1
|
Pei H, Guo W, Peng Y, Xiong H, Chen Y. Targeting key proteins involved in transcriptional regulation for cancer therapy: Current strategies and future prospective. Med Res Rev 2022; 42:1607-1660. [PMID: 35312190 DOI: 10.1002/med.21886] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022]
Abstract
The key proteins involved in transcriptional regulation play convergent roles in cellular homeostasis, and their dysfunction mediates aberrant gene expressions that underline the hallmarks of tumorigenesis. As tumor progression is dependent on such abnormal regulation of transcription, it is important to discover novel chemical entities as antitumor drugs that target key tumor-associated proteins involved in transcriptional regulation. Despite most key proteins (especially transcription factors) involved in transcriptional regulation are historically recognized as undruggable targets, multiple targeting approaches at diverse levels of transcriptional regulation, such as epigenetic intervention, inhibition of DNA-binding of transcriptional factors, and inhibition of the protein-protein interactions (PPIs), have been established in preclinically or clinically studies. In addition, several new approaches have recently been described, such as targeting proteasomal degradation and eliciting synthetic lethality. This review will emphasize on accentuating these developing therapeutic approaches and provide a thorough conspectus of the drug development to target key proteins involved in transcriptional regulation and their impact on future oncotherapy.
Collapse
Affiliation(s)
- Haixiang Pei
- Institute for Advanced Study, Shenzhen University and Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China.,Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weikai Guo
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China.,Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Science, Henan University, Kaifeng, China
| | - Yangrui Peng
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University and Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
2
|
Mukherjee D, Hao J, Lu H, Lahiri SK, Yu L, Zhao J. KLF8 promotes invasive outgrowth of breast cancer by inducing filopodium-like protrusions via CXCR4. Am J Transl Res 2022; 14:1220-1233. [PMID: 35273724 PMCID: PMC8902550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/23/2021] [Indexed: 06/14/2023]
Abstract
Post-therapeutic relapse remains the biggest challenge to breast cancer management. The re-initiation of proliferation of dormant tumor cells in either metastatic or primary tumor location marks the final rate-limiting step of malignancy and mortality. The underlying molecular mechanisms remain poorly understood. We have recently demonstrated that KLF8 promotes breast cancer metastasis via CXCR4 upregulation. Here we report a role and mechanisms for KLF8 in driving the recurrence-like tumor outgrowth in both secondary and primary sites in a CXCR4-dependent manner. Treatment of an MDA-MB-231 breast cancer cell variant with the CXCR4 ligand, CXCL12, induces formation of filopodia in monolayer culture and filopodium-like protrusions (FLPs) in 3D culture. The FLP+ cells proliferate significantly faster than FLP- cells in the 3D culture supplemented with CXCL12. Both the FLP formation and enhanced proliferation in the 3D culture can be prevented by silencing KLF8 expression in the cells. From this prevention, the cells can be rescued by overexpressing wild-type CXCR4 but not its inactive mutant form in the cells. Overexpression of KLF8 or CXCR4 in the cells dramatically enhances their invasive outgrowth and metastasis after being implanted into immunocompromised mice. Mechanistically, we found that the activated FAK was recruited to the nascent FLPs and that proliferation of the cells was completely prevented with a FAK-specific inhibitor. Taken together, these results shed new light on the role of KLF8 in promoting breast cancer recurrence, the fatal episode of the disease, by inducing CXCR4-dependent FLP formation.
Collapse
Affiliation(s)
- Debarati Mukherjee
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine6900 Lake Nona Boulevard, Orlando, FL 32827, USA
- Duke University School of MedicineBox 3813, C334 LSRC, 308 Research Drive, Durham, NC 27710, USA
| | - Jie Hao
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine6900 Lake Nona Boulevard, Orlando, FL 32827, USA
| | - Heng Lu
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine6900 Lake Nona Boulevard, Orlando, FL 32827, USA
- University of Miami Miller School of Medicine600 NW 10th Ave #1140, Miami, FL 33136, USA
| | - Satadru K Lahiri
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine6900 Lake Nona Boulevard, Orlando, FL 32827, USA
- Cardiovascular Research Institute and Department of Molecular Physiology and Biophysics, Baylor College of MedicineHouston, TX 77030, USA
| | - Lin Yu
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine6900 Lake Nona Boulevard, Orlando, FL 32827, USA
| | - Jihe Zhao
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine6900 Lake Nona Boulevard, Orlando, FL 32827, USA
| |
Collapse
|
3
|
Hao J, Yu L, Lu H, Sakthivel TS, Seal S, Liu B, Zhao J. Sensitization of breast cancer to Herceptin by redox active nanoparticles. Am J Cancer Res 2021; 11:4884-4899. [PMID: 34765298 PMCID: PMC8569362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023] Open
Abstract
Herceptin-resistant tumor relapse remains a major clinical issue responsible for the poor prognosis of HER2+ breast cancer. Understanding the underlying mechanisms and finding a therapeutic solution are of paramount urgency to improve the patient management. Here we report that anticancer redox active cerium oxide nanoparticles (CONPs) can potently sensitize the cancer cells to the cytotoxicity of Herceptin. By comparing between Herceptin-sensitive and Herceptin-resistant human breast cancer cell lines under normoxic as well as hypoxic culture conditions, we found that in the presence of CONPs, Herceptin can kill the Herceptin-resistant cells equally effectively as it kills the Herceptin-sensitive cells under the hypoxic, but not normoxic, culture conditions by inhibiting the cell viability, survival and proliferation. Signaling analysis reveals that under the normoxic conditions, the levels of hypoxia induced factor 1α as well as vascular endothelial growth factor are higher in the Herceptin-resistant cells than that in the Herceptin-sensitive cells and are strongly induced once the culture is switched to the hypoxic conditions, which can be potently suppressed by CONPs. Treatment with CONPs plus Herceptin significantly slows down the primary tumor growth and lung metastasis of the Herceptin-resistant cells in a xenograft mouse model of orthotopic breast cancer through inhibiting the cell proliferation and survival as well as tumor angiogenesis. These results shed new lights on the mechanisms underlying the Herceptin resistance of the HER2+ breast cancer and provide insights into introducing CONPs-like agents to Herceptin-based therapy to improve treatment outcomes.
Collapse
Affiliation(s)
- Jie Hao
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, OrlandoFL 32827, USA
| | - Lin Yu
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, OrlandoFL 32827, USA
| | - Heng Lu
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, OrlandoFL 32827, USA
- University of Miami Miller School of MedicineMiami, FL 33136, USA
| | - Tamil S Sakthivel
- Department of Material Science and Engineering, Advanced Materials Processing and Analysis Center, Nanoscience Technology Center, Biionix Cluster, College of Medicine, University of Central FloridaOrlando, FL 32816, USA
| | - Sudipta Seal
- Department of Material Science and Engineering, Advanced Materials Processing and Analysis Center, Nanoscience Technology Center, Biionix Cluster, College of Medicine, University of Central FloridaOrlando, FL 32816, USA
| | - Bolin Liu
- Department of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences CenterNew Orleans, LA 70112, USA
| | - Jihe Zhao
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, OrlandoFL 32827, USA
| |
Collapse
|
4
|
Li Y, Wang Q, Wang D, Fu W. KLF7 Promotes Gastric Carcinogenesis Through Regulation of ANTXR1. Cancer Manag Res 2021; 13:5547-5557. [PMID: 34285576 PMCID: PMC8285236 DOI: 10.2147/cmar.s308071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/05/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Elucidating the mechanism of gastric cancer progression is of great importance for the discovery of new therapy targets against gastric cancer. In this study, we investigated the function of Kruppel-like factor 7 (KLF7) in gastric cancer. METHODS qPCR and Western blot were performed to determine the expression of ANTXR1 after KLF7 inhibition. CCK-8, colony formation, apoptosis analysis, cell cycle analysis and transwell assay were performed to determine KLF7 functions in cellular proliferation, migration, apoptosis and cell cycle. Tumour xenograft experiments were performed to examine cell growth in vivo. RESULTS The results showed that KLF7 was upregulated in gastric cancer. The proliferation and migration of gastric cancer cells were suppressed by depletion of KLF7. In vivo tumour progression was also attenuated following the downregulation of KLF7. Meanwhile, overexpression of KLF7 promoted the proliferation and migration of gastric cancer cells. The results of the mechanistic analysis showed that KLF7 promoted gastric carcinogenesis via upregulation of ANTXR cell adhesion molecule 1 (ANTXR1). CONCLUSION Therefore, this study may provide a theoretical foundation for further clinical therapy of gastric cancer.
Collapse
Affiliation(s)
- Yuanchun Li
- Department of General Surgery, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang Province, People’s Republic of China
| | - Qingdong Wang
- Department of Anesthesiology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, People’s Republic of China
| | - DongWei Wang
- Department of Anesthesiology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, People’s Republic of China,Correspondence: DongWei Wang Department of Anesthesiology, First Affiliated Hospital of Jiamusi University, No. 348, Dexiang Street, Jiamusi, Heilongjiang Province, 154002, People’s Republic of ChinaTel +86-0454-8605850 Email
| | - Weihua Fu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China,Weihua Fu Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Tianjin, 300052, People’s Republic of ChinaTel +022-60363901 Email
| |
Collapse
|
5
|
Hao J, Lu H, Mukherjee D, Yu L, Zhao J. Role of krüppel-like factor 8 for therapeutic drug-resistant multi-organ metastasis of breast cancer. Am J Cancer Res 2021; 11:2188-2201. [PMID: 34094677 PMCID: PMC8167685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023] Open
Abstract
Metastasis and drug resistance are intertwined processes that are responsible for the vast majority of patient deaths from breast cancer. The underlying mechanisms remain incompletely understood. We previously demonstrated that KLF8 activates CXCR4 transcription in metastatic breast cancer. Here, we report a novel role of KLF8-CXCR4 signaling for converting single organ metastasis into multiple organ metastasis associated with chemotherapeutic resistance. We show that KLF8 expression in metastatic breast cancer cells can be over-induced by chemotherapeutic drugs. Analysis of data from large-cohorts of patients indicates that post-chemotherapy there is a close correlation between the aberrant high levels of KLF8 and CXCR4 and that this correlation is well associated with drug resistance, metastasis, and poor prognosis. To mimic their aberrant high levels, we overexpressed KLF8 or CXCR4 in a human breast cancer cell line known to metastasize only to the lungs after intravenous injection in nude mice. As expected, these cells become more resistant to chemotherapeutic drugs. Surprisingly, these KLF8 or CXCR4 overexpressing cells, even implanted orthotopically, metastasized extensively to multiple organs particularly the CXCL12-rich organs. Tube formation assay, Ki67 staining and Western blotting revealed that KLF8 or CXCR4 overexpression enhanced angiogenesis involving increased expression and secretion of VEGF protein. We also found that KLF8 or CXCR4 overexpression strongly enhanced formation of filopodium-like protrusions and proliferation via CXCR4 stimulation in a 3D culture model mimicking the colonization step of metastasis. Taken together, these results suggest that the chemo-induction of KLF8 upregulation be critical for drug resistance and systemic metastasis through enhanced tumor angiogenesis and colonization via CXCR4 over-activation and that KLF8-CXCR4 signaling axis may be a new therapeutic target for drug-resistant breast cancer metastasis.
Collapse
Affiliation(s)
- Jie Hao
- Burnett School of Biomedical Sciences University of Central Florida College of Medicine6900 Lake Nona Boulevard, Orlando, FL 32827, USA
| | - Heng Lu
- Burnett School of Biomedical Sciences University of Central Florida College of Medicine6900 Lake Nona Boulevard, Orlando, FL 32827, USA
- University of Miami Miller School of Medicine600 NW 10th Ave #1140, Miami, FL 33136, USA
| | - Debarati Mukherjee
- Burnett School of Biomedical Sciences University of Central Florida College of Medicine6900 Lake Nona Boulevard, Orlando, FL 32827, USA
- Duke University School of MedicineBox 3813, C334 LSRC, 308 Research Drive, Durham, NC 27710, USA
| | - Lin Yu
- Burnett School of Biomedical Sciences University of Central Florida College of Medicine6900 Lake Nona Boulevard, Orlando, FL 32827, USA
| | - Jihe Zhao
- Burnett School of Biomedical Sciences University of Central Florida College of Medicine6900 Lake Nona Boulevard, Orlando, FL 32827, USA
| |
Collapse
|
6
|
Kumar S, Behera A, Saha P, Kumar Srivastava A. The role of Krüppel-like factor 8 in cancer biology: Current research and its clinical relevance. Biochem Pharmacol 2020; 183:114351. [PMID: 33253644 DOI: 10.1016/j.bcp.2020.114351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023]
Abstract
Cancer is one of the leading causes of mortality worldwide, ranked second after heart disease. Despite recent advancements in diagnosis and treatment, there are still numerous problems associated with cancer progression, disease recurrence, and therapeutic resistance that are partially explored. Several studies have recently revealed that Krüppel-like factor 8 (KLF8) regulates transcription of genes linked with diverse biological processes, including proliferation, epithelial to mesenchymal transition (EMT), migration, invasion, and inflammation. KLF8 is expressed ubiquitously in mammalian cells, and its aberrant expression has been manifested with several cancer types. Earlier studies demonstrated the crucial role of KLF8 in DNA repair and resistance to apoptosis in numerous cancer types. Hence, studying the function of KLF8 from the perspective of cancer progression and therapy resistance would help develop a new therapeutic avenue. In this review, we summarize the clinical relevance of KLF8 expression in various malignancies, focusing on recent updates in EMT, cellular signaling, and cancer stem cells. We also address the contribution of KLF8 in development, DNA repair, chemoresistance, and its clinical utility as a predictive biomarker.
Collapse
Affiliation(s)
- Sanjay Kumar
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, AP, India.
| | - Abhijeet Behera
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, AP, India.
| | - Priyanka Saha
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India.
| | - Amit Kumar Srivastava
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India.
| |
Collapse
|
7
|
The Signaling Duo CXCL12 and CXCR4: Chemokine Fuel for Breast Cancer Tumorigenesis. Cancers (Basel) 2020; 12:cancers12103071. [PMID: 33096815 PMCID: PMC7590182 DOI: 10.3390/cancers12103071] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/05/2020] [Accepted: 10/18/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Breast cancer remains the most common malignancy in women. In this review, we explore the role of the CXCL12/CXCR4 pathway in breast cancer. We show that the CXCL12/CXCR4 cascade is involved in nearly every aspect of breast cancer tumorigenesis including proliferation, cell motility and distant metastasis. Moreover, we summarize current knowledge about the CXCL12/CXCR4-targeted therapies. Due to the critical roles of this pathway in breast cancer and other malignancies, we believe that audiences in different fields will find this overview helpful. Abstract The CXCL12/CXCR4 signaling pathway has emerged in the recent years as a key player in breast cancer tumorigenesis. This pathway controls many aspects of breast cancer development including cancer cell proliferation, motility and metastasis to all target organs. Moreover, the CXCL12/CXCR4 cascade affects both immune and stromal cells, creating tumor-supporting microenvironment. In this review, we examine state-of-the-art knowledge about detrimental roles of the CXCL12/CXCR4 signaling, discuss its therapeutic potential and suggest further research directions beneficial both for basic research and personalized medicine in breast cancer.
Collapse
|
8
|
Miao G, Zhao X, Wang B, Zhang L, Wang G, Zheng N, Liu J, Xu Z, Zhang L. TLR2/CXCR4 coassociation facilitatesChlamydia pneumoniaeinfection-induced atherosclerosis. Am J Physiol Heart Circ Physiol 2020; 318:H1420-H1435. [DOI: 10.1152/ajpheart.00011.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Toll-like receptor 2 (TLR2) and C-X-C motif chemokine receptor 4 (CXCR4) have both been shown to be involved in atherosclerosis. We demonstrate for the first time the presence of TLR2/CXCR4 coassociation during C. pneumoniae infection-induced atherosclerosis. Amazingly, blocking of both TLR2 and CXCR4 significantly retards and even almost reverses this infection-induced atherosclerosis. Our work reveals new mechanisms about C. pneumoniae infection-induced atherosclerosis and identifies potential new therapeutic targets for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Guolin Miao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xi Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Beibei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lijun Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Guangyan Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ningbo Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jingya Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhelong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lijun Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
9
|
Jinesh GG, Brohl AS. The genetic script of metastasis. Biol Rev Camb Philos Soc 2020; 95:244-266. [PMID: 31663259 DOI: 10.1111/brv.12562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 01/24/2023]
Abstract
Metastasis is a pivotal event that changes the course of cancers from benign and treatable to malignant and difficult to treat, resulting in the demise of patients. Understanding the genetic control of metastasis is thus crucial to develop efficient and sustainable targeted therapies. Here we discuss the alterations in epigenetic mechanisms, transcription, chromosomal instability, chromosome imprinting, non-coding RNAs, coding RNAs, mutant RNAs, enhancers, G-quadruplexes, and copy number variation to dissect the genetic control of metastasis. We conclude that the genetic control of metastasis is predominantly executed through epithelial to mesenchymal transition and evasion of cell death. We discuss how genetic regulatory mechanisms can be harnessed for therapeutic purposes to achieve sustainable control over cancer metastasis.
Collapse
Affiliation(s)
- Goodwin G Jinesh
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A.,Sarcoma Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A
| | - Andrew S Brohl
- Sarcoma Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A.,Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A
| |
Collapse
|
10
|
Zhang J, Li G, Feng L, Lu H, Wang X. Krüppel-like factors in breast cancer: Function, regulation and clinical relevance. Biomed Pharmacother 2019; 123:109778. [PMID: 31855735 DOI: 10.1016/j.biopha.2019.109778] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 12/21/2022] Open
Abstract
Breast cancer has accounted for the leading cause of cancer-related mortality among women worldwide. Although the progress in its diagnosis and treatment has come at a remarkable pace during the past several decades, there are still a wide array of problems regarding its progression, metastasis and treatment resistance that have not yet been fully clarified. Recently, an increasing number of studies have revealed that some members of Krüppel-like factors(KLFs) are significantly associated with cell proliferation, apoptosis, metastasis, cancer stem cell regulation and prognostic and predictive value for patients in breast cancer, indicating their promising prognostic and predictive potential for breast cancer survival and outcome. In this review, we will summarize our current knowledge of the functions, regulations and clinical relevance of KLFs in breast cancer.
Collapse
Affiliation(s)
- Jianping Zhang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China; Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Guangliang Li
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Lifeng Feng
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Haiqi Lu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China; Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China; Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| |
Collapse
|
11
|
Mao A, Zhou X, Liu Y, Ding J, Miao A, Pan G. KLF8 is associated with poor prognosis and regulates glycolysis by targeting GLUT4 in gastric cancer. J Cell Mol Med 2019; 23:5087-5097. [PMID: 31124603 PMCID: PMC6653475 DOI: 10.1111/jcmm.14378] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/29/2019] [Accepted: 04/16/2019] [Indexed: 12/15/2022] Open
Abstract
Krüppel‐like transcription factor (KLF) family is involved in tumorigenesis in different types of cancer. However, the importance of KLF family in gastric cancer is unclear. Here, we examined KLF gene expression in five paired liver metastases and primary gastric cancer tissues by RT‐PCR, and immunohistochemistry was used to study KLF8 expression in 206 gastric cancer samples. The impact of KLF8 expression on glycolysis, an altered energy metabolism that characterizes cancer cells, was evaluated. KLF8 showed the highest up‐regulation in liver metastases compared with primary tumours among all KLF members. Higher KLF8 expression associated with larger tumour size (P < 0.001), advanced T stage (P = 0.003) and N stage (P < 0.001). High KLF8 expression implied shorter survival outcome in both TCGA and validation cohort (P < 0.05). Silencing KLF8 expression impaired the glycolysis rate of gastric cancer cells in vitro. Moreover, high KLF8 expression positively associated with SUVmax in patient samples. KLF8 activated the GLUT4 promoter activity in a dose‐dependent manner (P < 0.05). Importantly, KLF8 and GLUT4 showed consistent expression patterns in gastric cancer tissues. These findings suggest that KLF8 modulates glycolysis by targeting GLUT4 and could serve as a novel biomarker for survival and potential therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Anwei Mao
- Department of General Surgery, Minhang Hospital, Fudan University, Minhang, Shanghai, China
| | - Xiang Zhou
- Department of General Surgery, Minhang Hospital, Fudan University, Minhang, Shanghai, China
| | - Yanxia Liu
- Department of Nursing, Minhang Hospital, Fudan University, Minhang, Shanghai, China
| | - Junbin Ding
- Department of General Surgery, Minhang Hospital, Fudan University, Minhang, Shanghai, China
| | - Aiyu Miao
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Gaofeng Pan
- Department of General Surgery, Minhang Hospital, Fudan University, Minhang, Shanghai, China
| |
Collapse
|
12
|
Liu J, Zheng H, Ding Y, Li M, Li J, Guo J, Hu L, Pu L, Xiong S. The level of Krüppel-like factor 8 expression predicts prognosis and metastasis in various carcinomas. Medicine (Baltimore) 2019; 98:e15519. [PMID: 31045845 PMCID: PMC6504245 DOI: 10.1097/md.0000000000015519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Krüppel-like factor 8 (KLF8), a transcription factor, belongs to the KLF8 family. Currently, studies have shown that KLF8 is highly expressed in some tumors. However, the prognostic value and metastasis of KLF8 in cancers remain unclear. For the first time, we conducted meta-analysis to explore the relationship between KLF8 expression with prognosis and metastasis in various carcinomas patients. METHODS Web of Science, PubMed, Embase, and Cochrane Library were systematically searched for eligible articles. Pooled hazard ratios (HRs) and their 95% confidence intervals (95% CIs) were calculated to evaluate the prognostic value and metastasis of KLF8 expression in human cancer patients. RESULTS The result revealed that highly expression level of KLF8 was significantly associated with poor overall survival (OS) (HR = 1.56, 95% CI: 1.26-1.87). Meanwhile, this significant correlation was also observed in subgroup analysis stratified by cancer types, source of HR, sample size, follow-up (months). In addition, highly expression of KLF8 was also closely associated with metastasis (HR = 1.37, 95% CI: 0.57-2.17) and tumor node metastasis stage (HR = 1.58, 95% CI: 0.90-2.25) in carcinomas. CONCLUSION In summary, our meta-analysis indicates that overexpression of KLF8 may be associated with poor prognosis and higher incidence of metastasis in various carcinomas, and KLF8 may be used as a prognostic and metastatic indicator in human cancers.
Collapse
Affiliation(s)
- Jun Liu
- Department of Hematology/Hematological Lab
| | | | | | - Manman Li
- Department of Hematology/Hematological Lab
| | - Jingrong Li
- Department of Emergency, The Second Hospital of Anhui Medical University, Hefei, Anhui
| | - Jiaojiao Guo
- Department of Ultrasound, The Yangpu Hospital of Tongji University, Shanghai
| | - Linhui Hu
- Department of Hematology, The Third People's Hospital of Jingdezhen, Jingdezhen, Jiangxi
| | - Lianfang Pu
- Department of Hematology, The Third People's Hospital of Bengbu, Bengbu, Anhui, People's Republic of China
| | | |
Collapse
|
13
|
Sun A, Hao J, Yu L, Lahiri SK, Yang W, Lin Q, Zhao J. Regulation of Krüppel-like factor 8 by the NEDD4 E3 ubiquitin ligase. Am J Transl Res 2019; 11:1521-1530. [PMID: 30972179 PMCID: PMC6456509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Krüppel-like factor 8 (KLF8) plays many important roles in various diseases, especially cancer. Previous studies have shown that KLF8 is regulated by ubiquitylation. The molecular mechanism underlying this posttranslational modification of KLF8, however, has not been investigated. Reported here is our identification of the neural precursor cell expressed, developmentally down-regulated 4 (NEDD4) as the E3 ubiquitin ligase for this modification. By co-immunoprecipitation and ubiquitylation assays, we determined that KLF8 interacts with NEDD4 and is ubiquitylated by NEDD4. By site-directed mutagenesis and pharmacological inhibition of MEK, we found that the ubiquitylation of KLF8 by NEDD4 depends upon the phosphorylation of KLF8 at serine 48 by ERK. Cycloheximide chase analysis, target gene promoter reporter assay and fluorescent staining indicated that NEDD4 plays a critical role in promoting the stability and transcriptional activity of KLF8 in the nucleus. Taken together, this work identified NEDD4 as a novel E3 ubiquitin ligase for KLF8 that provides insights into targeting the KLF8-NEDD4 axis to treat various types of cancer associated with overexpression of both proteins.
Collapse
Affiliation(s)
- Aiqin Sun
- Burnett School of Biomedical Sciences University of Central Florida College of MedicineOrlando, FL 32827, USA
- School of Medicine Jiangsu UniversityZhenjiang, China
| | - Jie Hao
- Burnett School of Biomedical Sciences University of Central Florida College of MedicineOrlando, FL 32827, USA
| | - Lin Yu
- Burnett School of Biomedical Sciences University of Central Florida College of MedicineOrlando, FL 32827, USA
| | - Satadru K Lahiri
- Burnett School of Biomedical Sciences University of Central Florida College of MedicineOrlando, FL 32827, USA
- Cardiovascular Research Institute and Department of Molecular Physiology and Biophysics, Baylor College of MedicineHouston, TX 77030, USA
| | - Wannian Yang
- School of Medicine Jiangsu UniversityZhenjiang, China
| | - Qiong Lin
- School of Medicine Jiangsu UniversityZhenjiang, China
| | - Jihe Zhao
- Burnett School of Biomedical Sciences University of Central Florida College of MedicineOrlando, FL 32827, USA
| |
Collapse
|
14
|
Cheng S, Zhang X, Xu Y, Dai X, Li J, Zhang T, Chen X. Krüppel-like factor 8 regulates VEGFA expression and angiogenesis in hepatocellular carcinoma. Sci Rep 2018; 8:17415. [PMID: 30479372 PMCID: PMC6258679 DOI: 10.1038/s41598-018-35786-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/03/2018] [Indexed: 01/17/2023] Open
Abstract
Tumor angiogenesis plays a critical role in hepatocellular carcinoma (HCC) development and progression, but its mechanism is unclear. Krüppel-like factor 8 (KLF8) is a transcription factor that plays an important role in HCC progression. Here, we investigated the role of KLF8 in angiogenesis in HCC and its possible mechanism. Immunohistochemistry, quantitative RT-PCR, western blotting, promoter reporter assays, chromatin immunoprecipitation (ChIP), and chicken chorioallantoic membrane (CAM) and nude mouse tumor models were used to show that the mRNA and protein expression levels of KLF8 and VEGFA are highly correlated in HCC tissue samples. The up-regulation of KLF8 increased VEGFA protein levels and induced VEGFA promoter activity by binding to the CACCC region of the VEGFA promoter. In addition, KLF8 regulated HIF-1α and Focal adhesion kinase (FAK) expression. The PI3K/AKT inhibitor LY294002 inhibited KLF8-induced VEGFA expression, whereas PI3K/AKT signaling pathway proteins, such as P-PDK1(Ser241) and P-AKT(Thr308), were decreased significantly. KLF8-overexpressing HCC cells had a higher potential for inducing angiogenesis. Thus, our results indicate that KLF8 may induce angiogenesis in HCC by binding to the CACCC region of the VEGFA promoter to induce VEGFA promoter activity and through FAK to activate PI3K/AKT signaling to regulate HIF-1α expression levels.
Collapse
Affiliation(s)
- Sanuo Cheng
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Clinical Medical College, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Xingping Zhang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yali Xu
- Department of Geriatrics, Chongqing General Hospital, Chongqing, China
| | - Xiaobo Dai
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiachu Li
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Tao Zhang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaopin Chen
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Xu L, Cheng L, Yang F, Pei B, Liu X, Zhou J, Zhu Y, Wang S. JWA suppresses the invasion of human breast carcinoma cells by downregulating the expression of CXCR4. Mol Med Rep 2018; 17:8137-8144. [PMID: 29658570 PMCID: PMC5983986 DOI: 10.3892/mmr.2018.8866] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 03/29/2018] [Indexed: 01/11/2023] Open
Abstract
Breast cancer is the second leading cause of cancer-associated mortality, and metastatic breast cancer is responsible for 90% of patient mortalities. Given that JWA represses the proliferation, invasion and metastasis of a number of other human tumor cells, including melanoma, esophageal, hepatocellular and gastric carcinomas, via mitogen-activated protein kinase or integrin signaling, the present study investigated the expression and function of JWA in human breast cancers. The results showed that the expression level of JWA was significantly reduced in human primary breast cancers when compared with the paired adjacent tissues. Downregulating JWA enhanced, while overexpressing JWA suppressed, the migration and invasion abilities of the two breast cancer cell lines, MDA-MB-468 and MDA-MB-231, without affecting their proliferations in vitro. In addition, JWA negatively regulated the surface expression of CXCR4 in the two cell lines via proteasome degradation, though not via transcriptional inhibition. Functionally, normalizing the disturbed expressions of CXCR4 largely reversed the inhibitory effect of JWA on cell invasion. These data demonstrated that JWA suppressed the migration/invasion of breast carcinoma cells by downregulating the expression of CXCR4, and suggested that JWA may harbor prognostic and therapeutic potential in patients with breast cancer.
Collapse
Affiliation(s)
- Lingyun Xu
- Department of Breast Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Lin Cheng
- Department of Breast Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Fangliang Yang
- Department of Breast Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Bei Pei
- Department of Breast Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Xiaoan Liu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yulan Zhu
- Department of Breast Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Shui Wang
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
16
|
Detection of genomic structural variations in Guizhou indigenous pigs and the comparison with other breeds. PLoS One 2018; 13:e0194282. [PMID: 29558483 PMCID: PMC5860705 DOI: 10.1371/journal.pone.0194282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/28/2018] [Indexed: 12/20/2022] Open
Abstract
Genomic structural variation (SV) is noticed for the contribution to genetic diversity and phenotypic changes. Guizhou indigenous pig (GZP) has been raised for hundreds of years with many special characteristics. The present paper aimed to uncover the influence of SV on gene polymorphism and the genetic mechanisms of phenotypic traits for GZP. Eighteen GZPs were chosen for resequencing by Illumina sequencing platform. The confident SVs of GZP were called out by both programs of pindel and softSV simultaneously and compared with the SVs deduced from the genomic data of European pig (EUP) and the native pig outside of Guizhou, China (NPOG). A total of 39,166 SVs were detected and covered 27.37 Mb of pig genome. All of 76 SVs were confirmed in GZP pig population by PCR method. The SVs numbers in NPOG and GZP were about 1.8 to 1.9 times higher than that in EUP. And a SV hotspot was found out from the 20 Mb of chromosome X of GZP, which harbored 29 genes and focused on histone modification. More than half of SVs was positioned in the intergenic regions and about one third of SVs in the introns of genes. And we found that SVs tended to locate in genes produced multi-transcripts, in which a positive correlation was found out between the numbers of SV and the gene transcripts. It illustrated that the primary mode of SVs might function on the regulation of gene expression or the transcripts splicing process. A total of 1,628 protein-coding genes were disturbed by 1,956 SVs specific in GZP, in which 93 GZP-specific SV-related genes would lose their functions due to the SV interference and gathered in reproduction ability. Interestingly, the 1,628 protein-coding genes were mainly enriched in estrogen receptor binding, steroid hormone receptor binding, retinoic acid receptor binding, oxytocin signaling pathway, mTOR signaling pathway, axon guidance and cholinergic synapse pathways. It suggested that SV might be a reason for the strong adaptability and low fecundity of GZP, and 51 candidate genes would be useful for the configuration phenotype in Xiang pig breed.
Collapse
|
17
|
Xu X, Cao L, Zhang Y, Lian H, Sun Z, Cui Y. MicroRNA-1246 inhibits cell invasion and epithelial mesenchymal transition process by targeting CXCR4 in lung cancer cells. Cancer Biomark 2018; 21:251-260. [PMID: 29171984 DOI: 10.3233/cbm-170317] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Recent studies have indicated that microRNAs (miRNAs) are closely related to lung cancer. However, the effects of miR-1246 on lung cancer are still elusive. In this study, we aimed to explore the molecular mechanisms of miR-1246 in lung cancer. MATERIALS AND METHODS Using RT-qPCR assay, we analyzed the expression of miR-1246 in lung cancer cell lines and lung epithelial cell line. Using Cell Counting Kit-8 (CCK-8), flow cytometry, Transwell, RT-qPCR and western blot assays, we investigated cell viability, apoptosis, invasion and epithelial mesenchymal transition (EMT) process. Using luciferase reporter assay, we confirmed a target of miR-1246. Using western blot assay, we detected the protein mechanisms of Janus kinase (JAK)/signal transducer and activator of transcription (STAT) and phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) signal pathways. RESULTS Our results showed that miR-1246 was down-regulated in lung cancer cell lines (A549, H1650 and H1299) compared to in lung epithelial cell line (16HBE14o). MiR-1246 overexpression remarkably inhibited cell invasion as well as up-regulated E-cadherin expression and down-regulated N-cadherin, Vimentin, ZEB1 and Snail expressions in A549 cells. Further studies have confirmed CXCR4 as a target gene of miR-1246, and CXCR4 silence significantly abolished the promotion effect of miR-1246 suppression on cell invasion and EMT process in A549 cells. Besides, miR-1246 blocked JAK/STAT and PI3K/AKT signal pathways by regulation of CXCR4. CONCLUSIONS These results demonstrated that miR-1246 inhibited cell invasion and EMT process by targeting CXCR4 and blocking JAK/STAT and PI3K/AKT signal pathways in lung cancer cells.
Collapse
|
18
|
Li YL, Li YF, Li HF, Lv HQ, Sun DZ. Role of SDF-1α/CXCR4 signaling pathway in clinicopathological features and prognosis of patients with nasopharyngeal carcinoma. Biosci Rep 2017; 37:BSR20170144. [PMID: 28559386 PMCID: PMC5518484 DOI: 10.1042/bsr20170144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/22/2017] [Accepted: 05/30/2017] [Indexed: 11/17/2022] Open
Abstract
The present study aims to explore the role of stromal cell-derived factor-1α (SDF-1α)/stromal cell-derived factor receptor-4 (CXCR4) signaling pathway to the clinicopathological features and prognosis of patients with nasopharyngeal carcinoma (NPC). From January 2009 to December 2010, 102 patients with NPC and 80 patients with chronic nasopharyngitis were enrolled for the study. Immunohistochemical staining, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blotting were employed to determine the expressions of SDF-1α and CXCR4 proteins in NPC tissues and chronic nasopharyngitis tissues. Chi-square test was conducted to analyze the associations of the expressions of SDF-1α and CXCR4 proteins with the clinicopathological features of NPC patients. Spearman rank correlation analysis was used to analyze the correlation between the SDF-1α protein expression and CXCR4 protein expression. The mRNA and protein expressions of SDF-1α and CXCR4 in NPC tissues were significantly higher than those in chronic nasopharyngitis tissues. The expressions of SDF-1α and CXCR4 proteins showed associations with T staging, N staging, tumor node metastasis (TNM) staging, skull base invasion, and cervical lymph node metastasis of NPC patients. Compared with NPC patients showing negative expressions of SDF-1α and CXCR4 proteins, those with positive expressions of SDF-1α and CXCR4 proteins had a significantly shorter survival time. SDF-1α protein, CXCR4 protein, EBV-IgG status, T staging, N staging, TNM staging, skull base invasion, and cervical lymph node metastasis were independent risk factors for the prognosis of NPC. The findings indicated that SDF-1α/CXCR4 signaling pathway might be associated with the clinicopathological features and prognosis of patients with NPC.
Collapse
Affiliation(s)
- Yun-Ling Li
- Department of ENT, Linyi People's Hospital, Linyi City 276003, P.R. China
| | - Yu-Fen Li
- Department of ENT, Linyi People's Hospital, Linyi City 276003, P.R. China
| | - Hua-Feng Li
- Department of Genetic Laboratory, Women and Children's Hospital of Linyi, Linyi City 276016, P.R. China
| | - Huai-Qing Lv
- Department of ENT, Linyi People's Hospital, Linyi City 276003, P.R. China
| | - De-Zhong Sun
- Department of ENT, Linyi People's Hospital, Linyi City 276003, P.R. China
| |
Collapse
|