the physiological regulation of endogenous loci. Importantly, the phenotypes arising from stable gene expression can be reversed when cells are "cured" of the HAC by inactivating its kinetochore in proliferating cell populations, a feature that provides a control for phenotypic changes attributed to expression of HAC-encoded genes. AlphoidtetO-HAC-based technology has also been used to develop new drug screening and assessment strategies to manipulate the CIN phenotype in cancer cells. In summary, the alphoidtetO-HAC is proving to be a versatile tool for studying human chromosome transactions and structure as well as for genome and cancer studies.
Collapse
Affiliation(s)
- Natalay Kouprina
- Developmental
Therapeutics Branch, National Cancer Institute,
NIH, Bethesda, Maryland 20892, United
States,E-mail: . Tel: +1-240-760-7325
| | - Nikolai Petrov
- Developmental
Therapeutics Branch, National Cancer Institute,
NIH, Bethesda, Maryland 20892, United
States
| | - Oscar Molina
- Josep
Carreras Leukaemia Research Institute, School of Medicine, University
of Barcelona, Casanova 143, 08036 Barcelona, Spain
| | - Mikhail Liskovykh
- Developmental
Therapeutics Branch, National Cancer Institute,
NIH, Bethesda, Maryland 20892, United
States
| | - Elisa Pesenti
- Wellcome
Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland
| | - Jun-ichirou Ohzeki
- Laboratory
of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818d Japan
| | - Hiroshi Masumoto
- Laboratory
of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818d Japan,E-mail: . Tel: +81-438-52-395
| | - William C. Earnshaw
- Wellcome
Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland,E-mail: . Tel: +44-(0)131-650-7101
| | - Vladimir Larionov
- Developmental
Therapeutics Branch, National Cancer Institute,
NIH, Bethesda, Maryland 20892, United
States,E-mail: . Tel: +1-240-760-7325
| |
Collapse
|
17
|
El-Arabey AA, Salama SA, Abd-Allah AR. CENP-E as a target for cancer therapy: Where are we now? Life Sci 2018; 208:192-200. [PMID: 30031812 DOI: 10.1016/j.lfs.2018.07.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/14/2018] [Accepted: 07/18/2018] [Indexed: 01/29/2023]
|
18
|
Sansregret L, Vanhaesebroeck B, Swanton C. Determinants and clinical implications of chromosomal instability in cancer. Nat Rev Clin Oncol 2018; 15:139-150. [PMID: 29297505 DOI: 10.1038/nrclinonc.2017.198] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aberrant chromosomal architecture, ranging from small insertions or deletions to large chromosomal alterations, is one of the most common characteristics of cancer genomes. Chromosomal instability (CIN) underpins much of the intratumoural heterogeneity observed in cancers and drives phenotypic adaptation during tumour evolution. Thus, an urgent need exists to increase our efforts to target CIN as if it were a molecular entity. Indeed, CIN accelerates the development of anticancer drug resistance, often leading to treatment failure and disease recurrence, which limit the effectiveness of most current therapies. Identifying novel strategies to modulate CIN and to exploit the fitness cost associated with aneuploidy in cancer is, therefore, of paramount importance for the successful treatment of cancer. Modern sequencing and analytical methods greatly facilitate the identification and cataloguing of somatic copy-number alterations and offer new possibilities to better exploit the dynamic process of CIN. In this Review, we describe the principles governing CIN propagation in cancer and how CIN might influence sensitivity to immune-checkpoint inhibition, and survey the vulnerabilities associated with CIN that offer potential therapeutic opportunities.
Collapse
Affiliation(s)
- Laurent Sansregret
- The Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, UK
- University College London Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Bart Vanhaesebroeck
- University College London Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Charles Swanton
- The Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, UK
| |
Collapse
|
19
|
Lee NCO, Kim JH, Petrov NS, Lee HS, Masumoto H, Earnshaw WC, Larionov V, Kouprina N. Method to Assemble Genomic DNA Fragments or Genes on Human Artificial Chromosome with Regulated Kinetochore Using a Multi-Integrase System. ACS Synth Biol 2018; 7:63-74. [PMID: 28799737 PMCID: PMC5778389 DOI: 10.1021/acssynbio.7b00209] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
The production of cells capable of carrying multiple transgenes
to Mb-size genomic loci has multiple applications in biomedicine and
biotechnology. In order to achieve this goal, three key steps are
required: (i) cloning of large genomic segments; (ii) insertion of
multiple DNA blocks at a precise location and (iii) the capability
to eliminate the assembled region from cells. In this study, we designed
the iterative integration system (IIS) that utilizes recombinases
Cre, ΦC31 and ΦBT1, and combined it with a human artificial
chromosome (HAC) possessing a regulated kinetochore (alphoidtetO-HAC). We have demonstrated that the IIS-alphoidtetO-HAC
system is a valuable genetic tool by reassembling a functional gene
from multiple segments on the HAC. IIS-alphoidtetO-HAC
has several notable advantages over other artificial chromosome-based
systems. This includes the potential to assemble an unlimited number
of genomic DNA segments; a DNA assembly process that leaves only a
small insertion (<60 bp) scar between adjacent DNA, allowing genes
reassembled from segments to be spliced correctly; a marker exchange
system that also changes cell color, and counter-selection markers
at each DNA insertion step, simplifying selection of correct clones;
and presence of an error proofing mechanism to remove cells with misincorporated
DNA segments, which improves the integrity of assembly. In addition,
the IIS-alphoidtetO-HAC carrying a locus of interest is
removable, offering the unique possibility to revert the cell line
to its pretransformed state and compare the phenotypes of human cells
with and without a functional copy of a gene(s). Thus, IIS-alphoidtetO-HAC allows investigation of complex biomedical pathways,
gene(s) regulation, and has the potential to engineer synthetic chromosomes
with a predetermined set of genes.
Collapse
Affiliation(s)
- Nicholas C. O. Lee
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Jung-Hyun Kim
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Nikolai S. Petrov
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Hee-Sheung Lee
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Hiroshi Masumoto
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - William C. Earnshaw
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| |
Collapse
|
20
|
Wang W, Zhang Y, Chen R, Tian Z, Zhai Y, Janz S, Gu C, Yang Y. Chromosomal instability and acquired drug resistance in multiple myeloma. Oncotarget 2017; 8:78234-78244. [PMID: 29100463 PMCID: PMC5652852 DOI: 10.18632/oncotarget.20829] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/26/2017] [Indexed: 12/29/2022] Open
Abstract
Chromosomal instability (CIN) is an important hallmark of human cancer. CIN not only contributes to all stages of tumor development (initiation, promotion and progression) but also drives, in large measure, the acquisition of drug resistance by cancer cells. Although CIN is a cornerstone of the complex mutational architecture that underlies neoplastic cell development and tumor heterogeneity and has been tightly associated with treatment responses and survival of cancer patients, it may be one of the least understood features of the malignant phenotype in terms of genetic pathways and molecular mechanisms. Here we review new insights into the type of CIN seen in multiple myeloma (MM), a blood cancer of terminally differentiated, immunoglobulin-producing B-lymphocytes called plasma cells that remains incurable in the great majority of cases. We will consider bona fide myeloma CIN genes, methods for measuring CIN in myeloma cells, and novel approaches to CIN-targeted treatments of patients with myeloma. The new findings generate optimism that enhanced understanding of CIN will lead to the design and testing of new therapeutic strategies to overcome drug resistance in MM in the not-so-distant future.
Collapse
Affiliation(s)
- Wang Wang
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yi Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ruini Chen
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhidan Tian
- Department of Pathology, Nanjing First Hospital, Nanjing, 210006, China
| | - Yongpin Zhai
- Department of Hematology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, China
| | - Siegfried Janz
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, 52242, USA
| | - Chunyan Gu
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ye Yang
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
21
|
Venkatesan S, Swanton C, Taylor BS, Costello JF. Treatment-Induced Mutagenesis and Selective Pressures Sculpt Cancer Evolution. Cold Spring Harb Perspect Med 2017; 7:a026617. [PMID: 28289245 PMCID: PMC5538404 DOI: 10.1101/cshperspect.a026617] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Despite the great progress in our understanding of the molecular basis of human cancer, the heterogeneity of individual tumors and the evolutionary pressures imposed by therapy have hampered our ability to effectively eradicate and control this disease. How, therefore, do cancers evolve under the selective pressures of cancer therapy? Recent studies have linked both primary (or de novo) and acquired treatment resistance to intratumor heterogeneity and clonal evolution. Resistance to targeted therapies often includes mutation of the drug target itself and aberrations of pathways upstream of, downstream from, or parallel to the drug target. For systemic chemotherapies, discrete and recurrent resistance-conferring genetic aberrations have eluded the community, due in part to their wide-ranging mutagenic effects. In this review, we discuss different patterns of clonal evolution during treatment-specific selective pressures and focus on the genetic mechanisms of treatment resistance that have emerged to both targeted therapies and chemotherapies.
Collapse
Affiliation(s)
- Subramanian Venkatesan
- UCL Cancer Institute, CRUK Lung Cancer Centre of Excellence, London WC1E 6BT, United Kingdom
- Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, London WC2A 3LY, United Kingdom
| | - Charles Swanton
- UCL Cancer Institute, CRUK Lung Cancer Centre of Excellence, London WC1E 6BT, United Kingdom
- Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, London WC2A 3LY, United Kingdom
| | - Barry S Taylor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York 10065
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Joseph F Costello
- Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94158
| |
Collapse
|
22
|
Using human artificial chromosomes to study centromere assembly and function. Chromosoma 2017; 126:559-575. [DOI: 10.1007/s00412-017-0633-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 12/13/2022]
|
23
|
Mechanisms of Chromosome Congression during Mitosis. BIOLOGY 2017; 6:biology6010013. [PMID: 28218637 PMCID: PMC5372006 DOI: 10.3390/biology6010013] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/07/2017] [Accepted: 01/28/2017] [Indexed: 12/13/2022]
Abstract
Chromosome congression during prometaphase culminates with the establishment of a metaphase plate, a hallmark of mitosis in metazoans. Classical views resulting from more than 100 years of research on this topic have attempted to explain chromosome congression based on the balance between opposing pulling and/or pushing forces that reach an equilibrium near the spindle equator. However, in mammalian cells, chromosome bi-orientation and force balance at kinetochores are not required for chromosome congression, whereas the mechanisms of chromosome congression are not necessarily involved in the maintenance of chromosome alignment after congression. Thus, chromosome congression and maintenance of alignment are determined by different principles. Moreover, it is now clear that not all chromosomes use the same mechanism for congressing to the spindle equator. Those chromosomes that are favorably positioned between both poles when the nuclear envelope breaks down use the so-called "direct congression" pathway in which chromosomes align after bi-orientation and the establishment of end-on kinetochore-microtubule attachments. This favors the balanced action of kinetochore pulling forces and polar ejection forces along chromosome arms that drive chromosome oscillatory movements during and after congression. The other pathway, which we call "peripheral congression", is independent of end-on kinetochore microtubule-attachments and relies on the dominant and coordinated action of the kinetochore motors Dynein and Centromere Protein E (CENP-E) that mediate the lateral transport of peripheral chromosomes along microtubules, first towards the poles and subsequently towards the equator. How the opposite polarities of kinetochore motors are regulated in space and time to drive congression of peripheral chromosomes only now starts to be understood. This appears to be regulated by position-dependent phosphorylation of both Dynein and CENP-E and by spindle microtubule diversity by means of tubulin post-translational modifications. This so-called "tubulin code" might work as a navigation system that selectively guides kinetochore motors with opposite polarities along specific spindle microtubule populations, ultimately leading to the congression of peripheral chromosomes. We propose an integrated model of chromosome congression in mammalian cells that depends essentially on the following parameters: (1) chromosome position relative to the spindle poles after nuclear envelope breakdown; (2) establishment of stable end-on kinetochore-microtubule attachments and bi-orientation; (3) coordination between kinetochore- and arm-associated motors; and (4) spatial signatures associated with post-translational modifications of specific spindle microtubule populations. The physiological consequences of abnormal chromosome congression, as well as the therapeutic potential of inhibiting chromosome congression are also discussed.
Collapse
|
24
|
McNulty SM, Sullivan BA. Centromere Silencing Mechanisms. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 56:233-255. [PMID: 28840240 DOI: 10.1007/978-3-319-58592-5_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Centromere function is essential for genome stability and chromosome inheritance. Typically, each chromosome has a single locus that consistently serves as the site of centromere formation and kinetochore assembly. Decades of research have defined the DNA sequence and protein components of functional centromeres, and the interdependencies of specific protein complexes for proper centromere assembly. Less is known about how centromeres are disassembled or functionally silenced. Centromere silencing, or inactivation, is particularly relevant in the cases of dicentric chromosomes that occur via genome rearrangements that place two centromeres on the same chromosome. Dicentrics are usually unstable unless one centromere is inactivated, thereby allowing the structurally dicentric chromosome to behave like one of the monocentric, endogenous chromosomes. The molecular basis for centromere inactivation is not well understood, although studies in model organisms and in humans suggest that both genomic and epigenetic mechanisms are involved. In this chapter, we review recent studies using synthetic chromosomes and engineered or induced dicentrics from various organisms to define the molecular processes that are involved in the complex process of centromere inactivation.
Collapse
Affiliation(s)
- Shannon M McNulty
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, DUMC 3054, Durham, NC, 27710, USA.,Division of Human Genetics, Duke University Medical Center, DUMC 3054, Durham, NC, 27710, USA
| | - Beth A Sullivan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, DUMC 3054, Durham, NC, 27710, USA. .,Division of Human Genetics, Duke University Medical Center, DUMC 3054, Durham, NC, 27710, USA.
| |
Collapse
|
25
|
Diaz-Martinez LA, Clarke DJ. Visualizing chromosome segregation in live cells. Cell Cycle 2016; 15:1811. [PMID: 27163967 DOI: 10.1080/15384101.2016.1185852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Laura A Diaz-Martinez
- a Department of Biological Sciences , The University of Texas at El Paso , El Paso , TX , USA
| | - Duncan J Clarke
- b Department of Genetics , Cell Biology and Development, University of Minnesota , Minneapolis , MN , USA
| |
Collapse
|
26
|
Markossian S, Arnaoutov A, Saba NS, Larionov V, Dasso M. Quantitative assessment of chromosome instability induced through chemical disruption of mitotic progression. Cell Cycle 2016; 15:1706-14. [PMID: 27104376 PMCID: PMC4957569 DOI: 10.1080/15384101.2016.1175796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Most solid tumors are aneuploid, carrying an abnormal number of chromosomes, and they frequently missegregate whole chromosomes in a phenomenon termed chromosome instability (CIN). While CIN can be provoked through disruption of numerous mitotic pathways, it is not clear which of these mechanisms are most critical, or whether alternative mechanisms could also contribute significantly in vivo. One difficulty in determining the relative importance of candidate CIN regulators has been the lack of a straightforward, quantitative assay for CIN in live human cells: While gross mitotic abnormalities can be detected visually, moderate levels of CIN may not be obvious, and are thus problematic to measure. To address this issue, we have developed the first Human Artificial Chromosome (HAC)-based quantitative live-cell assay for mitotic chromosome segregation in human cells. We have produced U2OS-Phoenix cells carrying the alphoidtetO-HAC encoding copies of eGFP fused to the destruction box (DB) of anaphase promoting complex/cyclosome (APC/C) substrate hSecurin and sequences encoding the tetracycline repressor fused to mCherry (TetR-mCherry). Upon HAC missegregation, daughter cells that do not obtain a copy of the HAC are GFP negative in the subsequent interphase. The HAC can also be monitored live following the TetR-mCherry signal. U2OS-Phoenix cells show low inherent levels of CIN, which can be enhanced by agents that target mitotic progression through distinct mechanisms. This assay allows direct detection of CIN induced by clinically important agents without conspicuous mitotic defects, allowing us to score increased levels of CIN that fall below the threshold required for discernable morphological disruption.
Collapse
Affiliation(s)
- Sarine Markossian
- a Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development , National Institutes of Health , Bethesda , MD , USA
| | - Alexei Arnaoutov
- a Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development , National Institutes of Health , Bethesda , MD , USA
| | - Nakhle S Saba
- b Section of Hematology and Medical Oncology, Department of Medicine , Tulane University , New Orleans , LA , USA
| | - Vladimir Larionov
- c Developmental Therapeutic Branch, National Cancer Institute , National Institutes of Health , Bethesda , MD , USA
| | - Mary Dasso
- a Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development , National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|