1
|
Silva SLR, Dias IRSB, Rodrigues ACBDC, Costa RGA, Oliveira MDS, Barbosa GADC, Soares MBP, Dias RB, Valverde LF, Rocha CAG, Roy N, Park CY, Bezerra DP. Emetine induces oxidative stress, cell differentiation and NF-κB inhibition, suppressing AML stem/progenitor cells. Cell Death Discov 2024; 10:201. [PMID: 38684672 PMCID: PMC11059384 DOI: 10.1038/s41420-024-01967-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Acute myeloid leukemia (AML) is a fatal malignancy of the blood and bone marrow. Leukemic stem cells (LSCs) are a rare subset of leukemic cells that promote the development and progression of AML, and eradication of LSCs is critical for effective control of this disease. Emetine is an FDA-approved antiparasitic drug with antitumor properties; however, little is known about its potential against LSCs. Herein, we explored the antileukemic potential of emetine, focusing on its effects on AML stem/progenitor cells. Emetine exhibited potent cytotoxic activity both in hematologic and solid cancer cells and induced AML cell differentiation. Emetine also inhibited AML stem/progenitor cells, as evidenced by decreased expression of CD34, CD97, CD99, and CD123 in KG-1a cells, indicating anti-AML stem/progenitor cell activities. The administration of emetine at a dosage of 10 mg/kg for two weeks showed no significant toxicity and significantly reduced xenograft leukemic growth in vivo. NF-κB activation was reduced in emetine-treated KG-1a cells, as shown by reduced phospho-NF-κB p65 (S529) and nuclear NF-κB p65. DNA fragmentation, YO-PRO-1 staining, mitochondrial depolarization and increased levels of active caspase-3 and cleaved PARP (Asp214) were detected in emetine-treated KG-1a cells. Moreover, treatment with the pancaspase inhibitor Z-VAD(OMe)-FMK partially prevented the apoptotic cell death induced by emetine. Emetine treatment also increased cellular and mitochondrial reactive oxygen species, and emetine-induced apoptosis in KG-1a cells was partially prevented by the antioxidant N-acetylcysteine, indicating that emetine induces apoptosis, at least in part, by inducing oxidative stress. Overall, these studies indicate that emetine is a novel potential anti-AML agent with promising activity against stem/progenitor cells, encouraging the development of further studies aimed at its clinical application.
Collapse
Affiliation(s)
- Suellen L R Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil
| | - Ingrid R S B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil
| | | | - Rafaela G A Costa
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil
| | - Maiara de S Oliveira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil
| | - Gabriela A da C Barbosa
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil
| | - Milena B P Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil
- SENAI Institute for Innovation in Advanced Health Systems, SENAI CIMATEC, Salvador, BA, 41650-010, Brazil
| | - Rosane B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil
- Department of Propaedeutics, Federal University of Bahia (UFBA), Salvador, BA, 40301-155, Brazil
| | - Ludmila F Valverde
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil
| | - Clarissa A G Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil
- Department of Propaedeutics, Federal University of Bahia (UFBA), Salvador, BA, 40301-155, Brazil
- Center for Biotechnology and Cell Therapy, D'Or Institute for Research and Education (IDOR), Salvador, BA, 41253-190, Brazil
| | - Nainita Roy
- Department of Pathology, School of Medicine, New York University, New York, NY, 10016, United States of America
| | - Christopher Y Park
- Department of Pathology, School of Medicine, New York University, New York, NY, 10016, United States of America
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil.
| |
Collapse
|
2
|
de Groot AP, de Haan G. How CBX proteins regulate normal and leukemic blood cells. FEBS Lett 2024. [PMID: 38426219 DOI: 10.1002/1873-3468.14839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/26/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Hematopoietic stem cell (HSC) fate decisions are dictated by epigenetic landscapes. The Polycomb Repressive Complex 1 (PRC1) represses genes that induce differentiation, thereby maintaining HSC self-renewal. Depending on which chromobox (CBX) protein (CBX2, CBX4, CBX6, CBX7, or CBX8) is part of the PRC1 complex, HSC fate decisions differ. Here, we review how this occurs. We describe how CBX proteins dictate age-related changes in HSCs and stimulate oncogenic HSC fate decisions, either as canonical PRC1 members or by alternative interactions, including non-epigenetic regulation. CBX2, CBX7, and CBX8 enhance leukemia progression. To target, reprogram, and kill leukemic cells, we suggest and describe multiple therapeutic strategies to interfere with the epigenetic functions of oncogenic CBX proteins. Future studies should clarify to what extent the non-epigenetic function of cytoplasmic CBX proteins is important for normal, aged, and leukemic blood cells.
Collapse
Affiliation(s)
- Anne P de Groot
- European Research Institute for Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), The Netherlands
- Sanquin Research, Landsteiner Laboratory, Sanquin Blood Supply, Amsterdam, The Netherlands
| | - Gerald de Haan
- European Research Institute for Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), The Netherlands
- Sanquin Research, Landsteiner Laboratory, Sanquin Blood Supply, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam UMC, University of Amsterdam, The Netherlands
| |
Collapse
|
3
|
Zhou X, An B, Lin Y, Ni Y, Zhao X, Liang X. Molecular mechanisms of ROS-modulated cancer chemoresistance and therapeutic strategies. Biomed Pharmacother 2023; 165:115036. [PMID: 37354814 DOI: 10.1016/j.biopha.2023.115036] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023] Open
Abstract
Drug resistance is the main obstacle to achieving a cure in many cancer patients. Reactive oxygen species (ROS) are master regulators of cancer development that act through complex mechanisms. Remarkably, ROS levels and antioxidant content are typically higher in drug-resistant cancer cells than in non-resistant and normal cells, and have been shown to play a central role in modulating drug resistance. Therefore, determining the underlying functions of ROS in the modulation of drug resistance will contribute to develop therapies that sensitize cancer resistant cells by leveraging ROS modulation. In this review, we summarize the notable literature on the sources and regulation of ROS production and highlight the complex roles of ROS in cancer chemoresistance, encompassing transcription factor-mediated chemoresistance, maintenance of cancer stem cells, and their impact on the tumor microenvironment. We also discuss the potential of ROS-targeted therapies in overcoming tumor therapeutic resistance.
Collapse
Affiliation(s)
- Xiaoting Zhou
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, PR China
| | - Biao An
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yi Lin
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yanghong Ni
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xiao Liang
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
4
|
Genome-wide siRNA screens identify RBBP9 function as a potential target in Fanconi anaemia-deficient head-and-neck squamous cell carcinoma. Commun Biol 2023; 6:37. [PMID: 36639418 PMCID: PMC9839743 DOI: 10.1038/s42003-022-04389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
Fanconi anaemia (FA) is a rare chromosomal-instability syndrome caused by mutations of any of the 22 known FA DNA-repair genes. FA individuals have an increased risk of head-and-neck squamous-cell-carcinomas (HNSCC), often fatal. Systemic intolerance to standard cisplatin-based protocols due to somatic-cell hypersensitivity underscores the urgent need to develop novel therapies. Here, we performed unbiased siRNA screens to unveil genetic interactions synthetic-lethal with FA-pathway deficiency in FA-patient HNSCC cell lines. We identified based on differential-lethality scores between FA-deficient and FA-proficient cells, next to common-essential genes such as PSMC1, PSMB2, and LAMTOR2, the otherwise non-essential RBBP9 gene. Accordingly, low dose of the FDA-approved RBBP9-targeting drug Emetine kills FA-HNSCC. Importantly both RBBP9-silencing as well as Emetine spared non-tumour FA cells. This study provides a minable genome-wide analyses of vulnerabilities to address treatment challenges in FA-HNSCC. Our investigation divulges a DNA-cross-link-repair independent lead, RBBP9, for targeted treatment of FA-HNSCCs without systemic toxicity.
Collapse
|
5
|
Panieri E, Saso L. Inhibition of the NRF2/KEAP1 Axis: A Promising Therapeutic Strategy to Alter Redox Balance of Cancer Cells. Antioxid Redox Signal 2021; 34:1428-1483. [PMID: 33403898 DOI: 10.1089/ars.2020.8146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: The nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (NRF2/KEAP1) pathway is a crucial and highly conserved defensive system that is required to maintain or restore the intracellular homeostasis in response to oxidative, electrophilic, and other types of stress conditions. The tight control of NRF2 function is maintained by a complex network of biological interactions between positive and negative regulators that ultimately ensure context-specific activation, culminating in the NRF2-driven transcription of cytoprotective genes. Recent Advances: Recent studies indicate that deregulated NRF2 activation is a frequent event in malignant tumors, wherein it is associated with metabolic reprogramming, increased antioxidant capacity, chemoresistance, and poor clinical outcome. On the other hand, the growing interest in the modulation of the cancer cells' redox balance identified NRF2 as an ideal therapeutic target. Critical Issues: For this reason, many efforts have been made to identify potent and selective NRF2 inhibitors that might be used as single agents or adjuvants of anticancer drugs with redox disrupting properties. Despite the lack of specific NRF2 inhibitors still represents a major clinical hurdle, the researchers have exploited alternative strategies to disrupt NRF2 signaling at different levels of its biological activation. Future Directions: Given its dualistic role in tumor initiation and progression, the identification of the appropriate biological context of NRF2 activation and the specific clinicopathological features of patients cohorts wherein its inactivation is expected to have clinical benefits, will represent a major goal in the field of cancer research. In this review, we will briefly describe the structure and function of the NRF2/ KEAP1 system and some of the most promising NRF2 inhibitors, with a particular emphasis on natural compounds and drug repurposing. Antioxid. Redox Signal. 34, 1428-1483.
Collapse
Affiliation(s)
- Emiliano Panieri
- Department of Physiology and Pharmacology "Vittorio Erspamer," University of Rome La Sapienza, Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer," University of Rome La Sapienza, Rome, Italy
| |
Collapse
|
6
|
Abstract
BACKGROUND Many drugs approved for other indications can control the growth of tumor cells and limit adverse events (AE). DATA SOURCES Literature searches with keywords 'repurposing and cancer' books, websites: https://clinicaltrials.gov/, for drug structures: https://pubchem.ncbi.nlm.nih.gov/. AREAS OF AGREEMENT Introducing approved drugs, such as those developed to treat diabetes (Metformin) or inflammation (Thalidomide), identified to have cytostatic activity, can enhance chemotherapy or even replace more cytotoxic drugs. Also, anti-inflammatory compounds, cytokines and inhibitors of proteolysis can be used to control the side effects of chemo- and immuno-therapies or as second-line treatments for tumors resistant to kinase inhibitors (KI). Drugs specifically developed for cancer therapy, such as interferons (IFN), the tyrosine KI abivertinib TKI (tyrosine kinase inhibitor) and interleukin-6 (IL-6) receptor inhibitors, may help control symptoms of Covid-19. AREAS OF CONTROVERSY Better knowledge of mechanisms of drug activities is essential for repurposing. Chemotherapies induce ER stress and enhance mutation rates and chromosome alterations, leading to resistance that cannot always be related to mutations in the target gene. Metformin, thalidomide and cytokines (IFN, tumor necrosis factor (TNF), interleukin-2 (IL-2) and others) have pleiomorphic activities, some of which can enhance tumorigenesis. The small and fragile patient pools available for clinical trials can cloud the data on the usefulness of cotreatments. GROWING POINTS Better understanding of drug metabolism and mechanisms should aid in repurposing drugs for primary, adjuvant and adjunct treatments. AREAS TIMELY FOR DEVELOPING RESEARCH Optimizing drug combinations, reducing cytotoxicity of chemotherapeutics and controlling associated inflammation.
Collapse
Affiliation(s)
- Catherine H Schein
- Department of Biochemistry and Molecular Biology Faculty, Institute for Human Infections and Immunity (IHII), University of Texas Medical Branch, Galveston 301 University Boulevard, Galveston, Texas 77555, USA
| |
Collapse
|
7
|
Akman M, Belisario DC, Salaroglio IC, Kopecka J, Donadelli M, De Smaele E, Riganti C. Hypoxia, endoplasmic reticulum stress and chemoresistance: dangerous liaisons. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:28. [PMID: 33423689 PMCID: PMC7798239 DOI: 10.1186/s13046-020-01824-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
Solid tumors often grow in a micro-environment characterized by < 2% O2 tension. This condition, together with the aberrant activation of specific oncogenic patwhays, increases the amount and activity of the hypoxia-inducible factor-1α (HIF-1α), a transcription factor that controls up to 200 genes involved in neoangiogenesis, metabolic rewiring, invasion and drug resistance. Hypoxia also induces endoplasmic reticulum (ER) stress, a condition that triggers cell death, if cells are irreversibly damaged, or cell survival, if the stress is mild.Hypoxia and chronic ER stress both induce chemoresistance. In this review we discuss the multiple and interconnected circuitries that link hypoxic environment, chronic ER stress and chemoresistance. We suggest that hypoxia and ER stress train and select the cells more adapted to survive in unfavorable conditions, by activating pleiotropic mechanisms including apoptosis inhibition, metabolic rewiring, anti-oxidant defences, drugs efflux. This adaptative process unequivocally expands clones that acquire resistance to chemotherapy.We believe that pharmacological inhibitors of HIF-1α and modulators of ER stress, although characterized by low specificty and anti-cancer efficacy when used as single agents, may be repurposed as chemosensitizers against hypoxic and chemorefractory tumors in the next future.
Collapse
Affiliation(s)
- Muhlis Akman
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy
| | | | | | - Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Roma, Roma, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy.
| |
Collapse
|
8
|
Belisario DC, Kopecka J, Pasino M, Akman M, De Smaele E, Donadelli M, Riganti C. Hypoxia Dictates Metabolic Rewiring of Tumors: Implications for Chemoresistance. Cells 2020; 9:cells9122598. [PMID: 33291643 PMCID: PMC7761956 DOI: 10.3390/cells9122598] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
Hypoxia is a condition commonly observed in the core of solid tumors. The hypoxia-inducible factors (HIF) act as hypoxia sensors that orchestrate a coordinated response increasing the pro-survival and pro-invasive phenotype of cancer cells, and determine a broad metabolic rewiring. These events favor tumor progression and chemoresistance. The increase in glucose and amino acid uptake, glycolytic flux, and lactate production; the alterations in glutamine metabolism, tricarboxylic acid cycle, and oxidative phosphorylation; the high levels of mitochondrial reactive oxygen species; the modulation of both fatty acid synthesis and oxidation are hallmarks of the metabolic rewiring induced by hypoxia. This review discusses how metabolic-dependent factors (e.g., increased acidification of tumor microenvironment coupled with intracellular alkalinization, and reduced mitochondrial metabolism), and metabolic-independent factors (e.g., increased expression of drug efflux transporters, stemness maintenance, and epithelial-mesenchymal transition) cooperate in determining chemoresistance in hypoxia. Specific metabolic modifiers, however, can reverse the metabolic phenotype of hypoxic tumor areas that are more chemoresistant into the phenotype typical of chemosensitive cells. We propose these metabolic modifiers, able to reverse the hypoxia-induced metabolic rewiring, as potential chemosensitizer agents against hypoxic and refractory tumor cells.
Collapse
Affiliation(s)
- Dimas Carolina Belisario
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (J.K.); (M.P.); (M.A.)
| | - Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (J.K.); (M.P.); (M.A.)
| | - Martina Pasino
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (J.K.); (M.P.); (M.A.)
| | - Muhlis Akman
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (J.K.); (M.P.); (M.A.)
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Roma, 00185 Roma, Italy;
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy;
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (J.K.); (M.P.); (M.A.)
- Correspondence: ; Tel.: +39-011-670-5857
| |
Collapse
|
9
|
Schein CH. Repurposing approved drugs on the pathway to novel therapies. Med Res Rev 2020; 40:586-605. [PMID: 31432544 PMCID: PMC7018532 DOI: 10.1002/med.21627] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/17/2019] [Accepted: 07/26/2019] [Indexed: 12/22/2022]
Abstract
The time and cost of developing new drugs have led many groups to limit their search for therapeutics to compounds that have previously been approved for human use. Many "repurposed" drugs, such as derivatives of thalidomide, antibiotics, and antivirals have had clinical success in treatment areas well beyond their original approved use. These include applications in treating antibiotic-resistant organisms, viruses, cancers and to prevent burn scarring. The major theoretical justification for reusing approved drugs is that they have known modes of action and controllable side effects. Coadministering antibiotics with inhibitors of bacterial toxins or enzymes that mediate multidrug resistance can greatly enhance their activity. Drugs that control host cell pathways, including inflammation, tumor necrosis factor, interferons, and autophagy, can reduce the "cytokine storm" response to injury, control infection, and aid in cancer therapy. An active compound, even if previously approved for human use, will be a poor clinical candidate if it lacks specificity for the new target, has poor solubility or can cause serious side effects. Synergistic combinations can reduce the dosages of the individual components to lower reactivity. Preclinical analysis should take into account that severely ill patients with comorbidities will be more sensitive to side effects than healthy trial subjects. Once an active, approved drug has been identified, collaboration with medicinal chemists can aid in finding derivatives with better physicochemical properties, specificity, and efficacy, to provide novel therapies for cancers, emerging and rare diseases.
Collapse
Affiliation(s)
- Catherine H Schein
- Department of Biochemistry and Molecular Biology, Institute for Human Infection and Immunity (IHII), University of Texas Medical Branch at Galveston, Galveston, Texas
| |
Collapse
|
10
|
Yassin M, Aqaqe N, Yassin AA, van Galen P, Kugler E, Bernstein BE, Koren-Michowitz M, Canaani J, Nagler A, Lechman ER, Dick JE, Wienholds E, Izraeli S, Milyavsky M. A novel method for detecting the cellular stemness state in normal and leukemic human hematopoietic cells can predict disease outcome and drug sensitivity. Leukemia 2019; 33:2061-2077. [PMID: 30705411 DOI: 10.1038/s41375-019-0386-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/02/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023]
Abstract
Acute leukemia is an aggressive blood malignancy with low survival rates. A high expression of stem-like programs in leukemias predicts poor prognosis and is assumed to act in an aberrant fashion in the phenotypically heterogeneous leukemia stem cell (LSC) population. A lack of suitable genome engineering tools that can isolate LSCs based on their stemness precludes their comprehensive examination and full characterization. We hypothesized that tagging endogenous stemness-regulatory regions could generate a genome reporter for the putative leukemia stemness-state. Our analysis revealed that the ERG + 85 enhancer region can serve as a marker for stemness-state and a fluorescent lentiviral reporter was developed that can accurately recapitulate the endogenous activity. Using our novel reporter, we revealed cellular heterogeneity in several leukemia cell lines and patient-derived samples. Alterations in reporter activity were associated with transcriptomic and functional changes that were closely related to the hematopoietic stem cell (HSC) identity. Notably, the differentiation potential was skewed towards the erythro-megakaryocytic lineage. Moreover, an ERG + 85High fraction of AML cells could regenerate the original cellular heterogeneity and was enriched for LSCs. RNA-seq analysis coupled with in silico drug-screen analysis identified 4HPR as an effective inhibitor of ERG + 85High leukemia growth. We propose that further utilization of our novel molecular tool will identify crucial determinants of LSCs, thus providing a rationale for their therapeutic targeting.
Collapse
Affiliation(s)
- Muhammad Yassin
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Nasma Aqaqe
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Abed Alkader Yassin
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Peter van Galen
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Eitan Kugler
- Department of Pediatric Hemato-Oncology, Schneider Children Medical Center, Petah Tikva, Israel.,The Gene Development and Environment Pediatric Research Institute, Pediatric Hemato-Oncology, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Department of Molecular Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Bradley E Bernstein
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, 02114, USA
| | | | - Jonathan Canaani
- Hematology Division, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Arnon Nagler
- Hematology Division, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Eric R Lechman
- Princess Margaret Cancer Centre, University Health Network and Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network and Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Erno Wienholds
- Princess Margaret Cancer Centre, University Health Network and Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Shai Izraeli
- Department of Pediatric Hemato-Oncology, Schneider Children Medical Center, Petah Tikva, Israel.,The Gene Development and Environment Pediatric Research Institute, Pediatric Hemato-Oncology, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Department of Molecular Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Michael Milyavsky
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel.
| |
Collapse
|
11
|
Aoki T, Shimada K, Sakamoto A, Sugimoto K, Morishita T, Kojima Y, Shimada S, Kato S, Iriyama C, Kuno S, Harada Y, Tomita A, Hayakawa F, Kiyoi H. Emetine elicits apoptosis of intractable B-cell lymphoma cells with MYC rearrangement through inhibition of glycolytic metabolism. Oncotarget 2017; 8:13085-13098. [PMID: 28055963 PMCID: PMC5355079 DOI: 10.18632/oncotarget.14393] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/13/2016] [Indexed: 12/15/2022] Open
Abstract
Despite improved clinical outcomes of diffuse large B-cell lymphoma, a certain proportion of patients still develop a primary refractory disease. To overcome these lymphomas that are intractable to existing treatment strategies, the tumor microenvironment has been identified as a potential therapeutic target. Here we describe our search for effective drugs for primary refractory lymphoma cells with MYC rearrangement. Through the drug screening of 3,440 known compounds, we identified a unique compound, emetine. This compound was effective against lymphoma cells with MYC rearrangement from two different patients that were co-cultured with cancer associated fibroblasts. Emetine induced the death of these cells with a half maximal inhibitory concentration of 312 nM and 506 nM, respectively. Subsequent analyses of the mechanism of action of emetine showed that the drug induced apoptosis of tumor cells via alteration of glucose metabolism through inhibition of hypoxia inducible factor-1α. Moreover, emetine inhibited the potential of cancer associated fibroblasts to support tumor cell viability in vitro and demonstrated significant inhibition of tumor growth in in vivo analyses. Emetine also induced cell death in other primary refractory lymphoma cells with MYC rearrangement. Our combined data indicate that emetine is a potential promising drug for the treatment of intractable lymphomas, which targets both the tumor and its microenvironment.
Collapse
Affiliation(s)
- Tomohiro Aoki
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuyuki Shimada
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Akihiko Sakamoto
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Mechanism of Aging, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Keiki Sugimoto
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Fujii Memorial Research Institute, Otsuka Pharmaceutical Co., Ltd., Otsu, Japan
| | - Takanobu Morishita
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Hematology, Japanese Red Cross Nagoya Daiichi Hospital, Nagoya, Japan
| | - Yuki Kojima
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoko Shimada
- Department of Pathology and Clinical Laboratories, Nagoya University Hospital, Nagoya, Japan
| | - Seiichi Kato
- Department of Pathology and Clinical Laboratories, Nagoya University Hospital, Nagoya, Japan
| | - Chisako Iriyama
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shunsuke Kuno
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiko Harada
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihiro Tomita
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Hematology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Fumihiko Hayakawa
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
12
|
Etxabe A, Lara-Castillo MC, Cornet-Masana JM, Banús-Mulet A, Nomdedeu M, Torrente MA, Pratcorona M, Díaz-Beyá M, Esteve J, Risueño RM. Inhibition of serotonin receptor type 1 in acute myeloid leukemia impairs leukemia stem cell functionality: a promising novel therapeutic target. Leukemia 2017; 31:2288-2302. [DOI: 10.1038/leu.2017.52] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 01/12/2017] [Accepted: 02/06/2017] [Indexed: 12/25/2022]
|
13
|
Repositioning of bromocriptine for treatment of acute myeloid leukemia. J Transl Med 2016; 14:261. [PMID: 27604463 PMCID: PMC5015257 DOI: 10.1186/s12967-016-1007-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/16/2016] [Indexed: 11/26/2022] Open
Abstract
Background Treatment for acute myeloid leukemia (AML) has not significantly changed in the last decades and new therapeutic approaches are needed to achieve prolonged survival rates. Leukemia stem cells (LSC) are responsible for the initiation and maintenance of AML due to their stem-cell properties. Differentiation therapies aim to abrogate the self-renewal capacity and diminish blast lifespan. Methods An in silico screening was designed to search for FDA-approved small molecules that potentially induce differentiation of AML cells. Bromocriptine was identified and validated in an in vitro screening. Bromocriptine is an approved drug originally indicated for Parkinson’s disease, acromegaly, hyperprolactinemia and galactorrhoea, and recently repositioned for diabetes mellitus. Results Treatment with bromocriptine reduced cell viability of AML cells by activation of the apoptosis program and induction of myeloid differentiation. Moreover, the LSC-enriched primitive AML cell fraction was more sensitive to the presence of bromocriptine. In fact, bromocriptine decreased the clonogenic capacity of AML cells. Interestingly, a negligible effect is observed in healthy blood cells and hematopoietic stem/progenitor cells. Conclusions Our results support the use of bromocriptine as an anti-AML drug in a repositioning setting and the further clinical validation of this preclinical study. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-1007-5) contains supplementary material, which is available to authorized users.
Collapse
|