1
|
Chou HD, Shiah SG, Chuang LH, Wu WC, Hwang YS, Chen KJ, Kang EYC, Yeung L, Nien CY, Lai CC. MicroRNA-152-3p and MicroRNA-196a-5p Are Downregulated When Müller Cells Are Promoted by Components of the Internal Limiting Membrane: Implications for Macular Hole Healing. Int J Mol Sci 2023; 24:17188. [PMID: 38139016 PMCID: PMC10743628 DOI: 10.3390/ijms242417188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Müller cells play a critical role in the closure of macular holes, and their proliferation and migration are facilitated by the internal limiting membrane (ILM). Despite the importance of this process, the underlying molecular mechanism remains underexplored. This study investigated the effects of ILM components on the microRNA (miRNA) profile of Müller cells. Rat Müller cells (rMC-1) were cultured with a culture insert and varying concentrations of ILM component coatings, namely, collagen IV, laminin, and fibronectin, and cell migration was assessed by measuring cell-free areas in successive photographs following insert removal. MiRNAs were then extracted from these cells and analyzed. Mimics and inhibitors of miRNA candidates were transfected into Müller cells, and a cell migration assay and additional cell viability assays were performed. The results revealed that the ILM components promoted Müller cell migration (p < 0.01). Among the miRNA candidates, miR-194-3p was upregulated, whereas miR-125b-1-3p, miR-132-3p, miR-146b-5p, miR-152-3p, miR-196a-5p, miR-542-5p, miR-871-3p, miR-1839-5p, and miR-3573-3p were significantly downregulated (p < 0.05; fold change > 1.5). Moreover, miR-152-3p and miR-196a-5p reduced cell migration (p < 0.05) and proliferation (p < 0.001), and their suppressive effects were reversed by their respective inhibitors. In conclusion, miRNAs were regulated in ILM component-activated Müller cells, with miR-152-3p and miR-196a-5p regulating Müller cell migration and proliferation. These results serve as a basis for understanding the molecular healing process of macular holes and identifying potential new target genes in future research.
Collapse
Affiliation(s)
- Hung-Da Chou
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan; (H.-D.C.); (S.-G.S.)
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan 33305, Taiwan; (W.-C.W.); (Y.-S.H.); (K.-J.C.); (E.Y.-C.K.)
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan; (L.-H.C.); (L.Y.)
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Shine-Gwo Shiah
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan; (H.-D.C.); (S.-G.S.)
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Lan-Hsin Chuang
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan; (L.-H.C.); (L.Y.)
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan 33305, Taiwan; (W.-C.W.); (Y.-S.H.); (K.-J.C.); (E.Y.-C.K.)
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan; (L.-H.C.); (L.Y.)
| | - Yih-Shiou Hwang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan 33305, Taiwan; (W.-C.W.); (Y.-S.H.); (K.-J.C.); (E.Y.-C.K.)
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan; (L.-H.C.); (L.Y.)
| | - Kuan-Jen Chen
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan 33305, Taiwan; (W.-C.W.); (Y.-S.H.); (K.-J.C.); (E.Y.-C.K.)
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan; (L.-H.C.); (L.Y.)
| | - Eugene Yu-Chuan Kang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan 33305, Taiwan; (W.-C.W.); (Y.-S.H.); (K.-J.C.); (E.Y.-C.K.)
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan; (L.-H.C.); (L.Y.)
| | - Ling Yeung
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan; (L.-H.C.); (L.Y.)
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Chung-Yi Nien
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan; (H.-D.C.); (S.-G.S.)
| | - Chi-Chun Lai
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan 33305, Taiwan; (W.-C.W.); (Y.-S.H.); (K.-J.C.); (E.Y.-C.K.)
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan; (L.-H.C.); (L.Y.)
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| |
Collapse
|
2
|
Shwani T, Zhang C, Owen LA, Shakoor A, Vitale AT, Lillvis JH, Barr JL, Cromwell P, Finley R, Husami N, Au E, Zavala RA, Graves EC, Zhang SX, Farkas MH, Ammar DA, Allison KM, Tawfik A, Sherva RM, Li M, Stambolian D, Kim IK, Farrer LA, DeAngelis MM. Patterns of Gene Expression, Splicing, and Allele-Specific Expression Vary among Macular Tissues and Clinical Stages of Age-Related Macular Degeneration. Cells 2023; 12:2668. [PMID: 38067097 PMCID: PMC10705168 DOI: 10.3390/cells12232668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness, and elucidating its underlying disease mechanisms is vital to the development of appropriate therapeutics. We identified differentially expressed genes (DEGs) and differentially spliced genes (DSGs) across the clinical stages of AMD in disease-affected tissue, the macular retina pigment epithelium (RPE)/choroid and the macular neural retina within the same eye. We utilized 27 deeply phenotyped donor eyes (recovered within a 6 h postmortem interval time) from Caucasian donors (60-94 years) using a standardized published protocol. Significant findings were then validated in an independent set of well-characterized donor eyes (n = 85). There was limited overlap between DEGs and DSGs, suggesting distinct mechanisms at play in AMD pathophysiology. A greater number of previously reported AMD loci overlapped with DSGs compared to DEGs between disease states, and no DEG overlap with previously reported loci was found in the macular retina between disease states. Additionally, we explored allele-specific expression (ASE) in coding regions of previously reported AMD risk loci, uncovering a significant imbalance in C3 rs2230199 and CFH rs1061170 in the macular RPE/choroid for normal eyes and intermediate AMD (iAMD), and for CFH rs1061147 in the macular RPE/choroid for normal eyes and iAMD, and separately neovascular AMD (NEO). Only significant DEGs/DSGs from the macular RPE/choroid were found to overlap between disease states. STAT1, validated between the iAMD vs. normal comparison, and AGTPBP1, BBS5, CERKL, FGFBP2, KIFC3, RORα, and ZNF292, validated between the NEO vs. normal comparison, revealed an intricate regulatory network with transcription factors and miRNAs identifying potential upstream and downstream regulators. Findings regarding the complement genes C3 and CFH suggest that coding variants at these loci may influence AMD development via an imbalance of gene expression in a tissue-specific manner. Our study provides crucial insights into the multifaceted genomic underpinnings of AMD (i.e., tissue-specific gene expression changes, potential splice variation, and allelic imbalance), which may open new avenues for AMD diagnostics and therapies specific to iAMD and NEO.
Collapse
Affiliation(s)
- Treefa Shwani
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (T.S.); (C.Z.); (L.A.O.); (J.H.L.); (J.L.B.); (P.C.); (R.F.); (N.H.); (E.A.); (R.A.Z.); (E.C.G.); (S.X.Z.); (M.H.F.)
- Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| | - Charles Zhang
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (T.S.); (C.Z.); (L.A.O.); (J.H.L.); (J.L.B.); (P.C.); (R.F.); (N.H.); (E.A.); (R.A.Z.); (E.C.G.); (S.X.Z.); (M.H.F.)
| | - Leah A. Owen
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (T.S.); (C.Z.); (L.A.O.); (J.H.L.); (J.L.B.); (P.C.); (R.F.); (N.H.); (E.A.); (R.A.Z.); (E.C.G.); (S.X.Z.); (M.H.F.)
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA; (A.S.); (A.T.V.)
- Department of Population Health Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
- Department of Obstetrics and Gynecology, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
| | - Akbar Shakoor
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA; (A.S.); (A.T.V.)
| | - Albert T. Vitale
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA; (A.S.); (A.T.V.)
| | - John H. Lillvis
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (T.S.); (C.Z.); (L.A.O.); (J.H.L.); (J.L.B.); (P.C.); (R.F.); (N.H.); (E.A.); (R.A.Z.); (E.C.G.); (S.X.Z.); (M.H.F.)
- Veterans Administration Western New York Healthcare System, Buffalo, NY 14212, USA
| | - Julie L. Barr
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (T.S.); (C.Z.); (L.A.O.); (J.H.L.); (J.L.B.); (P.C.); (R.F.); (N.H.); (E.A.); (R.A.Z.); (E.C.G.); (S.X.Z.); (M.H.F.)
- Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| | - Parker Cromwell
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (T.S.); (C.Z.); (L.A.O.); (J.H.L.); (J.L.B.); (P.C.); (R.F.); (N.H.); (E.A.); (R.A.Z.); (E.C.G.); (S.X.Z.); (M.H.F.)
| | - Robert Finley
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (T.S.); (C.Z.); (L.A.O.); (J.H.L.); (J.L.B.); (P.C.); (R.F.); (N.H.); (E.A.); (R.A.Z.); (E.C.G.); (S.X.Z.); (M.H.F.)
| | - Nadine Husami
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (T.S.); (C.Z.); (L.A.O.); (J.H.L.); (J.L.B.); (P.C.); (R.F.); (N.H.); (E.A.); (R.A.Z.); (E.C.G.); (S.X.Z.); (M.H.F.)
| | - Elizabeth Au
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (T.S.); (C.Z.); (L.A.O.); (J.H.L.); (J.L.B.); (P.C.); (R.F.); (N.H.); (E.A.); (R.A.Z.); (E.C.G.); (S.X.Z.); (M.H.F.)
| | - Rylee A. Zavala
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (T.S.); (C.Z.); (L.A.O.); (J.H.L.); (J.L.B.); (P.C.); (R.F.); (N.H.); (E.A.); (R.A.Z.); (E.C.G.); (S.X.Z.); (M.H.F.)
| | - Elijah C. Graves
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (T.S.); (C.Z.); (L.A.O.); (J.H.L.); (J.L.B.); (P.C.); (R.F.); (N.H.); (E.A.); (R.A.Z.); (E.C.G.); (S.X.Z.); (M.H.F.)
| | - Sarah X. Zhang
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (T.S.); (C.Z.); (L.A.O.); (J.H.L.); (J.L.B.); (P.C.); (R.F.); (N.H.); (E.A.); (R.A.Z.); (E.C.G.); (S.X.Z.); (M.H.F.)
- Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| | - Michael H. Farkas
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (T.S.); (C.Z.); (L.A.O.); (J.H.L.); (J.L.B.); (P.C.); (R.F.); (N.H.); (E.A.); (R.A.Z.); (E.C.G.); (S.X.Z.); (M.H.F.)
- Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Veterans Administration Western New York Healthcare System, Buffalo, NY 14212, USA
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| | - David A. Ammar
- Lion’s Eye Institute for Transplant & Research, Tampa, FL 33605, USA;
| | - Karen M. Allison
- Department of Ophthalmology, Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA;
| | - Amany Tawfik
- Department of Foundational Medical Studies and Eye Research Center, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA;
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
| | - Richard M. Sherva
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA; (R.M.S.); (L.A.F.)
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Dwight Stambolian
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Ivana K. Kim
- Retina Service, Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA;
| | - Lindsay A. Farrer
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA; (R.M.S.); (L.A.F.)
| | - Margaret M. DeAngelis
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (T.S.); (C.Z.); (L.A.O.); (J.H.L.); (J.L.B.); (P.C.); (R.F.); (N.H.); (E.A.); (R.A.Z.); (E.C.G.); (S.X.Z.); (M.H.F.)
- Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA; (A.S.); (A.T.V.)
- Department of Population Health Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
- Veterans Administration Western New York Healthcare System, Buffalo, NY 14212, USA
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Genetics, Genomics and Bioinformatics Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
3
|
Lamas M. Epigenetic mechanisms of non-retinal components of the aging eye and novel therapeutic strategies. Exp Eye Res 2023; 236:109673. [PMID: 37802281 DOI: 10.1016/j.exer.2023.109673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
The eye is a complex organ composed of various cell types, each serving a unique purpose. However, aging brings about structural and functional changes in these cells, leading to discomfort and potential pathology. Alterations in gene expression, influenced by aging and environmental factors, significantly affect cell structure and function. Epigenetics, a field focused on understanding the correlation between changes in gene expression, cell function, and environmental factors, plays a crucial role in unraveling the molecular events responsible for age-related eye changes. This prompts the possibility of developing epigenetic strategies to intervene in these changes or reinstate proper molecular activities. Indeed, research has demonstrated that epigenetic modifications, including DNA methylation, histone modification, and non-coding RNAs, are closely associated with age-related alterations in gene expression and cell function. This review aims to compile and synthesize the most recent body of evidence supporting the role of epigenetics in age-related alterations observed in various components of the eye. Specifically, it focuses on the impact of epigenetic changes in the ocular surface, tear film, aqueous humor, vitreous humor, and lens. Furthermore, it highlights the significant advancements that have been made in the field of epigenetic-based experimental therapies, specifically focusing on their potential for treating pathological conditions in the aging eye.
Collapse
Affiliation(s)
- Monica Lamas
- Departamento de Farmacobiología, CINVESTAV-Sede Sur, Centro de Investigación sobre el Envejecimiento, CINVESTAV Sede Sur, Calzada de los Tenorios 235, CDMX, Mexico.
| |
Collapse
|
4
|
Can Demirdöğen B, Öztürk Başer T, Köylü MT, Özge G, Gürbüz Köz Ö, Mumcuoğlu T. Circulating miRNAs and their functional genetic variants in pseudoexfoliative glaucoma: potential of miR-146a-5p as a diagnostic biomarker. Int Ophthalmol 2023; 43:3953-3967. [PMID: 37420124 DOI: 10.1007/s10792-023-02797-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/22/2023] [Indexed: 07/09/2023]
Abstract
PURPOSE The etiology and pathogenesis of pseudoexfoliation syndrome (PEX) and its advancement into pseudoexfoliative glaucoma (PEG) are not fully understood. In this study, we aimed to evaluate the possible role played by two circulating microRNAs (miR-146a-5p and miR-196a-5p) in plasma and their functional genetic variants MIR146A rs2910164 and MIR196A2 rs11614913 in susceptibility to PEG or PEX. METHODS Plasma miRNA relative expression of 27 patients with PEG, 25 patients with PEX and 27 controls was determined using quantitative RT-PCR, and fold change was calculated using the 2-ΔΔCt method. Genotyping of 300 patients with PEG, 300 patients with PEX, and 300 controls was performed using a PCR-restriction fragment length polymorphism analysis. RESULT Plasma miR-146a-5p relative expression was significantly elevated in patients with PEG (3.9-fold) (P < .000) and patients with PEX (2.7-fold) relative to controls (P = .001). The diagnostic ability of plasma miR-146a-5p expression fold change was good for discriminating PEG vs. controls (AUC = 0.897, P < .000), and the optimal decision threshold was 1.83 (sensitivity = 74%, specificity = 93%). Plasma miR-196a-5p relative expression did not differ significantly between study groups. No significant difference in terms of the minor allele frequency or the distribution of genotypes for MIR146A rs2910164 G/C or MIR196A2 rs11614913 C/T was observed between study groups. CONCLUSIONS Circulating miR-146a-5p can contribute to the risk of PEX/PEG. Therefore, we propose that plasma miR-146a-5p can be developed as a potential biomarker for the minimally invasive diagnoses of PEX/PEG and as a potential therapeutic target with further studies.
Collapse
Affiliation(s)
- Birsen Can Demirdöğen
- Department of Biomedical Engineering, TOBB University of Economics and Technology, 06560, Söğütözü, Ankara, Turkey.
| | - Tuğba Öztürk Başer
- Department of Biomedical Engineering, TOBB University of Economics and Technology, 06560, Söğütözü, Ankara, Turkey
| | - Mehmet Talay Köylü
- Department of Ophthalmology, Gülhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Gökhan Özge
- Department of Ophthalmology, Gülhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Özlem Gürbüz Köz
- Department of Ophthalmology, Ankara City Hospital, Ankara, Turkey
| | - Tarkan Mumcuoğlu
- Department of Ophthalmology, Ankara Güven Hospital, Ankara, Turkey
| |
Collapse
|
5
|
Yang JM, Kim SJ, Park S, Son W, Kim A, Lee J. Exosomal miR-184 in the aqueous humor of patients with central serous chorioretinopathy: a potential diagnostic and prognostic biomarker. J Nanobiotechnology 2023; 21:242. [PMID: 37507708 PMCID: PMC10375666 DOI: 10.1186/s12951-023-02019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Central serous chorioretinopathy (CSC) is the fourth most prevalent retinal disease leading to age-related macular degeneration (AMD) and retinal atrophy. However, CSC's pathogenesis and therapeutic target need to be better understood. RESULTS We investigated exosomal microRNA in the aqueous humor of CSC patients using next-generation sequencing (NGS) to identify potential biomarkers associated with CSC pathogenesis. Bioinformatic evaluations and NGS were performed on exosomal miRNAs obtained from AH samples of 62 eyes (42 CSC and 20 controls). For subgroup analysis, patients were divided into treatment responders (CSC-R, 17 eyes) and non-responders (CSC-NR, 25 eyes). To validate the functions of miRNA in CECs, primary cultured-human choroidal endothelial cells (hCEC) of the donor eyes were utilized for in vitro assays. NGS detected 376 miRNAs. Our results showed that patients with CSC had 12 significantly upregulated and 17 downregulated miRNAs compared to controls. miR-184 was significantly upregulated in CSC-R and CSC-NR patients compared to controls and higher in CSC-NR than CSC-R. In vitro assays using primary cultured-human choroidal endothelial cells (hCEC) demonstrated that miR-184 suppressed the proliferation and migration of hCECs. STC2 was identified as a strong candidate for the posttranscriptional down-regulated target gene of miR-184. CONCLUSION Our findings suggest that exosomal miR-184 may serve as a biomarker reflecting the angiostatic capacity of CEC in patients with CSC.
Collapse
Affiliation(s)
- Jee Myung Yang
- Department of Ophthalmology, Asan Medical Center, College of Medicine, University of Ulsan, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang, South Korea
| | - Soo Jin Kim
- Department of Ophthalmology, Asan Medical Center, College of Medicine, University of Ulsan, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea
- Department of Medical Science, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul, South Korea
- Translational Biomedical Research Group, Asan Institute for Life Science, Asan Medical Center, Seoul, South Korea
| | | | - Wonyung Son
- Department of Ophthalmology, Yeungnam University College of Medicine, Daegu, South Korea
| | - Anna Kim
- Department of Ophthalmology, Yeungnam University College of Medicine, Daegu, South Korea
| | - Junyeop Lee
- Department of Ophthalmology, Asan Medical Center, College of Medicine, University of Ulsan, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea.
- Department of Medical Science, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul, South Korea.
- Translational Biomedical Research Group, Asan Institute for Life Science, Asan Medical Center, Seoul, South Korea.
| |
Collapse
|
6
|
Wang J, Wang Z, Zhang Y, Li J. Proteomic analysis of vitreal exosomes in patients with proliferative diabetic retinopathy. Eye (Lond) 2023; 37:2061-2068. [PMID: 36253458 PMCID: PMC10333309 DOI: 10.1038/s41433-022-02286-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/06/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To determine the proteomic profiles of exosomes derived from vitreous humour (VH) obtained from proliferative diabetic retinopathy (PDR) patients and non-diabetic controls with idiopathic macular hole/epiretinal membrane. METHODS Vitreal exosomes were isolated using differential ultracentrifugation, followed by characterisation performed using different techniques. A label-free proteomic analysis was conducted to determine the protein profiles of the exosomes. A parallel reaction monitoring (PRM) analysis was performed to verify the identified proteins and associated functional annotations were derived by gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Receiver operating characteristic (ROC) analysis was utilised to evaluate the diagnostic value of target proteins in distinguishing PDR from controls. RESULTS Exosomes were successfully isolated from VH, and were well characterised by various techniques. The results of proteomic analysis showed that a total of 758 proteins were identified and 10 proteins were screened as differentially expressed proteins, significantly changed in the PDR group containing 4 elevated proteins and 6 reduced proteins. GO analysis indicated that these differential proteins were mainly involved in many metabolic pathways, including nicotinamide adenine dinucleotide metabolism, adenosine diphosphate metabolic process and glycolytic process. The KEGG analysis enriched the top five pathways including glycolysis/gluconeogenesis, fructose and mannose metabolism, biosynthesis of amino acids, hypoxia-inducible factor 1 signalling pathway and carbon metabolism. The differential proteins, namely, lactate dehydrogenase A, ficolin 3, apolipoprotein B and apolipoprotein M, were further verified by PRM and showed a consistent trend with label-free proteomic analysis. The ROC analysis identified these proteins as promising biomarkers for PDR diagnosis. CONCLUSIONS Vitreal exosomes from patients with PDR contained few proteins unique to PDR; thus, exosomal proteins have great potential as disease biomarkers and therapeutic targets for PDR.
Collapse
Affiliation(s)
- Jiawei Wang
- Department of Ophthalmology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhenzhen Wang
- Department of Ophthalmology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Liaocheng Eye Hospital, Liaocheng, China
| | - Ying Zhang
- Department of Ophthalmology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jianqiao Li
- Department of Ophthalmology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
7
|
Li X, Ma B, Zhang W, Song Z, Zhang X, Liao M, Li X, Zhao X, Du M, Yu J, He S, Yan H. The essential role of N6-methyladenosine RNA methylation in complex eye diseases. Genes Dis 2023; 10:505-520. [PMID: 37223523 PMCID: PMC10201676 DOI: 10.1016/j.gendis.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/29/2022] [Accepted: 05/08/2022] [Indexed: 11/20/2022] Open
Abstract
There are many complex eye diseases which are the leading causes of blindness, however, the pathogenesis of the complex eye diseases is not fully understood, especially the underlying molecular mechanisms of N6-methyladenosine (m6A) RNA methylation in the eye diseases have not been extensive clarified. Our review summarizes the latest advances in the studies of m6A modification in the pathogenesis of the complex eye diseases, including cornea disease, cataract, diabetic retinopathy, age-related macular degeneration, proliferative vitreoretinopathy, Graves' disease, uveal melanoma, retinoblastoma, and traumatic optic neuropathy. We further discuss the possibility of developing m6A modification signatures as biomarkers for the diagnosis of the eye diseases, as well as potential therapeutic approaches.
Collapse
Affiliation(s)
- Xiaohua Li
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Binyun Ma
- Department of Medicine/Hematology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Wenfang Zhang
- Department of Ophthalmology, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Zongming Song
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Xiaodan Zhang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
| | - Mengyu Liao
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
| | - Xue Li
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Xueru Zhao
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Mei Du
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
| | - Jinguo Yu
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
| | - Shikun He
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
- Department of Pathology and Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
| |
Collapse
|
8
|
Cruz-Aguilar M, Groman-Lupa S, Jiménez-Martínez MC. MicroRNAs as potential biomarkers and therapeutic targets in age-related macular degeneration. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1023782. [PMID: 38983087 PMCID: PMC11182111 DOI: 10.3389/fopht.2023.1023782] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 01/30/2023] [Indexed: 07/11/2024]
Abstract
Age-related macular degeneration (AMD) involves degenerative and neovascular alteration in the macular region of the retina resulting in central vision loss. AMD can be classified into dry (dAMD) and wet AMD (wAMD). There is no established treatment for dAMD, and therapies available for wAMD have limited success. Diagnosis in early AMD stages is difficult due to the absence of clinical symptoms. Currently, imaging tests are used in the diagnosis of AMD, but cannot predict the clinical course. The clinical limitations to establishing a diagnosis of AMD have led to exploration for innovative and more sensitive tests to support the diagnosis and prognosis of the disease. MicroRNAs (miRNAs) are small single-stranded non-coding RNA molecules that negatively regulate genes by post-transcriptional gene silencing. Because these molecules are dysregulated in various processes implicated in the pathogenesis of AMD, they could contribute to the early detection of the disease and monitoring of its progression. Studies of miRNA profiling have indicated several miRNAs as potential diagnostic biomarkers of AMD, but no approved biomarker is available at present for early AMD detection. Thus, understanding the function of miRNAs in AMD and their use as potential biomarkers may lead to future advances in diagnosis and treatment. Here we present a brief review of some of the miRNAs involved in regulating pathological processes associated with AMD and discuss several candidate miRNAs proposed as biomarkers or therapeutic targets for AMD.
Collapse
Affiliation(s)
- Marisa Cruz-Aguilar
- Department of Immunology and Research Unit, Institute of Ophthalmology "Conde de Valenciana Foundation", Ciudad de México, Mexico
| | - Sergio Groman-Lupa
- Retina Service, Codet Vision Institute, Tijuana, Baja California, Mexico
| | - María C Jiménez-Martínez
- Department of Immunology and Research Unit, Institute of Ophthalmology "Conde de Valenciana Foundation", Ciudad de México, Mexico
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Ciudad de México, Mexico
| |
Collapse
|
9
|
Aggio-Bruce R, Schumann U, Cioanca AV, Chen FK, McLenachan S, Heath Jeffery RC, Das S, Natoli R. Serum miRNA modulations indicate changes in retinal morphology. Front Mol Neurosci 2023; 16:1130249. [PMID: 36937046 PMCID: PMC10020626 DOI: 10.3389/fnmol.2023.1130249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Background Age-related macular degeneration (AMD) is the leading cause of vision loss in the developed world and the detection of its onset and progression are based on retinal morphological assessments. MicroRNA (miRNA) have been explored extensively as biomarkers for a range of neurological diseases including AMD, however differences in experimental design and the complexity of human biology have resulted in little overlap between studies. Using preclinical animal models and clinical samples, this study employs a novel approach to determine a serum signature of AMD progression. Methods Serum miRNAs were extracted from mice exposed to photo-oxidative damage (PD; 0, 1, 3 and 5 days), and clinical samples from patients diagnosed with reticular pseudodrusen or atrophic AMD. The expression of ~800 miRNAs was measured using OpenArray™, and differential abundance from controls was determined using the HTqPCR R package followed by pathway analysis with DAVID. MiRNA expression changes were compared against quantifiable retinal histological indicators. Finally, the overlap of miRNA changes observed in the mouse model and human patient samples was investigated. Results Differential miRNA abundance was identified at all PD time-points and in clinical samples. Importantly, these were associated with inflammatory pathways and histological changes in the retina. Further, we were able to align findings in the mouse serum to those of clinical patients. Conclusion In conclusion, serum miRNAs are a valid tool as diagnostics for the early detection of retinal degeneration, as they reflect key changes in retinal health. The combination of pre-clinical animal models and human patient samples led to the identification of a preliminary serum miRNA signature for AMD. This study is an important platform for the future development of a diagnostic serum miRNA panel for the early detection of retinal degeneration.
Collapse
Affiliation(s)
- Riemke Aggio-Bruce
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia
- The School of Medicine and Psychology, Acton, ACT, Australia
| | - Ulrike Schumann
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia
- The Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Adrian V. Cioanca
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia
| | - Fred K. Chen
- Centre of Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
- Lions Eye Institute, Perth, WA, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
| | - Samuel McLenachan
- Centre of Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
- Lions Eye Institute, Perth, WA, Australia
| | - Rachael C. Heath Jeffery
- Centre of Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
- Lions Eye Institute, Perth, WA, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
| | - Shannon Das
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia
- The School of Medicine and Psychology, Acton, ACT, Australia
- *Correspondence: Riccardo Natoli,
| |
Collapse
|
10
|
Urbańska K, Stępień PW, Nowakowska KN, Stefaniak M, Osial N, Chorągiewicz T, Toro MD, Nowomiejska K, Rejdak R. The Role of Dysregulated miRNAs in the Pathogenesis, Diagnosis and Treatment of Age-Related Macular Degeneration. Int J Mol Sci 2022; 23:ijms23147761. [PMID: 35887109 PMCID: PMC9319652 DOI: 10.3390/ijms23147761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 12/04/2022] Open
Abstract
Age-related macular degeneration (AMD) is an eye disease causing damage to the macular region of the retina where most of the photoreceptors responsible for central visual acuity are located. MicroRNAs (miRNAs) are small single-stranded non-coding RNA molecules that negatively regulate genes by silent post-transcriptional gene expressions. Previous studies have shown that changes in specific miRNAs are involved in the pathogenesis of eye diseases, including AMD. Altered expressions of miRNAs are related to disturbances of regulating oxidative stress, inflammation, angiogenesis, apoptosis and phagocytosis, which are known factors in the pathogenesis of AMD. Moreover, dysregulation of miRNA is involved in drusen formation. Thus, miRNAs may be used as potential molecular biomarkers for the disease and, furthermore, tailoring therapeutics to particular disturbances in miRNAs may, in the future, offer hope to prevent irreversible vision loss. In this review, we clarify the current state of knowledge about the influence of miRNA on the pathogenesis, diagnosis and treatment of AMD. Our study material consisted of publications, which were found in PubMed, Google Scholar and Embase databases using “Age-related macular degeneration”, “miRNA”, “AMD biomarkers”, “miRNA therapeutics” and “AMD pathogenesis” as keywords. Paper search was limited to articles published from 2011 to date. In the section “Retinal, circulating and vitreous body miRNAs found in human studies”, we limited the search to studies with patients published in 2016–2021.
Collapse
Affiliation(s)
- Karolina Urbańska
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (K.U.); (P.W.S.); (K.N.N.); (M.S.); (N.O.); (M.D.T.); (K.N.); (R.R.)
| | - Piotr Witold Stępień
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (K.U.); (P.W.S.); (K.N.N.); (M.S.); (N.O.); (M.D.T.); (K.N.); (R.R.)
| | - Katarzyna Natalia Nowakowska
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (K.U.); (P.W.S.); (K.N.N.); (M.S.); (N.O.); (M.D.T.); (K.N.); (R.R.)
| | - Martyna Stefaniak
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (K.U.); (P.W.S.); (K.N.N.); (M.S.); (N.O.); (M.D.T.); (K.N.); (R.R.)
| | - Natalia Osial
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (K.U.); (P.W.S.); (K.N.N.); (M.S.); (N.O.); (M.D.T.); (K.N.); (R.R.)
| | - Tomasz Chorągiewicz
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (K.U.); (P.W.S.); (K.N.N.); (M.S.); (N.O.); (M.D.T.); (K.N.); (R.R.)
- Correspondence:
| | - Mario Damiano Toro
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (K.U.); (P.W.S.); (K.N.N.); (M.S.); (N.O.); (M.D.T.); (K.N.); (R.R.)
- Eye Clinic, Public Health Department, University of Naples Federico II, 80131 Naples, Italy
| | - Katarzyna Nowomiejska
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (K.U.); (P.W.S.); (K.N.N.); (M.S.); (N.O.); (M.D.T.); (K.N.); (R.R.)
| | - Robert Rejdak
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (K.U.); (P.W.S.); (K.N.N.); (M.S.); (N.O.); (M.D.T.); (K.N.); (R.R.)
| |
Collapse
|
11
|
DelGuidice CE, Ismaiel OA, Mylott WR, Yuan M, Halquist MS. Intact quantitative bioanalytical method development and fit-for-purpose validation of a monoclonal antibody and its related fab fragment in human vitreous and aqueous humor using LC-HRMS. Anal Bioanal Chem 2022; 414:4189-4202. [PMID: 35451621 DOI: 10.1007/s00216-022-04071-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 11/29/2022]
Abstract
Ranibizumab is an FDA-approved drug used to treat wet age-related macular degeneration (AMD), diabetic retinopathy, macular edema, and myopic choroidal neovascularization. Bevacizumab is another drug often used off-label to treat wet AMD. In order to reduce unwanted angiogenesis, ranibizumab and bevacizumab target circulating VEGF-A in the eye. Concentration levels in human vitreous and aqueous humor can be used to provide valuable efficacy information. However, vitreous and aqueous humor's aqueous environment, and vitreous humor's viscosity, as well as the stickiness of the analytes can provide bioanalytical challenges. In this manuscript, we describe the development, optimization, and fit-for-purpose validation of an LC-HRMS method designed for intact quantitative bioanalysis of ranibizumab and bevacizumab in human vitreous and aqueous humor following intravitreal administration. In order to fully develop this method, evaluations were conducted to optimize the conditions, including the data processing model (extracted ion chromatograms (XICs) vs deconvolution), carryover mitigation, sample preparation scheme optimization for surrogate and primary matrices, use of internal standard/immunocapture/deglycosylation, and optimization of the extraction and dilution procedure, as well as optimization of the liquid chromatography and mass spectrometry conditions. Once the method was fully optimized, a fit-for-purpose validation was conducted, including matrix parallelism, with a linear calibration range of 10 to 200 µg/mL. The development of this intact quantitative method using LC-HRMS provides a proof-of-concept template for challenging, but valuable new and exciting bioanalytical techniques.
Collapse
Affiliation(s)
- Catherine E DelGuidice
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA. .,PPD Laboratories, Richmond, VA, USA.
| | - Omnia A Ismaiel
- Department of Analytical Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | | | | | - Matthew S Halquist
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
12
|
Zhang C, Owen LA, Lillvis JH, Zhang SX, Kim IK, DeAngelis MM. AMD Genomics: Non-Coding RNAs as Biomarkers and Therapeutic Targets. J Clin Med 2022; 11:jcm11061484. [PMID: 35329812 PMCID: PMC8954267 DOI: 10.3390/jcm11061484] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 12/04/2022] Open
Abstract
Age-related macular degeneration (AMD) is a progressive neurodegenerative disease that is the world’s leading cause of blindness in the aging population. Although the clinical stages and forms of AMD have been elucidated, more specific prognostic tools are required to determine when patients with early and intermediate AMD will progress into the advanced stages of AMD. Another challenge in the field has been the appropriate development of therapies for intermediate AMD and advanced atrophic AMD. After numerous negative clinical trials, an anti-C5 agent and anti-C3 agent have recently shown promising results in phase 3 clinical trials, in terms of slowing the growth of geographic atrophy, an advanced form of AMD. Interestingly, both drugs appear to be associated with an increased incidence of wet AMD, another advanced form of the disease, and will require frequent intravitreal injections. Certainly, there remains a need for other therapeutic agents with the potential to prevent progression to advanced stages of the disease. Investigation of the role and clinical utility of non-coding RNAs (ncRNAs) is a major advancement in biology that has only been minimally applied to AMD. In the following review, we discuss the clinical relevance of ncRNAs in AMD as both biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Charles Zhang
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (C.Z.); (L.A.O.); (J.H.L.); (S.X.Z.)
| | - Leah A. Owen
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (C.Z.); (L.A.O.); (J.H.L.); (S.X.Z.)
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
- Department of Population Health Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
- Department of Obstetrics and Gynecology, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
| | - John H. Lillvis
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (C.Z.); (L.A.O.); (J.H.L.); (S.X.Z.)
- Veterans Administration Western New York Healthcare System, Buffalo, NY 14212, USA
| | - Sarah X. Zhang
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (C.Z.); (L.A.O.); (J.H.L.); (S.X.Z.)
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| | - Ivana K. Kim
- Retina Service, Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- Correspondence: (I.K.K.); (M.M.D.)
| | - Margaret M. DeAngelis
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; (C.Z.); (L.A.O.); (J.H.L.); (S.X.Z.)
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
- Department of Population Health Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
- Veterans Administration Western New York Healthcare System, Buffalo, NY 14212, USA
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Genetics, Genomics and Bioinformatics Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Correspondence: (I.K.K.); (M.M.D.)
| |
Collapse
|
13
|
Predictive Biomarkers of Age-Related Macular Degeneration Response to Anti-VEGF Treatment. J Pers Med 2021; 11:jpm11121329. [PMID: 34945801 PMCID: PMC8706948 DOI: 10.3390/jpm11121329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/10/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
Age-related macular degeneration (AMD) is an incurable disease associated with aging that destroys sharp and central vision. Increasing evidence implicates both systemic and local inflammation in the pathogenesis of AMD. Intravitreal injection of anti-vascular endothelial growth factor (VEGF) agents is currently the first-line therapy for choroidal neovascularization in AMD patients. However, a high number of patients do not show satisfactory responses to anti-VEGF treatment after three injections. Predictive treatment response models are one of the most powerful tools for personalized medicine. Therefore, the application of these models is very helpful to predict the optimal treatment for an early application on each patient. We analyzed the transcriptome of peripheral blood mononuclear cells (PBMCs) from AMD patients before treatment to identify biomarkers of response to ranibizumab. A classification model comprised of four mRNAs and one miRNA isolated from PBMCs was able to predict the response to ranibizumab with high accuracy (Area Under the Curve of the Receiver Operating Characteristic curve = 0.968), before treatment. We consider that our classification model, based on mRNA and miRNA from PBMCs allows a robust prediction of patients with insufficient response to anti-VEGF treatment. In addition, it could be used in combination with other methods, such as specific baseline characteristics, to identify patients with poor response to anti-VEGF treatment to establish patient-specific treatment plans at the first visit.
Collapse
|
14
|
Plastino F, Pesce NA, André H. MicroRNAs and the HIF/VEGF axis in ocular neovascular diseases. Acta Ophthalmol 2021; 99:e1255-e1262. [PMID: 33729690 DOI: 10.1111/aos.14845] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/28/2022]
Abstract
Ocular neovascular diseases, such as proliferative diabetic retinopathy, retinopathy of prematurity and neovascular age-related macular degeneration, are the leading causes of visual impairment worldwide. The hypoxia-inducible factors and vascular endothelial growth factors are key molecular promoters of ocular neovascularization. Moreover, the role of microRNAs as regulators of angiogenesis has been expanding, particularly hypoxia-associated microRNA; hypoxamiRs. This review provides a summary of hypoxamiRs that directly and specifically target HIF1A and VEGF mRNAs, thus critically involved in the regulation of ocular neovascular pathologies. The discussed microRNAs highlight putative diagnostic markers and therapeutic agents in choroidal and retinal angiogenic diseases, including proliferative diabetic retinopathy, retinopathy of prematurity and neovascular age-related macular degeneration.
Collapse
Affiliation(s)
- Flavia Plastino
- Department of Clinical Neurosciences Division of Eye and Vision St. Erik Eye Hospital Karolinska Institutet Stockholm Sweden
| | - Noemi Anna Pesce
- Department of Clinical Neurosciences Division of Eye and Vision St. Erik Eye Hospital Karolinska Institutet Stockholm Sweden
| | - Helder André
- Department of Clinical Neurosciences Division of Eye and Vision St. Erik Eye Hospital Karolinska Institutet Stockholm Sweden
| |
Collapse
|
15
|
Caputo V, Strafella C, Termine A, Fabrizio C, Ruffo P, Cusumano A, Giardina E, Ricci F, Cascella R. Epigenomic signatures in age-related macular degeneration: Focus on their role as disease modifiers and therapeutic targets. Eur J Ophthalmol 2021; 31:2856-2867. [PMID: 34798695 DOI: 10.1177/11206721211028054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Epigenetics is characterized by molecular modifications able to shape gene expression profiles in response to inner and external stimuli. Therefore, epigenetic elements are able to provide intriguing and useful information for the comprehension and management of different human conditions, including aging process, and diseases. On this subject, Age-related Macular Degeneration (AMD) represents one of the most frequent age-related disorders, dramatically affecting the quality of life of older adults worldwide. The etiopathogenesis is characterized by an interplay among multiple genetic and non-genetic factors, which have been extensively studied. Nevertheless, a deeper dissection of molecular machinery associated with risk, onset, progression and effectiveness of therapies is still missing. In this regard, epigenetic signals may be further explored to disentangle disease etiopathogenesis, the possible therapeutic avenues and the differential response to AMD treatment. This review will discuss the epigenomic signatures mostly investigated in AMD, which could be applied to improve the knowledge of disease mechanisms and to set-up novel or modified treatment options.
Collapse
Affiliation(s)
- Valerio Caputo
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy.,Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Claudia Strafella
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy.,Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Andrea Termine
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Carlo Fabrizio
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Paola Ruffo
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Andrea Cusumano
- UOSD of Ophthalmology PTV Foundation "Policlinico Tor Vergata", Rome, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy.,UILDM Lazio ONLUS Foundation, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Federico Ricci
- UNIT Retinal Diseases PTV Foundation "Policlinico Tor Vergata", Rome, Italy
| | - Raffaella Cascella
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy.,Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, Tirana, Albania
| |
Collapse
|
16
|
ElShelmani H, Brennan I, Kelly DJ, Keegan D. Differential Circulating MicroRNA Expression in Age-Related Macular Degeneration. Int J Mol Sci 2021; 22:ijms222212321. [PMID: 34830203 PMCID: PMC8625913 DOI: 10.3390/ijms222212321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023] Open
Abstract
This study explored the expression of several miRNAs reported to be deregulated in age-related macular degeneration (AMD). Total RNA was isolated from sera from patients with dry AMD (n = 12), wet AMD (n = 14), and controls (n = 10). Forty-two previously investigated miRNAs were selected based on published data and their role in AMD pathogenesis, such as angiogenic and inflammatory effects, and were co-analysed using a miRCURY LNA miRNA SYBR® Green PCR kit via quantitative real-time polymerase chain reaction (qRT-PCR) to validate their presence. Unsupervised hierarchical clustering indicated that AMD serum specimens have a different miRNA profile to healthy controls. We successfully validated the differentially regulated miRNAs in serum from AMD patients versus controls. Eight miRNAs (hsa-let-7a-5p, hsa-let-7d-5p, hsa-miR-23a-3p, hsa-miR-301a-3p, hsa-miR-361-5p, hsa-miR-27b-3p, hsa-miR-874-3p, hsa-miR-19b-1-5p) showed higher expression in the serum of dry AMD patients than wet AMD patients and compared with healthy controls. Increased quantities of certain miRNAs in the serum of AMD patients indicate that these miRNAs could potentially serve as diagnostic AMD biomarkers and might be used as future AMD treatment targets. The discovery of significant serum miRNA biomarkers in AMD patients would provide an easy screening tool for at-risk populations.
Collapse
Affiliation(s)
- Hanan ElShelmani
- Mater Misericordiae University Hospital, Eccles St., Dublin 7, Ireland; (H.E.); (I.B.)
| | - Ian Brennan
- Mater Misericordiae University Hospital, Eccles St., Dublin 7, Ireland; (H.E.); (I.B.)
- University College Cork, College Road, Cork, Ireland
| | - David J. Kelly
- Zoology Department, School of Natural Sciences, Trinity College Dublin, University of Dublin, Dublin 2, Ireland;
| | - David Keegan
- Mater Misericordiae University Hospital, Eccles St., Dublin 7, Ireland; (H.E.); (I.B.)
- Correspondence:
| |
Collapse
|
17
|
Chu-Tan JA, Cioanca AV, Feng ZP, Wooff Y, Schumann U, Aggio-Bruce R, Patel H, Rutar M, Hannan K, Panov K, Provis J, Natoli R. Functional microRNA targetome undergoes degeneration-induced shift in the retina. Mol Neurodegener 2021; 16:60. [PMID: 34465369 PMCID: PMC8406976 DOI: 10.1186/s13024-021-00478-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/03/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND MicroRNA (miRNA) play a significant role in the pathogenesis of complex neurodegenerative diseases including age-related macular degeneration (AMD), acting as post-transcriptional gene suppressors through their association with argonaute 2 (AGO2) - a key member of the RNA Induced Silencing Complex (RISC). Identifying the retinal miRNA/mRNA interactions in health and disease will provide important insight into the key pathways miRNA regulate in disease pathogenesis and may lead to potential therapeutic targets to mediate retinal degeneration. METHODS To identify the active miRnome targetome interactions in the healthy and degenerating retina, AGO2 HITS-CLIP was performed using a rodent model of photoreceptor degeneration. Analysis of publicly available single-cell RNA sequencing (scRNAseq) data was performed to identify the cellular location of AGO2 and key members of the microRNA targetome in the retina. AGO2 findings were verified by in situ hybridization (RNA) and immunohistochemistry (protein). RESULTS Analysis revealed a similar miRnome between healthy and damaged retinas, however, a shift in the active targetome was observed with an enrichment of miRNA involvement in inflammatory pathways. This shift was further demonstrated by a change in the seed binding regions of miR-124-3p, the most abundant retinal AGO2-bound miRNA, and has known roles in regulating retinal inflammation. Additionally, photoreceptor cluster miR-183/96/182 were all among the most highly abundant miRNA bound to AGO2. Following damage, AGO2 expression was localized to the inner retinal layers and more in the OLM than in healthy retinas, indicating a locational miRNA response to retinal damage. CONCLUSIONS This study provides important insight into the alteration of miRNA regulatory activity that occurs as a response to retinal degeneration and explores the miRNA-mRNA targetome as a consequence of retinal degenerations. Further characterisation of these miRNA/mRNA interactions in the context of the degenerating retina may provide an important insight into the active role these miRNA may play in diseases such as AMD.
Collapse
Affiliation(s)
- Joshua A. Chu-Tan
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Acton, Canberra, ACT 2601 Australia
- The Australian National University Medical School, College of Health and Medicine, Canberra, ACT 2601 Australia
| | - Adrian V. Cioanca
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Acton, Canberra, ACT 2601 Australia
| | - Zhi-Ping Feng
- The ANU Bioinformatics Consultancy, The John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Acton, Canberra, ACT 2601 Australia
| | - Yvette Wooff
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Acton, Canberra, ACT 2601 Australia
- The Australian National University Medical School, College of Health and Medicine, Canberra, ACT 2601 Australia
| | - Ulrike Schumann
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Acton, Canberra, ACT 2601 Australia
| | - Riemke Aggio-Bruce
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Acton, Canberra, ACT 2601 Australia
- The Australian National University Medical School, College of Health and Medicine, Canberra, ACT 2601 Australia
| | - Hardip Patel
- The ANU Bioinformatics Consultancy, The John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Acton, Canberra, ACT 2601 Australia
| | - Matt Rutar
- School of Biomedical Sciences, The University of Melbourne, Parkville, Victoria 3010 Australia
- Faculty of Science and Technology, University of Canberra, Bruce, ACT 2617 Australia
| | - Katherine Hannan
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Acton, Canberra, ACT 2601 Australia
| | - Konstantin Panov
- School of Biological Sciences Queen’s University Belfast, Belfast, BT9 5DL Northern Ireland
| | - Jan Provis
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Acton, Canberra, ACT 2601 Australia
- The Australian National University Medical School, College of Health and Medicine, Canberra, ACT 2601 Australia
| | - Riccardo Natoli
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Acton, Canberra, ACT 2601 Australia
- The Australian National University Medical School, College of Health and Medicine, Canberra, ACT 2601 Australia
| |
Collapse
|
18
|
The Role of Oxidative Stress and the Importance of miRNAs as Potential Biomarkers in the Development of Age-Related Macular Degeneration. Processes (Basel) 2021. [DOI: 10.3390/pr9081328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Age-related macular degeneration (AMD) is the primary cause of blindness in developed countries. With the progressive aging of the population, AMD is a significant ophthalmological problem in the population over 50 years of age. The etiology of AMD is known to be based on various biochemical, immunological and molecular pathways and to be influenced by a range of genetic and environmental elements. This review provides an overview of the pathophysiological role of oxidative stress and free radicals in the retina with a special focus on the DNA repair efficiency and enzymatic antioxidant defense. It also presents a correlation between miRNA profile and AMD, and indicates their involvement in inflammation, angiogenesis, increased oxidation of cellular components, enzymatic antioxidant capacity and DNA repair efficiency, which play particularly important roles in AMD pathogenesis. Gene silencing by miRNAs can induce changes in antioxidant enzymes, leading to a complex interplay between redox imbalance by free radicals and miRNAs in modulating cellular redox homeostasis.
Collapse
|
19
|
Carrella S, Massa F, Indrieri A. The Role of MicroRNAs in Mitochondria-Mediated Eye Diseases. Front Cell Dev Biol 2021; 9:653522. [PMID: 34222230 PMCID: PMC8249810 DOI: 10.3389/fcell.2021.653522] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
The retina is among the most metabolically active tissues with high-energy demands. The peculiar distribution of mitochondria in cells of retinal layers is necessary to assure the appropriate energy supply for the transmission of the light signal. Photoreceptor cells (PRs), retinal pigment epithelium (RPE), and retinal ganglion cells (RGCs) present a great concentration of mitochondria, which makes them particularly sensitive to mitochondrial dysfunction. To date, visual loss has been extensively correlated to defective mitochondrial functions. Many mitochondrial diseases (MDs) show indeed neuro-ophthalmic manifestations, including retinal and optic nerve phenotypes. Moreover, abnormal mitochondrial functions are frequently found in the most common retinal pathologies, i.e., glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR), that share clinical similarities with the hereditary primary MDs. MicroRNAs (miRNAs) are established as key regulators of several developmental, physiological, and pathological processes. Dysregulated miRNA expression profiles in retinal degeneration models and in patients underline the potentiality of miRNA modulation as a possible gene/mutation-independent strategy in retinal diseases and highlight their promising role as disease predictive or prognostic biomarkers. In this review, we will summarize the current knowledge about the participation of miRNAs in both rare and common mitochondria-mediated eye diseases. Definitely, given the involvement of miRNAs in retina pathologies and therapy as well as their use as molecular biomarkers, they represent a determining target for clinical applications.
Collapse
Affiliation(s)
| | - Filomena Massa
- Telethon Institute of Genetics and Medicine, Naples, Italy
| | - Alessia Indrieri
- Telethon Institute of Genetics and Medicine, Naples, Italy.,Institute for Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| |
Collapse
|
20
|
Roblain Q, Louis T, Yip C, Baudin L, Struman I, Caolo V, Lambert V, Lecomte J, Noël A, Heymans S. Intravitreal injection of anti-miRs against miR-142-3p reduces angiogenesis and microglia activation in a mouse model of laser-induced choroidal neovascularization. Aging (Albany NY) 2021; 13:12359-12377. [PMID: 33952723 PMCID: PMC8148470 DOI: 10.18632/aging.203035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/14/2021] [Indexed: 12/16/2022]
Abstract
Age-related macular degeneration (AMD) is a worldwide leading cause of blindness affecting individuals over 50 years old. The most aggressive form, wet AMD, is characterized by choroidal neovascularization (CNV) and inflammation involving microglia recruitment. By using a laser-induced CNV mouse model, we provide evidence for a key role played by miR-142-3p during CNV formation. MiR-142-3p was overexpressed in murine CNV lesions and its pharmacological inhibition decreased vascular and microglia densities by 46% and 30%, respectively. Consistently, miR-142-3p overexpression with mimics resulted in an increase of 136% and 126% of blood vessels and microglia recruitment. Interestingly, miR-142-3p expression was linked to the activation state of mouse microglia cells as determined by morphological analysis (cell solidity) through a computational method. In vitro, miR-142-3p overexpression in human microglia cells (HMC3) modulated microglia activation, as shown by CD68 levels. Interestingly, miR142-3p modulation also regulated the production of VEGF-A, the main pro-angiogenic factor. Together, these data strongly support the unprecedented importance of miR-142-3p-dependent vascular-inflammation axis during CNV progression, through microglia activation.
Collapse
Affiliation(s)
- Quentin Roblain
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium.,Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Thomas Louis
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Cassandre Yip
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Louis Baudin
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Ingrid Struman
- Molecular Angiogenesis Laboratory, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Vincenza Caolo
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Vincent Lambert
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium.,Ophthalmic Tissue Bank, Department of Ophthalmology, University Hospital of Liège, Sart-Tilman, Belgium
| | - Julie Lecomte
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Agnès Noël
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Stephane Heymans
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
21
|
MicroRNAs in the regulation of autophagy and their possible use in age-related macular degeneration therapy. Ageing Res Rev 2021; 67:101260. [PMID: 33516915 DOI: 10.1016/j.arr.2021.101260] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022]
Abstract
Age-related macular degeneration (AMD) is a progressive sight-impairing disease of the elderly. The pathogenic mechanisms of AMD are not well understood although both genetic and many environmental factors have been associated with the development of AMD. One clinical hallmark of AMD is the detrimental aggregation of damaged proteins. Recently, it has been suggested that the weakening of autophagy clearance is an important mechanism in the pathogenesis of AMD. Autophagy is important in the removal of damaged or no longer needed cellular material and its recycling. A considerable number of autophagy-targeting microRNAs (miRNAs), small RNA molecules and epigenetic regulators have been found to be either up- or down-regulated in AMD patients and experimental models. The important role of autophagy-targeting miRNAs is supported by several studies and can open the prospect of the use of these miRNAs in the therapy for AMD.
Collapse
|
22
|
MicroRNA-100 Mediates Hydrogen Peroxide-Induced Apoptosis of Human Retinal Pigment Epithelium ARPE-19 Cells. Pharmaceuticals (Basel) 2021; 14:ph14040314. [PMID: 33915898 PMCID: PMC8067261 DOI: 10.3390/ph14040314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 11/20/2022] Open
Abstract
This study investigated the regulatory role of microRNA 100 (miR-100) in hydrogen peroxide (H2O2)-induced apoptosis of human retinal pigment epithelial ARPE-19 cells. H2O2 induced oxidative cell death of cultured ARPE-19 cells was measured by cytotoxicity assay. qRT-PCR was used to quantify cytosolic and extracellular contents of miR-100. Kinase and miR-100 inhibition treatments were applied to determine the regulatory signaling pathways involved in cell death regulation. H2O2 dose-dependently reduced viability of ARPE-19 cells and simultaneously upregulated miR-100 levels in both cytosolic and extracellular compartments. Western blotting detection indicated that H2O2 elicited hyperphosphorylation of PI3K/Akt, ERK1/2, JNK, p38 MAPK, and p65 NF-κB. Further kinase inhibition experiments demonstrated that PI3K, p38 MAPK, and NF-κB activities were involved in oxidative-stress-induced miR-100 upregulation in ARPE-19 cells, while blockade of PI3K, JNK, and NF-κB signaling significantly attenuated the oxidative cell death. Intriguingly, MiR-100 antagomir treatment exerted a cytoprotective effect against the H2O2-induced oxidative cell death through attenuating the oxidation-induced AMPK hyperphosphorylation, restoring cellular mTOR and p62/SQSTM1 levels and upregulating heme oxygenase-1 expression. These findings support that miR-100 at least in part mediates H2O2-induced cell death of ARPE-19 cells and can be regarded as a preventive and therapeutic target for retinal degenerative disease.
Collapse
|
23
|
Martinez B, Peplow PV. MicroRNAs as diagnostic and prognostic biomarkers of age-related macular degeneration: advances and limitations. Neural Regen Res 2021; 16:440-447. [PMID: 32985463 PMCID: PMC7996036 DOI: 10.4103/1673-5374.293131] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/11/2020] [Accepted: 04/02/2020] [Indexed: 01/10/2023] Open
Abstract
A main cause of vision loss in the elderly is age-related macular degeneration (AMD). Among the cellular, biochemical, and molecular changes linked to this disease, inflammation and angiogenesis appear as being crucial in AMD pathogenesis and progression. There are two forms of the disease: dry AMD, accounting for 80-90% of cases, and wet AMD. The disease usually begins as dry AMD associated with retinal pigment epithelium and photoreceptor degeneration, whereas wet AMD is associated with choroidal neovascularization resulting in severe vision impairment. The new vessels are largely malformed, leading to blood and fluid leakage within the disrupted tissue, which provokes inflammation and scar formation and results in retinal damage and detachment. MicroRNAs are dysregulated in AMD and may facilitate the early detection of the disease and monitoring disease progression. Two recent reviews of microRNAs in AMD had indicated weaknesses or limitations in four earlier investigations. Studies in the last three years have shown considerable progress in overcoming some of these concerns and identifying specific microRNAs as biomarkers for AMD. Further large-scale studies are warranted using appropriate statistical methods to take into account gender and age disparity in the study populations and confounding factors such as smoking status.
Collapse
Affiliation(s)
- Bridget Martinez
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
- Department of Medicine, St. George's University School of Medicine, Grenada
| | - Philip V. Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
24
|
Aggio-Bruce R, Chu-Tan JA, Wooff Y, Cioanca AV, Schumann U, Natoli R. Inhibition of microRNA-155 Protects Retinal Function Through Attenuation of Inflammation in Retinal Degeneration. Mol Neurobiol 2021; 58:835-854. [PMID: 33037565 PMCID: PMC7843561 DOI: 10.1007/s12035-020-02158-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/01/2020] [Indexed: 01/14/2023]
Abstract
Although extensively investigated in inflammatory conditions, the role of pro-inflammatory microRNAs (miRNAs), miR-155 and miR-146a, has not been well-studied in retinal degenerative diseases. We therefore aimed to explore the role and regulation of these miRNA in the degenerating retina, with a focus on miR-155. C57BL/6J mice were subjected to photo-oxidative damage for up to 5 days to induce focal retinal degeneration. MiR-155 expression was quantified by qRT-PCR in whole retina, serum, and small-medium extracellular vesicles (s-mEVs), and a PrimeFlow™ assay was used to identify localisation of miR-155 in retinal cells. Constitutive miR-155 knockout (KO) mice and miR-155 and miR-146a inhibitors were utilised to determine the role of these miRNA in the degenerating retina. Electroretinography was employed as a measure of retinal function, while histological quantification of TUNEL+ and IBA1+ positive cells was used to quantify photoreceptor cell death and infiltrating immune cells, respectively. Upregulation of miR-155 was detected in retinal tissue, serum and s-mEVs in response to photo-oxidative damage, localising to the nucleus of a subset of retinal ganglion cells and glial cells and in the cytoplasm of photoreceptors. Inhibition of miR-155 showed increased function from negative controls and a less pathological pattern of IBA1+ cell localisation and morphology at 5 days photo-oxidative damage. While neither dim-reared nor damaged miR-155 KO animals showed retinal histological difference from controls, following photo-oxidative damage, miR-155 KO mice showed increased a-wave relative to controls. We therefore consider miR-155 to be associated with the inflammatory response of the retina in response to photoreceptor-specific degeneration.
Collapse
Affiliation(s)
- Riemke Aggio-Bruce
- The John Curtin School of Medical Research, The Australian National University, Garran Road, Acton, Australian Capital Territory, 2601, Australia
- The Australian National University Medical School, Mills Road, Australian Capital Territory, Acton, 2601, Australia
| | - Joshua A Chu-Tan
- The John Curtin School of Medical Research, The Australian National University, Garran Road, Acton, Australian Capital Territory, 2601, Australia
- The Australian National University Medical School, Mills Road, Australian Capital Territory, Acton, 2601, Australia
| | - Yvette Wooff
- The John Curtin School of Medical Research, The Australian National University, Garran Road, Acton, Australian Capital Territory, 2601, Australia
- The Australian National University Medical School, Mills Road, Australian Capital Territory, Acton, 2601, Australia
| | - Adrian V Cioanca
- The John Curtin School of Medical Research, The Australian National University, Garran Road, Acton, Australian Capital Territory, 2601, Australia
| | - Ulrike Schumann
- The John Curtin School of Medical Research, The Australian National University, Garran Road, Acton, Australian Capital Territory, 2601, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Garran Road, Acton, Australian Capital Territory, 2601, Australia.
- The Australian National University Medical School, Mills Road, Australian Capital Territory, Acton, 2601, Australia.
| |
Collapse
|
25
|
Hermenean A, Trotta MC, Gharbia S, Hermenean AG, Peteu VE, Balta C, Cotoraci C, Gesualdo C, Rossi S, Gherghiceanu M, D'Amico M. Changes in Retinal Structure and Ultrastructure in the Aged Mice Correlate With Differences in the Expression of Selected Retinal miRNAs. Front Pharmacol 2021; 11:593514. [PMID: 33519453 PMCID: PMC7838525 DOI: 10.3389/fphar.2020.593514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022] Open
Abstract
Age and gender are two important factors that may influence the function and structure of the retina and its susceptibility to retinal diseases. The aim of this study was to delineate the influence that biological sex and age exert on the retinal structural and ultrastructural changes in mice and to identify the age-related miRNA dysregulation profiles in the retina by gender. Experiments were undertaken on male and female Balb/c aged 24 months (approximately 75–85 years in humans) compared to the control (3 months). The retinas were analyzed by histology, transmission electron microscopy, and age-related miRNA expression profile analysis. Retinas of both sexes showed a steady decline in retinal thickness as follows: photoreceptor (PS) and outer layers (p < 0.01 for the aged male vs. control; p < 0.05 for the aged female vs. control); the inner retinal layers were significantly affected by the aging process in the males (p < 0.01) but not in the aged females. Electron microscopy revealed more abnormalities which involve the retinal pigment epithelium (RPE) and Bruch’s membrane, outer and inner layers, vascular changes, deposits of amorphous materials, and accumulation of lipids or lipofuscins. Age-related miRNAs, miR-27a-3p (p < 0.01), miR-27b-3p (p < 0.05), and miR-20a-5p (p < 0.05) were significantly up-regulated in aged male mice compared to the controls, whereas miR-20b-5p was significantly down-regulated in aged male (p < 0.05) and female mice (p < 0.05) compared to the respective controls. miR-27a-3p (5.00 fold; p < 0.01) and miR-27b (7.58 fold; p < 0.01) were significantly up-regulated in aged male mice vs. aged female mice, whereas miR-20b-5p (−2.10 fold; p < 0.05) was significantly down-regulated in aged male mice vs. aged female mice. Interestingly, miR-27a-3p, miR-27b-3p, miR-20a-5p, and miR-20b-5p expressions significantly correlated with the thickness of the retinal PS layer (p < 0.01), retinal outer layers (p < 0.01), and Bruch’s membrane (p < 0.01). Our results showed that biological sex can influence the structure and function of the retina upon aging, suggesting that this difference may be underlined by the dysregulation of age-related mi-RNAs.
Collapse
Affiliation(s)
- Anca Hermenean
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania.,Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Maria Consiglia Trotta
- Section of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sami Gharbia
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania.,Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | | | | | - Cornel Balta
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Coralia Cotoraci
- Faculty of Medicine, Vasile Goldis Western University of Arad, Arad, Romania
| | - Carlo Gesualdo
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Settimio Rossi
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mihaela Gherghiceanu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Michele D'Amico
- Section of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
26
|
Ménard C, Wilson AM, Dejda A, Miloudi K, Binet F, Crespo-Garcia S, Parinot C, Pilon F, Juneau R, Andriessen EM, Mawambo G, SanGiovanni JP, De Guire V, Sapieha P. miR-106b suppresses pathological retinal angiogenesis. Aging (Albany NY) 2020; 12:24836-24852. [PMID: 33361521 PMCID: PMC7803573 DOI: 10.18632/aging.202404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/13/2020] [Indexed: 12/02/2022]
Abstract
MicroRNAs are small non-coding RNAs that post-transcriptionally regulate gene expression. We recently demonstrated that levels of miR-106b were significantly decreased in the vitreous and plasma of patients with neovascular age-related macular degeneration (AMD). Here we show that expression of the miR-106b-25 cluster is negatively regulated by the unfolded protein response pathway of protein kinase RNA-like ER kinase (PERK) in a mouse model of neovascular AMD. A reduction in levels of miR-106b triggers vascular growth both in vivo and in vitro by inducing production of pro-angiogenic factors. We demonstrate that therapeutic delivery of miR-106b to the retina with lentiviral vectors protects against aberrant retinal angiogenesis in two distinct mouse models of pathological retinal neovascularization. Results from this study suggest that miRNAs such as miR-106b have the potential to be used as multitarget therapeutics for conditions characterized by pathological retinal angiogenesis.
Collapse
Affiliation(s)
- Catherine Ménard
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal H1T 2M4, Quebec, Canada
| | - Ariel M Wilson
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal H1T 2M4, Quebec, Canada
| | - Agnieszka Dejda
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal H1T 2M4, Quebec, Canada
| | - Khalil Miloudi
- Department of Neurology-Neurosurgery, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - François Binet
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal H1T 2M4, Quebec, Canada
| | - Sergio Crespo-Garcia
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal H1T 2M4, Quebec, Canada
| | - Célia Parinot
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal H1T 2M4, Quebec, Canada
| | - Frédérique Pilon
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal H1T 2M4, Quebec, Canada
| | - Rachel Juneau
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal H1T 2M4, Quebec, Canada
| | - Elisabeth Mma Andriessen
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal H1T 2M4, Quebec, Canada
| | - Gaëlle Mawambo
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal H1T 2M4, Quebec, Canada
| | | | - Vincent De Guire
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal H1T 2M4, Quebec, Canada
| | - Przemyslaw Sapieha
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal H1T 2M4, Quebec, Canada.,Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal H1T 2M4, Quebec, Canada.,Department of Neurology-Neurosurgery, McGill University, Montreal H3A 2B4, Quebec, Canada
| |
Collapse
|
27
|
Zeng S, Zhang T, Madigan MC, Fernando N, Aggio-Bruce R, Zhou F, Pierce M, Chen Y, Huang L, Natoli R, Gillies MC, Zhu L. Interphotoreceptor Retinoid-Binding Protein (IRBP) in Retinal Health and Disease. Front Cell Neurosci 2020; 14:577935. [PMID: 33328889 PMCID: PMC7710524 DOI: 10.3389/fncel.2020.577935] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/21/2020] [Indexed: 02/05/2023] Open
Abstract
Interphotoreceptor retinoid-binding protein (IRBP), also known as retinol binding protein 3 (RBP3), is a lipophilic glycoprotein specifically secreted by photoreceptors. Enriched in the interphotoreceptor matrix (IPM) and recycled by the retinal pigment epithelium (RPE), IRBP is essential for the vision of all vertebrates as it facilitates the transfer of retinoids in the visual cycle. It also helps to transport lipids between the RPE and photoreceptors. The thiol-dependent antioxidant activity of IRBP maintains the delicate redox balance in the normal retina. Thus, its dysfunction is suspected to play a role in many retinal diseases. We have reviewed here the latest research on IRBP in both retinal health and disease, including the function and regulation of IRBP under retinal stress in both animal models and the human retina. We have also explored the therapeutic potential of targeting IRBP in retinal diseases. Although some technical barriers remain, it is possible that manipulating the expression of IRBP in the retina will rescue or prevent photoreceptor degeneration in many retinal diseases.
Collapse
Affiliation(s)
- Shaoxue Zeng
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Zhang
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Michele C Madigan
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,School of Optometry and Vision Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Nilisha Fernando
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia
| | - Riemke Aggio-Bruce
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia.,The Australian National University Medical School, The Australian National University, Acton, ACT, Australia
| | - Fanfan Zhou
- Sydney Pharmacy School, The University of Sydney, Sydney, NSW, Australia
| | - Matthew Pierce
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Yingying Chen
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Lianlin Huang
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,School of Optometry and Vision Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia.,The Australian National University Medical School, The Australian National University, Acton, ACT, Australia
| | - Mark C Gillies
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Ling Zhu
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
28
|
Li L, Lai K, Li C, Gong Y, Xu F, Zhao H, Zhou L, Huang C, Jin C. APRPG-modified nanoliposome loaded with miR-146a-5p inhibitor suppressed choroidal neovascularization by targeting endothelial cells. Cutan Ocul Toxicol 2020; 39:354-362. [PMID: 32928013 DOI: 10.1080/15569527.2020.1823406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION To explore the effect and mechanism of APRPG-modified nanoliposomes loaded with miR-146a-5p inhibitor (ANL-miR-146a-5p inhibitor) on endothelial cell proliferation, migration, tube formation, and choroidal neovascularization (CNV) in mice. METHODS ANL-miR-146a-5p inhibitors were generated by thin film hydration; in vitro, endothelial cell uptake experiment was used to detect the targeting effect of ANL-miR-146a-5p inhibitor; endothelial cells proliferation, migration, and tube formation were detected, respectively, by CCK8 assay, scratch assay, and Matrigel tube formation assay. In vivo, the mice CNV models were established by 810 nm laser photocoagulation. Mice choroidal flatmounts were performed to detect the volume of CNV after intravitreal injection of L-miR-146a-5p inhibitor, ANL-miR-146a-5p inhibitor, or normal saline; the vascular endothelial growth factor (VEGF) expression of mice choroidal tissue was detected by ELISA; HE section and electrophysiology (ERG) were performed to check the toxicity of ANL-miR-146a-5p inhibitor on mice retina. RESULTS ANL are targeted to endothelial cells and are more targeted in inflammatory environment. At the same concentration, ANL-miR-146a-5p inhibitor's ability to inhibit endothelial cell proliferation, migration, tube formation, CNV formation, and VEGF expression is better than L-miR-146a-5p inhibitor (p < 0.05); ANL-miR-146a-5p inhibitor had no toxicity on the structure of mouse retina; ANL-miR-146a-5p inhibitor had no toxicity on the a-wave and b-wave amplitudes and b-wave implicit times (p > 0.05). CONCLUSIONS ANL-miR-146a-5p inhibitor can more effectively down-regulate the expression level of VEGF through its targeting to endothelial cells, thereby more effectively inhibiting endothelial cell proliferation, migration, tube formation, and mice CNV formation.
Collapse
Affiliation(s)
- Longhui Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Kunbei Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Cong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yajun Gong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Fabao Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Hongkun Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lijun Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chuangxin Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chenjin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
29
|
Li X, He S, Zhao M. An Updated Review of the Epigenetic Mechanism Underlying the Pathogenesis of Age-related Macular Degeneration. Aging Dis 2020; 11:1219-1234. [PMID: 33014534 PMCID: PMC7505275 DOI: 10.14336/ad.2019.1126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/26/2019] [Indexed: 12/27/2022] Open
Abstract
Epigenetics has been recognized to play an important role in physiological and pathological processes of the human body. Accumulating evidence has indicated that epigenetic mechanisms contribute to the pathogenesis of age-related macular degeneration (AMD). Although the susceptibility related to genetic variants has been revealed by genome-wide association studies, those genetic variants may predict AMD risk only in certain human populations. Other mechanisms, particularly those involving epigenetic factors, may play an important role in the pathogenesis of AMD. Therefore, we briefly summarize the most recent reports related to such epigenetic mechanisms, including DNA methylation, histone modification, and non-coding RNA, and the interplay of genetic and epigenetic factors in the pathogenesis of AMD.
Collapse
Affiliation(s)
- Xiaohua Li
- 1Henan Provincial People's Hospital, Zhengzhou, China.,2Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, China.,3People's Hospital of Zhengzhou University, Zhengzhou, China.,4People's Hospital of Henan University, Zhengzhou, China
| | - Shikun He
- 1Henan Provincial People's Hospital, Zhengzhou, China.,2Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, China.,3People's Hospital of Zhengzhou University, Zhengzhou, China.,4People's Hospital of Henan University, Zhengzhou, China.,5Departments of Pathology and Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.,6Ophthalmology Optometry Centre, Peking University People's Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Mingwei Zhao
- 6Ophthalmology Optometry Centre, Peking University People's Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| |
Collapse
|
30
|
Suri R, Neupane YR, Jain GK, Kohli K. Recent theranostic paradigms for the management of Age-related macular degeneration. Eur J Pharm Sci 2020; 153:105489. [PMID: 32717428 DOI: 10.1016/j.ejps.2020.105489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/07/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022]
Abstract
Degenerative diseases of eye like Age-related macular degeneration (AMD), that affects the central portion of the retina (macula), is one of the leading causes of blindness worldwide especially in the elderly population. It is classified mainly as wet and dry form. With expanding knowledge about the underlying pathophysiology of the disease, various treatment strategies are being employed to halt the course of the disease progression. Hitherto, there is no ideal therapy which can cure the disease completely, and targeting the posterior segment of the eye is yet another challenge. The purpose of this review is to summarize the recent advances in the management and treatment stratagems (therapies, delivery systems and diagnostic tools) pertaining to AMD viz. molecular targeting, stem cell therapy, nanotechnology and exosomes with special reference to newer technologies like artificial intelligence and 3D printing. Furthermore, the role of diet and nutritional supplements in the prevention and treatment of the disease has also been highlighted. The alarming increase in the said disorder around the globe demands exhaustive research and investigations in the treatment zone. This review thus additionally directs the attention towards the challenges and future perspectives of different treatment approaches for AMD.
Collapse
Affiliation(s)
- Reshal Suri
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Yub Raj Neupane
- Department of Pharmacy, National University of Singapore, 117559, Singapore
| | - Gaurav Kumar Jain
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
31
|
Kenney MC, Nashine S. Further understanding of epigenetic dysfunction of the retinal pigment epithelium in AMD. EXPERT REVIEW OF OPHTHALMOLOGY 2020; 15:221-231. [PMID: 33732291 DOI: 10.1080/17469899.2020.1767597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Introduction Modulation of epigenetic mechanisms that contribute to retinal development may render the eye susceptible to age-related macular degeneration (AMD). Progression of AMD involves alterations of epigenome such as CpG methylation and histone modifications, and study of the epigenetic regulation of molecular/ cellular pathways associated with AMD might identify target epigenetic markers for treatment of AMD. Areas covered In this review, we provide an overview of the influence of epigenetic factors on signaling pathways/ related genes associated with AMD, mainly hypoxia, angiogenesis, inflammation, complement, and oxidative stress; and discuss the critical role of microRNAs in AMD. Expert Opinion Better understanding of epigenetic-mediated and microRNA-mediated regulation of the AMD disease-related pathways would help to assess the risk of developing AMD besides providing valuable insight on potential target candidates for AMD therapy.
Collapse
Affiliation(s)
- Maria Cristina Kenney
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA.,Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Sonali Nashine
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
32
|
Li L, Lai K, Gong Y, Huang C, Xu F, Li Y, Jin C. Downregulation of miR-146a-5p Inhibits Choroidal Neovascularization via the NF-κB Signaling Pathway by Targeting OTUD7B. Curr Eye Res 2020; 45:1514-1525. [PMID: 32438838 DOI: 10.1080/02713683.2020.1772831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE Choroidal neovascularization (CNV) is the key pathological change caused by irreversible blindness resulting from neovascular AMD (nAMD). However, the pathological mechanisms underlying CNV remain largely unknown. Here, we aimed to investigate the role of miR-146a-5p in CNV formation. MATERIALS AND METHODS At the cellular level, we overexpressed or downregulated miR-146a-5p in an umbilical vein endothelial cell line (EA.hy926) by transfecting cells with either a miR-146a-5p mimic or an inhibitor. CCK8, wound healing, and Matrigel assays were performed to examine the proliferation, migration, and tube formation of endothelial cells (EA.hy926). Target relationship between miR-146a-5p and OTUD7B was verified using a double luciferase reporter experiment. An experimental CNV model was established by treating fundi of male C57BL/6 J mice with 810 nm laser. Fundus fluorescein angiography (FFA) was performed to evaluate the leakage of CNV on day 7 after miR-146a-5p antagomir intravitreal injection. The CNV volume was measured using Choroidal Flatmounts in a confocal study. The expression levels of VEGF, ICAM1, and NF-κB (p50 and p65) were detected both in vitro and in vivo. RESULTS The expression of miR-146a-5p was increased in LPS-stimulated endothelial cells and in experimental CNV RPE-choroidal complexes in mouse models. LPS-induced proliferation, migration, and tube formation were inhibited by the miR-146a-5p inhibitor. The miR-146a-5p antagomir attenuated CNV formation and fluorescent leakage in the vivo CNV model. In the LPS-stimulated endothelial cells and the CNV mouse model, the NF-κB signaling pathway was activated and the expression of VEGF and ICAM1 increased. Conversely, downregulation of miR-146a-5p inactivated the NF-κB signaling pathway and reduced the expression of VEGF and ICAM1. CONCLUSIONS Our results indicated that downregulation of miR-146a-5p inhibited experimental CNV formation via inactivation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Longhui Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Kunbei Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Yajun Gong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Chuangxin Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Fabao Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Yingqin Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Chenjin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| |
Collapse
|
33
|
Friedrich J, Steel DHW, Schlingemann RO, Koss MJ, Hammes HP, Krenning G, Klaassen I. microRNA Expression Profile in the Vitreous of Proliferative Diabetic Retinopathy Patients and Differences from Patients Treated with Anti-VEGF Therapy. Transl Vis Sci Technol 2020; 9:16. [PMID: 32821513 PMCID: PMC7409134 DOI: 10.1167/tvst.9.6.16] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/23/2020] [Indexed: 01/04/2023] Open
Abstract
Purpose microRNAs (miRNAs) mediate the pathological mechanisms of diabetic retinopathy. In this study, we compared miRNA expression profiles in the vitreous between patients with proliferative diabetic retinopathy (PDR) and patients with a macular hole as non-diabetic controls, and between PDR patients treated with anti-vascular endothelial growth factor (VEGF) therapy and untreated PDR patients. Methods Vitreous samples of non-diabetic and PDR patients were screened for miRNAs with quantitative polymerase chain reaction (qPCR) panels. miRNA candidates were validated in vitreous samples of a second, independent cohort. In addition, the effect of anti-VEGF therapy was investigated in the vitreous of a third study population consisting of PDR patients who had not received anti-VEGF therapy and PDR patients who had received preoperative anti-VEGF therapy. Results During screening, seven miRNAs were found to be significantly higher in the vitreous of PDR patients, whereas two miRNAs were found to be significantly lower compared with non-diabetic controls. Validating the expression of these miRNAs in a second cohort resulted in the identification of six miRNAs that were expressed at significantly higher rates in the vitreous of PDR patients: hsa-miR-20a-5p, hsa-miR-23b-3p, hsa-miR-142-3p, hsa-miR-185-5p, hsa-miR-326, and hsa-miR-362-5p. Among these six miRNAs, hsa-miR-23b-3p levels were lower in the anti-VEGF-treated group of PDR patients compared with untreated PDR patients. Conclusions In this study, we identified six miRNAs that are expressed more highly in PDR patients and one miRNA that is expressed at a lower levels in anti-VEGF-treated PDR patients. Translational Relevance miRNAs identified in the vitreous of PDR patients may improve our understanding of the mechanisms leading to PDR.
Collapse
Affiliation(s)
- Julian Friedrich
- Cardiovascular Regenerative Medicine (CAVAREM), Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Section of Endocrinology, 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - David H W Steel
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne and Sunderland Eye Infirmary, Sunderland, United Kingdom
| | - Reinier O Schlingemann
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam Cardiovascular Sciences and Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Ophthalmology, University of Lausanne, Lausanne, Switzerland
| | - Michael J Koss
- Augenzentrum Nymphenburger Höfe, Munich, Germany.,Augenklinik Herzog Carl Theodor, Munich, Germany
| | - Hans-Peter Hammes
- Section of Endocrinology, 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,European Center of Angioscience, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Guido Krenning
- Cardiovascular Regenerative Medicine (CAVAREM), Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam Cardiovascular Sciences and Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Tom I, Pham VC, Katschke KJ, Li W, Liang WC, Gutierrez J, Ah Young A, Figueroa I, Eshghi ST, Lee CV, Kanodia J, Snipas SJ, Salvesen GS, Lai P, Honigberg L, van Lookeren Campagne M, Kirchhofer D, Baruch A, Lill JR. Development of a therapeutic anti-HtrA1 antibody and the identification of DKK3 as a pharmacodynamic biomarker in geographic atrophy. Proc Natl Acad Sci U S A 2020; 117:9952-9963. [PMID: 32345717 PMCID: PMC7211935 DOI: 10.1073/pnas.1917608117] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genetic polymorphisms in the region of the trimeric serine hydrolase high-temperature requirement 1 (HTRA1) are associated with increased risk of age-related macular degeneration (AMD) and disease progression, but the precise biological function of HtrA1 in the eye and its contribution to disease etiologies remain undefined. In this study, we have developed an HtrA1-blocking Fab fragment to test the therapeutic hypothesis that HtrA1 protease activity is involved in the progression of AMD. Next, we generated an activity-based small-molecule probe (ABP) to track target engagement in vivo. In addition, we used N-terminomic proteomic profiling in preclinical models to elucidate the in vivo repertoire of HtrA1-specific substrates, and identified substrates that can serve as robust pharmacodynamic biomarkers of HtrA1 activity. One of these HtrA1 substrates, Dickkopf-related protein 3 (DKK3), was successfully used as a biomarker to demonstrate the inhibition of HtrA1 activity in patients with AMD who were treated with the HtrA1-blocking Fab fragment. This pharmacodynamic biomarker provides important information on HtrA1 activity and pharmacological inhibition within the ocular compartment.
Collapse
Affiliation(s)
- Irene Tom
- OMNI Biomarker Development, Genentech, Inc., South San Francisco, CA 94080
| | - Victoria C Pham
- Department of Microchemistry, Proteomics & Lipidomics, Genentech, Inc., South San Francisco, CA 94080
| | - Kenneth J Katschke
- Department of Immunology, Genentech, Inc., South San Francisco, CA 94080
| | - Wei Li
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA 94080
| | - Wei-Ching Liang
- Department of Antibody Discovery, Genentech, Inc., South San Francisco, CA 94080
| | - Johnny Gutierrez
- OMNI Biomarker Development, Genentech, Inc., South San Francisco, CA 94080
| | - Andrew Ah Young
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA 94080
| | - Isabel Figueroa
- Drug Metabolism, Pharmacokinetics, and Bioanalysis, AbbVie, South San Francisco, CA 94090
| | - Shadi Toghi Eshghi
- OMNI Biomarker Development, Genentech, Inc., South San Francisco, CA 94080
| | - ChingWei V Lee
- Biology Core Support, Gilead Sciences, Foster City, CA 94404
| | - Jitendra Kanodia
- Clinical and Translational Pharmacology, Theravance Biopharma, Inc., South San Francisco, CA 94080
| | - Scott J Snipas
- National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Guy S Salvesen
- National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Phillip Lai
- Early Clinical Development OMNI Department, Genentech, Inc., South San Francisco, CA 94080
| | - Lee Honigberg
- OMNI Biomarker Development, Genentech, Inc., South San Francisco, CA 94080
| | | | - Daniel Kirchhofer
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA 94080
| | - Amos Baruch
- Biomarker Development, Calico Life Sciences, LLC, South San Francisco, CA 94080
| | - Jennie R Lill
- Department of Microchemistry, Proteomics & Lipidomics, Genentech, Inc., South San Francisco, CA 94080;
| |
Collapse
|
35
|
Toro MD, Reibaldi M, Avitabile T, Bucolo C, Salomone S, Rejdak R, Nowomiejska K, Tripodi S, Posarelli C, Ragusa M, Barbagallo C. MicroRNAs in the Vitreous Humor of Patients with Retinal Detachment and a Different Grading of Proliferative Vitreoretinopathy: A Pilot Study. Transl Vis Sci Technol 2020; 9:23. [PMID: 32821520 PMCID: PMC7409223 DOI: 10.1167/tvst.9.6.23] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/14/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose Although the expression of microRNAs (miRNAs) in retinal pigment epithelial (RPE) cells undergoing epithelial-mesenchymal transition (EMT) is involved in the pathogenesis of proliferative vitreoretinopathy (PVR), its expression in the vitreous of patients with primary retinal detachment (RD) and different PVR grading has not yet been investigated. We assessed the expression of miRNAs in the vitreous humor (VH) of patients diagnosed with RD and different grading of PVR. Methods The VH was extracted from the core of the vitreous chamber in patients who had undergone standard vitrectomy for primary RD. RNA was extracted and TaqMan Low-Density Arrays (TLDAs) were used for miRNA profiling that was performed by single TaqMan assays. A gene ontology (GO) analysis was performed on the differentially expressed miRNAs. Results A total of 15 eyes with RD, 3 eyes for each grade of PVR (A, B, C, and D) and 3 from unaffected individuals, were enrolled in this prospective comparative study. Twenty miRNAs were altered in the comparison among pathological groups. Interestingly, the expression of miR-143-3p, miR-224-5p, miR-361-5p, miR-452-5p, miR-486-3p, and miR-891a-5p increased with the worsening of PVR grading. We also identified 34 miRNAs showing differential expression in PVR compared to control vitreous samples. GO analysis showed that the deregulated miRNAs participate in processes previously associated with PVR pathogenesis. Conclusions The present pilot study suggested that dysregulated vitreal miRNAs may be considered as a biomarker of PVR and associated with the PVR-related complications in patients with RD. Translational Relevance The correlation between vitreal miRNAs and the pathological phenotypes are essential to identify the novel miRNA-based mechanisms underlying the PVR disease that would improve the diagnosis and treatment of the condition.
Collapse
Affiliation(s)
- Mario Damiano Toro
- Department of General Ophthalmology, Medical University of Lublin, Lublin, Poland
- Eye Clinic, University of Catania, Catania, Italy
| | | | | | - Claudio Bucolo
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Robert Rejdak
- Department of General Ophthalmology, Medical University of Lublin, Lublin, Poland
- Department of Experimental Pharmacology, Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | | - Sarah Tripodi
- Department of Ophthalmology, Hospital C. Cantù, Abbiategrasso, Italy
| | - Chiara Posarelli
- Department of Surgical, Medical, Molecular Pathology, and of Critical Area, University of Pisa, Pisa, Italy
| | - Marco Ragusa
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Oasi Research Institute-IRCSS, Troina, Italy
| | - Cristina Barbagallo
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
36
|
Maroñas O, García-Quintanilla L, Luaces-Rodríguez A, Fernández-Ferreiro A, Latorre-Pellicer A, Abraldes MJ, Lamas MJ, Carracedo A. Anti-VEGF Treatment and Response in Age-related Macular Degeneration: Disease's Susceptibility, Pharmacogenetics and Pharmacokinetics. Curr Med Chem 2020; 27:549-569. [PMID: 31296152 DOI: 10.2174/0929867326666190711105325] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/03/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
The current review is focussing different factors that contribute and directly correlate to the onset and progression of Age-related Macular Degeneration (AMD). In particular, the susceptibility to AMD due to genetic and non-genetic factors and the establishment of risk scores, based on the analysis of different genes to measure the risk of developing the disease. A correlation with the actual therapeutic landscape to treat AMD patients from the point of view of pharmacokinetics and pharmacogenetics is also exposed. Treatments commonly used, as well as different regimes of administration, will be especially important in trying to classify individuals as "responders" and "non-responders". Analysis of different genes correlated with drug response and also the emerging field of microRNAs (miRNAs) as possible biomarkers for early AMD detection and response will be also reviewed. This article aims to provide the reader a review of different publications correlated with AMD from the molecular and kinetic point of view as well as its commonly used treatments, major pitfalls and future directions that, to our knowledge, could be interesting to assess and follow in order to develop a personalized medicine model for AMD.
Collapse
Affiliation(s)
- Olalla Maroñas
- Grupo de Medicina Xenomica, Centro Nacional de Genotipado (CEGEN-PRB3), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Laura García-Quintanilla
- Servicio de Farmacia, Xerencia de Xestión Integrada de Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Andrea Luaces-Rodríguez
- Departamento de Farmacia e Tecnoloxia Farmaceutica e Instituto de Farmacia Industrial, Facultade de Farmacia, Universidade de Santiago de Compostela, Spain.,Grupo de Farmacoloxia Clínica, Instituto de Investigacion en Salud de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Anxo Fernández-Ferreiro
- Departamento de Farmacia e Tecnoloxia Farmaceutica e Instituto de Farmacia Industrial, Facultade de Farmacia, Universidade de Santiago de Compostela, Spain.,Grupo de Farmacoloxia Clínica, Instituto de Investigacion en Salud de Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Departamento de Farmacia, Hospital Clínico Universitario de Santiago de Compostela (SERGAS) (CHUS), Santiago de Compostela, Spain
| | - Ana Latorre-Pellicer
- Unidad de Genetica Clínica y Genomica Funcional, Departamento de Farmacologia-Fisiología, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Maximino J Abraldes
- Servicio de Oftalmoloxía, Xerencia de Xestion Integrada de Santiago de Compostela, Santiago de Compostela, Spain.,Departamento de Ciruxía e Especialidades Médico- Quirúrxicas, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María J Lamas
- Grupo de Farmacoloxia Clínica, Instituto de Investigacion en Salud de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Angel Carracedo
- Grupo de Medicina Xenomica, Centro Nacional de Genotipado (CEGEN-PRB3), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, CIBER de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain.,Fundación Pública Galega de Medicina Xenómica, SERGAS, Santiago de Compostela, Spain
| |
Collapse
|
37
|
Kiel C, Berber P, Karlstetter M, Aslanidis A, Strunz T, Langmann T, Grassmann F, Weber BH. A Circulating MicroRNA Profile in a Laser-Induced Mouse Model of Choroidal Neovascularization. Int J Mol Sci 2020; 21:E2689. [PMID: 32294914 PMCID: PMC7216141 DOI: 10.3390/ijms21082689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/15/2022] Open
Abstract
Choroidal neovascularization (CNV) is a pathological process in which aberrant blood vessels invade the subretinal space of the mammalian eye. It is a characteristic feature of the prevalent neovascular age-related macular degeneration (nAMD). Circulating microRNAs (cmiRNAs) are regarded as potentially valuable biomarkers for various age-related diseases, including nAMD. Here, we investigated cmiRNA expression in an established laser-induced CNV mouse model. Upon CNV induction in C57Bl/6 mice, blood-derived cmiRNAs were initially determined globally by RNA next generation sequencing, and the most strongly dysregulated cmiRNAs were independently replicated by quantitative reverse transcription PCR (RT-qPCR) in blood, retinal, and retinal pigment epithelium (RPE)/choroidal tissue. Our findings suggest that two miRNAs, mmu-mir-486a-5p and mmur-mir-92a-3p, are consistently dysregulated during CNV formation. Furthermore, in functional in vitro assays, a significant impact of mmu-mir-486a-5p and mmu-mir-92a-3p on murine microglial cell viability was observed, while mmu-mir-92a-3p also showed an impact on microglial mobility. Taken together, we report a robust dysregulation of two miRNAs in blood and RPE/choroid after laser-induced initiation of CNV lesions in mice, highlighting their potential role in pathology and eventual therapy of CNV-associated complications.
Collapse
Affiliation(s)
- Christina Kiel
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; (C.K.); (P.B.); (T.S.); (F.G.)
| | - Patricia Berber
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; (C.K.); (P.B.); (T.S.); (F.G.)
| | - Marcus Karlstetter
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital of Cologne, 50931 Cologne, Germany; (M.K.); (A.A.); (T.L.)
| | - Alexander Aslanidis
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital of Cologne, 50931 Cologne, Germany; (M.K.); (A.A.); (T.L.)
| | - Tobias Strunz
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; (C.K.); (P.B.); (T.S.); (F.G.)
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital of Cologne, 50931 Cologne, Germany; (M.K.); (A.A.); (T.L.)
| | - Felix Grassmann
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; (C.K.); (P.B.); (T.S.); (F.G.)
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Bernhard H.F. Weber
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; (C.K.); (P.B.); (T.S.); (F.G.)
- Institute of Clinical Human Genetics, University Clinics Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
38
|
Labib DA, Koptan D, Ghoniem S, Salah SH, El Shazly R, El Refai RM. Dysregulation of microRNA146a-5p expression in systemic lupus erythematosus females: Diagnostic potential and association with ocular manifestations. THE EGYPTIAN RHEUMATOLOGIST 2020. [DOI: 10.1016/j.ejr.2019.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
ElShelmani H, Wride MA, Saad T, Rani S, Kelly DJ, Keegan D. Identification of Novel Serum MicroRNAs in Age-Related Macular Degeneration. Transl Vis Sci Technol 2020; 9:28. [PMID: 32818115 PMCID: PMC7396178 DOI: 10.1167/tvst.9.4.28] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 01/09/2020] [Indexed: 12/20/2022] Open
Abstract
Purpose To identify circulating microRNAs (miRNA) associated with age-related macular degeneration (AMD). Thus differentially expressed serum miRNA could be used as AMD biomarkers. Methods This study involved total RNA isolation from sera from patients with atrophic AMD (n = 10), neovascular AMD (n = 10), and age- and sex-matched controls (n = 10). A total of 377 miRNAs were coanalyzed using array technologies, and differentially regulated miRNAs were determined. Extensive validation studies (n = 90) of serum from AMD patients and controls confirmed initial results. Total RNA isolation was carried out from sera from patients with atrophic AMD (n = 30), neovascular AMD (n = 30), and controls (n = 30). Fourteen miRNAs from the discovery dataset were coanalyzed using quantitative real-time polymerase chain reaction (qRT-PCR) to validate their presence. Results Unsupervised hierarchical clustering indicated that AMD serum specimens have a different miRNA profile to healthy controls. We successfully identified and validated the differentially regulated miRNAs in serum from AMD patients versus controls. The biomarker potential of three miRNAs (miR-126, miR-19a, and miR-410) was confirmed by qRT-PCR, with significantly increased quantities in serum of AMD patients compared with healthy controls. Conclusions Increased quantities of miR-126, miR-410, and miR-19a in serum from AMD patients indicate that these miRNAs could potentially serve as diagnostic AMD biomarkers. All three miRNAs significantly correlated with AMD pathogenesis. Translational Relevance The discovery of new AMD miRNA may act as biomarkers in evaluating AMD diagnosis and prognosis.
Collapse
Affiliation(s)
- Hanan ElShelmani
- Ocular Development and Neurobiology Research Group, Zoology Department, School of Natural Sciences, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Michael A Wride
- Ocular Development and Neurobiology Research Group, Zoology Department, School of Natural Sciences, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Tahira Saad
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Sweta Rani
- Department of Science, Waterford Institute of Technology, Waterford, Ireland
| | - David J Kelly
- Zoology Department, School of Natural Sciences, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - David Keegan
- Mater Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
40
|
Liu CH, Huang S, Britton WR, Chen J. MicroRNAs in Vascular Eye Diseases. Int J Mol Sci 2020; 21:ijms21020649. [PMID: 31963809 PMCID: PMC7014392 DOI: 10.3390/ijms21020649] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
Since the discovery of the first microRNA (miRNA) decades ago, studies of miRNA biology have expanded in many biomedical research fields, including eye research. The critical roles of miRNAs in normal development and diseases have made miRNAs useful biomarkers or molecular targets for potential therapeutics. In the eye, ocular neovascularization (NV) is a leading cause of blindness in multiple vascular eye diseases. Current anti-angiogenic therapies, such as anti-vascular endothelial growth factor (VEGF) treatment, have their limitations, indicating the need for investigating new targets. Recent studies established the roles of various miRNAs in the regulation of pathological ocular NV, suggesting miRNAs as both biomarkers and therapeutic targets in vascular eye diseases. This review summarizes the biogenesis of miRNAs, and their functions in the normal development and diseases of the eye, with a focus on clinical and experimental retinopathies in both human and animal models. Discovery of novel targets involving miRNAs in vascular eye diseases will provide insights for developing new treatments to counter ocular NV.
Collapse
Affiliation(s)
| | | | | | - Jing Chen
- Correspondence: ; Tel.: +1-617-919-2525
| |
Collapse
|
41
|
Mammadzada P, Bayle J, Gudmundsson J, Kvanta A, André H. Identification of Diagnostic and Prognostic microRNAs for Recurrent Vitreous Hemorrhage in Patients with Proliferative Diabetic Retinopathy. J Clin Med 2019; 8:jcm8122217. [PMID: 31847440 PMCID: PMC6947310 DOI: 10.3390/jcm8122217] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) can provide insight into the pathophysiological states of ocular tissues such as proliferative diabetic retinopathy (PDR). In this study, differences in miRNA expression in vitreous from PDR patients with and without incidence of recurrent vitreous hemorrhage (RVH) after the initial pars-plana vitrectomy (PPV) were analyzed, with the aim of identifying biomarkers for RVH. Fifty-four consented vitreous samples were analyzed from patients undergoing PPV for PDR, of which eighteen samples underwent a second surgery due to RVH. Ten of the sixty-six expressed miRNAs (miRNAs-19a, -20a, -22, -27a, -29a, -93, -126, -128, -130a, and -150) displayed divergences between the PDR vitreous groups and to the control. A significant increase in the miRNA-19a and -27a expression was determined in PDR patients undergoing PPV as compared to the controls. miRNA-20a and -93 were significantly upregulated in primary PPV vitreous samples of patients afflicted with RVH. Moreover, this observed upregulation was not significant between the non-RVH and control group, thus emphasizing the association with RVH incidence. miRNA-19a and -27a were detected as putative vitreous biomarkers for PDR, and elevated levels of miRNA-20a and -93 in vitreous with RVH suggest their biomarker potential for major PDR complications such as recurrent hemorrhage incidence.
Collapse
Affiliation(s)
- Parviz Mammadzada
- Department of Clinical Neurosciences, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm 11282, Sweden; (P.M.); (J.B.); (J.G.); (A.K.)
| | - Juliette Bayle
- Department of Clinical Neurosciences, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm 11282, Sweden; (P.M.); (J.B.); (J.G.); (A.K.)
| | - Johann Gudmundsson
- Department of Clinical Neurosciences, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm 11282, Sweden; (P.M.); (J.B.); (J.G.); (A.K.)
- Department of Ophthalmology, University of Iceland, Reykjavik 101, Iceland
| | - Anders Kvanta
- Department of Clinical Neurosciences, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm 11282, Sweden; (P.M.); (J.B.); (J.G.); (A.K.)
| | - Helder André
- Department of Clinical Neurosciences, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm 11282, Sweden; (P.M.); (J.B.); (J.G.); (A.K.)
- Correspondence:
| |
Collapse
|
42
|
miR302a and 122 are deregulated in small extracellular vesicles from ARPE-19 cells cultured with H 2O 2. Sci Rep 2019; 9:17954. [PMID: 31784665 PMCID: PMC6884596 DOI: 10.1038/s41598-019-54373-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 11/14/2019] [Indexed: 12/21/2022] Open
Abstract
Age related macular degeneration (AMD) is a common retina-related disease leading to blindness. Little is known on the origin of the disease, but it is well documented that oxidative stress generated in the retinal pigment epithelium and choroid neovascularization are closely involved. The study of circulating miRNAs is opening new possibilities in terms of diagnosis and therapeutics. miRNAs can travel associated to lipoproteins or inside small Extracellular Vesicles (sEVs). A number of reports indicate a significant deregulation of circulating miRNAs in AMD and experimental approaches, but it is unclear whether sEVs present a significant miRNA cargo. The present work studies miRNA expression changes in sEVs released from ARPE-19 cells under oxidative conditions (i.e. hydrogen peroxide, H2O2). H2O2 increased sEVs release from ARPE-19 cells. Moreover, 218 miRNAs could be detected in control and H2O2 induced-sEVs. Interestingly, only two of them (hsa-miR-302a and hsa-miR-122) were significantly under-expressed in H2O2-induced sEVs. Results herein suggest that the down regulation of miRNAs 302a and 122 might be related with previous studies showing sEVs-induced neovascularization after oxidative challenge in ARPE-19 cells.
Collapse
|
43
|
Associations of microRNAs, Angiogenesis-Regulating Factors and CFH Y402H Polymorphism-An Attempt to Search for Systemic Biomarkers in Age-Related Macular Degeneration. Int J Mol Sci 2019; 20:ijms20225750. [PMID: 31731799 PMCID: PMC6887747 DOI: 10.3390/ijms20225750] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 01/13/2023] Open
Abstract
Age-related macular degeneration (AMD) remains the leading cause of blindness in elderly people, but the pathophysiology of this disease is still largely unknown. We investigated the systemic expression of angiogenesis-regulating growth factors and selected miRNAs known to regulate angiogenesis in AMD patients. We also focused on possible correlations of their expression with the presence of CFH Y402H or ARMS A69S risk variants. A total of 354 AMD patients and 121 controls were enrolled in this study. The levels of angiogenesis-regulating factors were analyzed in plasma samples using Luminex technology. The expression of selected miRNAs was analyzed in peripheral blood plasma using real-time qPCR. The genetic analysis was performed with an Illumina NextSeq500 system. AMD was an independent factor associated with lower levels of angiogenin (β = −0.29, p < 0.001), endostatin (β = −0.18, p < 0.001), FGF-basic (β = −0.18, p < 0.001), PlGF (β = −0.24, p < 0.001), miRNA-21-3p (β = −0.13, p = 0.01) and miRNA-155-5p (β = −0.16, p = 0.002); and with higher levels of FGF-acidic (β = 0.11, p = 0.03), miRNA-23a-3p (β = 0.17, p < 0.001), miRNA-126-5p (β = 0.13, p = 0.009), miRNA-16-5p (β = 0.40, p < 0.001), miRNA-17-3p (β = 0.13, p = 0.01), miRNA-17-5p (β = 0.17, p < 0.001), miRNA-223-3p (β = 0.15, p = 0.004), and miRNA-93 (β = 0.11, p = 0.04). The expression of analyzed miRNA molecules significantly correlated with the levels of tested angiogenesis-regulating factors and clinical parameters in AMD patients, whereas such correlations were not observed in controls. We also found an association between the CFH Y402H polymorphism and miRNA profiles, whereby TT homozygotes showed evidently higher expression of miRNA-16-5p than CC homozygotes or TC heterozygotes (p = 0.0007). Our results suggest that the balance between systemic pro- and anti-angiogenic factors and miRNAs is vital in multifactorial AMD pathogenesis.
Collapse
|
44
|
Blasiak J, Watala C, Tuuminen R, Kivinen N, Koskela A, Uusitalo-Järvinen H, Tuulonen A, Winiarczyk M, Mackiewicz J, Zmorzyński S, Filip A, Kaarniranta K. Expression of VEGFA-regulating miRNAs and mortality in wet AMD. J Cell Mol Med 2019; 23:8464-8471. [PMID: 31633290 PMCID: PMC6850949 DOI: 10.1111/jcmm.14731] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/12/2019] [Accepted: 09/23/2019] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression; many of them act in the retinal pigment epithelium (RPE), and RPE degeneration is known to be a critical factor in age‐related macular degeneration (AMD). Repeated injections with anti‐VEGFA (vascular endothelial growth factor A) are the only effective therapy in wet AMD. We investigated the correlation between the expression of 18 miRNAs involved in the regulation of the VEGFA gene in serum of 76 wet AMD patients and 70 controls. Efficacy of anti‐VEGFA treatment was evaluated by counting the number of injections delivered up to 12 years. In addition, we compared the relative numbers of deaths in patient with AMD and control groups. We observed a decreased expression of miR‐34‐5p, miR‐126‐3p, miR‐145‐5p and miR‐205‐5p in wet AMD patients as compared with controls. These miRNAs are involved in the regulation of angiogenesis, cytoprotection and protein clearance. No miRNA was significantly correlated with the treatment outcome. Wet AMD patients had greater mortality than controls, and their survival was inversely associated with the number of anti‐VEGFA injections per year. No association was observed between miRNA expression and mortality. Our study emphasizes the need to clarify the role of miRNA regulation in AMD pathogenesis.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Cezary Watala
- Department of Haemostatic Disorders, Medical University, Lodz, Poland
| | - Raimo Tuuminen
- Helsinki Retina Research Group, University of Helsinki, Helsinki, Finland.,Department of Ophthalmology, Kymenlaakso Central Hospital, Kotka, Finland
| | - Niko Kivinen
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Ali Koskela
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | | | - Anja Tuulonen
- Department of Ophthalmology, Tampere University Hospital, Tampere, Finland
| | - Mateusz Winiarczyk
- Department of Vitreoretinal Surgery, Medical University of Lublin, Lublin, Poland
| | - Jerzy Mackiewicz
- Department of Vitreoretinal Surgery, Medical University of Lublin, Lublin, Poland
| | - Szymon Zmorzyński
- Department of Cancer Genetics, Medical University of Lublin, Lublin, Poland
| | - Agata Filip
- Department of Cancer Genetics, Medical University of Lublin, Lublin, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
45
|
Elbay A, Ercan Ç, Akbaş F, Bulut H, Ozdemir H. Three new circulating microRNAs may be associated with wet age-related macular degeneration. Scand J Clin Lab Invest 2019; 79:388-394. [PMID: 31277558 DOI: 10.1080/00365513.2019.1637931] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This study investigates the circulating microRNA (miRNA) expression profiles in patients with age-related macular degeneration (AMD) and the role of miRNA in wet AMD and its pathways. Exosomes were extracted from serum samples of AMD patients (n = 70) and a control group (n = 50). After isolating miRNA from the exosomes, miRNAs were transformed into cDNA. In the control and AMD samples, the expression was compared with a panel including 175 genes using the PCR array method. Target genes and pathways of miRNAs were detected by KEGG and Biocarta signaling pathway enrichments. Comparing the serum samples between groups revealed that the expression levels of 15 microRNAs within 175 genes had significantly changed. In the validation studies, miR-129-3p and miR-132-3p had no significant expression in AMD group compared to the controls. miR-486-5p and miR-626 had higher expression in AMD patients compared to the control group, while miR-885-5p showed significantly lower expression. Pathway analysis revealed that these miRNAs may have critical roles in the apoptosis and neovascularization pathways. The data suggest that some miRNAs within the serum may have a role in the pathogenesis of wet AMD. Further studies are needed to examine the use of these miRNAs as biomarkers.
Collapse
Affiliation(s)
- Ahmet Elbay
- Department of Ophthalmology, Faculty of Medicine, Bezmialem Vakıf University , Istanbul , Turkey
| | - Çilem Ercan
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University , Istanbul , Turkey
| | - Fahri Akbaş
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University , Istanbul , Turkey
| | - Huri Bulut
- Department of Biochemistry, Faculty of Medicine, Bezmialem Vakif University , Istanbul , Turkey
| | - Hakan Ozdemir
- Department of Ophthalmology, Faculty of Medicine, Bezmialem Vakıf University , Istanbul , Turkey
| |
Collapse
|
46
|
MicroRNA expression profile in retina and choroid in oxygen-induced retinopathy model. PLoS One 2019; 14:e0218282. [PMID: 31188886 PMCID: PMC6561584 DOI: 10.1371/journal.pone.0218282] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022] Open
Abstract
Background Ischemic retinopathies (IRs) are leading causes of visual impairment. They are characterized by an initial phase of microvascular degeneration and a second phase of aberrant pre-retinal neovascularization (NV). microRNAs (miRNAs) regulate gene expression, and a number play a role in normal and pathological NV. But, post-transcriptional modulation of miRNAs in the eye during the development of IRs has not been systematically evaluated. Aims & methods Using Next Generation Sequencing (NGS) we profiled miRNA expression in the retina and choroid during vasodegenerative and NV phases of oxygen-induced retinopathy (OIR). Results Approximately 20% of total miRNAs exhibited altered expression (up- or down-regulation); 6% of miRNA were found highly expressed in retina and choroid of rats subjected to OIR. During OIR-induced vessel degeneration phase, miR-199a-3p, -199a-5p, -1b, -126a-3p displayed a robust decreased expression (> 85%) in the retina. While in the choroid, miR-152-3p, -142-3p, -148a-3p, -532-3p were upregulated (>200%) and miR-96-5p, -124-3p, -9a-3p, -190b-5p, -181a-1-3p, -9a-5p, -183-5p were downregulated (>70%) compared to controls. During peak pathological NV, miR-30a-5p, -30e-5p and 190b-5p were markedly reduced (>70%), and miR-30e-3p, miR-335, -30b-5p strongly augmented (by up to 300%) in the retina. Whereas in choroid, miR-let-7f-5p, miR-126a-5p and miR-101a-3p were downregulated by (>81%), and miR-125a-5p, let-7e-5p and let-7g-5p were upregulated by (>570%) during NV. Changes in miRNA observed using NGS were validated using qRT-PCR for the 24 most modulated miRNAs. In silico approach to predict miRNA target genes (using algorithms of miRSystem database) identified potential new target genes with pro-inflammatory, apoptotic and angiogenic properties. Conclusion The present study is the first comprehensive description of retinal/choroidal miRNAs profiling in OIR (using NGS technology). Our results provide a valuable framework for the characterization and possible therapeutic potential of specific miRNAs involved in ocular IR-triggered inflammation, angiogenesis and degeneration.
Collapse
|
47
|
Review of Biomarkers in Ocular Matrices: Challenges and Opportunities. Pharm Res 2019; 36:40. [PMID: 30673862 PMCID: PMC6344398 DOI: 10.1007/s11095-019-2569-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/07/2019] [Indexed: 02/05/2023]
Abstract
Biomarkers provide a powerful and dynamic approach to improve our understanding of the mechanisms underlying ocular diseases with applications in diagnosis, disease modulation or for predicting and monitoring of clinical response to treatment. Defined as measurable indicator of normal or pathological processes, biomarker evaluation has been used extensively in drug development within clinical settings to better comprehend effectiveness of treatment in ocular diseases. Biomarkers in the eye have the advantage of access to multiple ocular matrices via minimally invasive methods. Repeat sampling for biomarker assessment has enabled reproducible objective measures of disease process or biological responses to a drug treatment. This review describes the usage of biomarkers with respect to four commonly sampled ocular matrices in clinic: tears, conjunctiva, aqueous humor and vitreous. Issues that affect the evaluation of biomarkers are discussed along with opportunities to leverage biomarkers such that ultimately, they can be used for customized targeted therapy.
Collapse
|
48
|
microRNA diagnostic panel for Alzheimer's disease and epigenetic trade-off between neurodegeneration and cancer. Ageing Res Rev 2019; 49:125-143. [PMID: 30391753 DOI: 10.1016/j.arr.2018.10.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/01/2018] [Accepted: 10/19/2018] [Indexed: 12/20/2022]
Abstract
microRNAs (miRNAs) have been extensively studied as potential biomarkers for Alzheimer's disease (AD). Their profiles have been analyzed in blood, cerebrospinal fluid (CSF) and brain tissue. However, due to the high variability between the reported data, stemming from the lack of methodological standardization and the heterogeneity of AD, the most promising miRNA biomarker candidates have not been selected. Our literature review shows that out of 137 miRNAs found to be altered in AD blood, 36 have been replicated in at least one independent study, and out of 166 miRNAs reported as differential in AD CSF, 13 have been repeatedly found. Only 3 miRNAs have been consistently reported as altered in three analyzed specimens: blood, CSF and the brain (hsa-miR-146a, hsa-miR-125b, hsa-miR-135a). Nonetheless, all 36 repeatedly differential miRNAs in AD blood are promising as components of the diagnostic panel. Given their predicted functions, such miRNA panel may report multiple pathways contributing to AD pathology, enabling the design of personalized therapies. In addition, the analysis revealed that the miRNAs dysregulated in AD overlap highly with miRNAs implicated in cancer. However, the directions of the miRNA changes are usually opposite in cancer and AD, indicative of an epigenetic trade-off between the two diseases.
Collapse
|
49
|
Huang P, Sun J, Wang F, Luo X, Zhu H, Gu Q, Sun X, Liu T, Sun X. DNMT1 and Sp1 competitively regulate the expression of BACE1 in A2E-mediated photo-oxidative damage in RPE cells. Neurochem Int 2018; 121:59-68. [PMID: 30273642 DOI: 10.1016/j.neuint.2018.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 09/02/2018] [Accepted: 09/03/2018] [Indexed: 02/03/2023]
Abstract
Numerous studies have focused on the deteriorate role of amyloid-β (Aβ) on retina, implying the potential pathogenic mechanism underlying age-related macular degeneration (AMD). However, the mechanism underlying the Aβ deposition in AMD patients remains unknown. Beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1), rate-limiting enzyme for Aβ production, plays an important role in Aβ deposition in the brain. In the current study, we aimed to clarify the regulation mechanism of BACE1 and explore potential drug targets using a lipofuscinfluorophore A2E-mediated photo-oxidation model. In this model, Aβ1-40 and Aβ1-42 levels increased simultaneously with the enhanced BACE1 expression. These changes were associated with the hypomethylation of specific loci within the BACE1 gene promoter and the decreased levels of DNA methyltransferase 1 (DNMT1). Furthermore, we noticed overlapping regions of differentially methylated CpG islands and specificity protein (Sp1) binding sites within the BACE1 promoter. We employed chromatin immunoprecipitation (ChIP) assay to verify that the decreased BACE1 promoter methylation by DNMT1 enabled increased binding between Sp1 and the BACE1 promoter, which further enhanced BACE1 transcription. The inhibition of Sp1 with mithramycin A (MTM) could down-regulate the expression of BACE1 as well as alleviate the RPE barrier morphology and function impairment. Our results for the first time show the competitive regulation of BACE1 by transcription factor Sp1 and DNMT1 after photo-oxidation and confirm the potential novel protective role of MTM on RPE cells.
Collapse
Affiliation(s)
- Peirong Huang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; Shanghai Key Laboratory of Fundus Disease, Shanghai, People's Republic of China
| | - Junran Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; Shanghai Key Laboratory of Fundus Disease, Shanghai, People's Republic of China
| | - Fenghua Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; Shanghai Key Laboratory of Fundus Disease, Shanghai, People's Republic of China
| | - Xueting Luo
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; Shanghai Key Laboratory of Fundus Disease, Shanghai, People's Republic of China
| | - Hong Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; Shanghai Key Laboratory of Fundus Disease, Shanghai, People's Republic of China
| | - Qing Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; Shanghai Key Laboratory of Fundus Disease, Shanghai, People's Republic of China
| | - Xiangjun Sun
- School of Biology and Agriculture, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Te Liu
- Department of Pathology, Yale University School of Medicine, New Haven, USA; Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; Shanghai Key Laboratory of Fundus Disease, Shanghai, People's Republic of China.
| |
Collapse
|
50
|
Jun S, Datta S, Wang L, Pegany R, Cano M, Handa JT. The impact of lipids, lipid oxidation, and inflammation on AMD, and the potential role of miRNAs on lipid metabolism in the RPE. Exp Eye Res 2018; 181:346-355. [PMID: 30292489 DOI: 10.1016/j.exer.2018.09.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/31/2018] [Accepted: 09/30/2018] [Indexed: 12/17/2022]
Abstract
The accumulation of lipids within drusen, the epidemiologic link of a high fat diet, and the identification of polymorphisms in genes involved in lipid metabolism that are associated with disease risk, have prompted interest in the role of lipid abnormalities in AMD. Despite intensive investigation, our understanding of how lipid abnormalities contribute to AMD development remains unclear. Lipid metabolism is tightly regulated, and its dysregulation can trigger excess lipid accumulation within the RPE and Bruch's membrane. The high oxidative stress environment of the macula can promote lipid oxidation, impairing their original function as well as producing oxidation-specific epitopes (OSE), which unless neutralized, can induce unwanted inflammation that additionally contributes to AMD progression. Considering the multiple layers of lipid metabolism and inflammation, and the ability to simultaneously target multiple pathways, microRNA (miRNAs) have emerged as important regulators of many age-related diseases including atherosclerosis and Alzheimer's disease. These diseases have similar etiologic characteristics such as lipid-rich deposits, oxidative stress, and inflammation with AMD, which suggests that miRNAs might influence lipid metabolism in AMD. In this review, we discuss the contribution of lipids to AMD pathobiology and introduce how miRNAs might affect lipid metabolism during lesion development. Establishing how miRNAs contribute to lipid accumulation in AMD will help to define the role of lipids in AMD, and open new treatment avenues for this enigmatic disease.
Collapse
Affiliation(s)
- Sujung Jun
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, 21287, United States
| | - Sayantan Datta
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, 21287, United States
| | - Lei Wang
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, 21287, United States
| | - Roma Pegany
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, 21287, United States
| | - Marisol Cano
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, 21287, United States
| | - James T Handa
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, 21287, United States.
| |
Collapse
|