1
|
Wang Y, Lindstam M, Hwang D, Jedlina L, Liu M. Therapeutic Effects of a Novel Aptamer on Coronaviral Infection-Induced Lung Injury and Systemic Inflammatory Responses. Cells 2024; 13:422. [PMID: 38474386 PMCID: PMC10931054 DOI: 10.3390/cells13050422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/08/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Coronaviral infection-induced acute lung injury has become a major threat to public health, especially through the ongoing pandemic of COVID-19. Apta-1 is a newly discovered Aptamer that has anti-inflammatory effects on systemic septic responses. The therapeutic effects of Apta-1 on coronaviral infection-induced acute lung injury and systemic responses were evaluated in the present study. METHODS Female A/J mice (at 12-14 weeks of age) were challenged with murine hepatitis virus 1 (MHV-1), a coronavirus, at 5000 PFU intranasally, followed by Apta-1 intravenously administered (100 mg/kg, twice) 1.5 h or 2 days after viral delivery. Animals were sacrificed at Day 2 or Day 4. Lung tissues were examined with H&E, immunohistochemistry staining, and western blotting. RT-qPCR was used for cytokine gene expression. Serum and plasma were collected for laboratory assessments. RESULTS Apta-1 treatment reduced viral titers, prevented MHV-1-induced reduction of circulating blood volume and hemolysis, reduced alveolar space hemorrhage, and protease-activated receptor 1 (PAR-1) cleavage. Apta-1 treatment also significantly reduced chemokine (MKC, MCP-1, and RANTES) levels, as well as AST, ALT, total bilirubin, and reduced unconjugated bilirubin levels in the serum. CONCLUSION Apta-1 showed therapeutic benefits in coronaviral infection-induced hemorrhage and PAR-1 cleavage in the lung. It also has anti-inflammatory effects systemically.
Collapse
Affiliation(s)
- Yingchun Wang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada;
| | | | - David Hwang
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | | | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada;
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Departments of Surgery, Medicine, and Physiology, Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
2
|
Cho HR, Sugihara J, Shimizu H, Xiang YY, Bai X, Wang Y, Liao XH, Asa SL, Refetoff S, Liu M. Pathogenesis of Multinodular Goiter in Elderly XB130-Deficient Mice: Alteration of Thyroperoxidase Affinity with Iodide and Hydrogen Peroxide. Thyroid 2022; 32:385-396. [PMID: 34915750 PMCID: PMC9048175 DOI: 10.1089/thy.2021.0458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background: Multinodular goiter (MNG) is the most common disorder of the thyroid gland. Aging and genetic mutations that impair thyroid hormone (TH) production have been implicated in the development of MNG. XB130 is an adaptor/scaffold protein predominantly expressed in the thyroid gland. XB130 deficiency leads to transient postnatal growth retardation in mice due to congenital hypothyroidism. We studied the formation of MNG and possible mechanisms in elderly mice. Methods: Thyroid glands of male and female Xb130-knockout (Xb130-/-), heterozygous (Xb130+/-), and wild-type (Xb130+/+) mice at the ages of 12-20 months were harvested for visual examination, histopathological, and immunohistological analyses. Blood and thyroid samples were collected after feeding elderly mice with a low iodine diet for 125I uptake and perchlorate discharge assay. The activity of thyroperoxidase (Tpo) was examined by spectrophotometric evaluation of iodide oxidation. Results: While moderate MNG was seen in Xb130+/+ and Xb130+/- mice, severe MNG, characterized by multiple nodules intermixed with dilated colloid-rich macrofollicles, was found only in Xb130-/- mice at 18 months. Thyrocyte cytoskeletal structure and cell adhesion molecules were disorganized, and TH production was significantly reduced. Reduced iodide organification was seen in elderly Xb130+/+ mice and further enhanced in Xb130-/- mice. In Xb130+/+ mice, Tpo shows high affinity with hydrogen peroxide (H2O2) throughout aging, but reduced affinity with iodide in an age-dependent manner. By contrast, in elderly Xb130-/- mice, the affinity of Tpo for iodide remained high, but the affinity of Tpo for H2O2 was reduced. Conclusions: The pathophysiological features in the thyroid glands of aged Xb130-/- mice closely resemble the features of MNG in humans. Moderate MNG in elderly mice was dramatically aggravated by XB130 deficiency. Reduced affinity of Tpo for H2O2 may contribute to MNG development via oxidative stress. This could be specific to XB130 deficiency but also could be a common mechanism in MNG. Its clinical relevance should be further investigated.
Collapse
Affiliation(s)
- Hae-Ra Cho
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Junichi Sugihara
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Hiroki Shimizu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Yun-Yan Xiang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Xiaohui Bai
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Yingchun Wang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Xiao-Hui Liao
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Sylvia L. Asa
- Department of Pathology, University Health Network, Toronto, Canada
- University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Samuel Refetoff
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
- Department of Surgery and Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Address correspondence to: Mingyao Liu, MD, Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Princess Margaret Cancer Research Tower 2-814, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
3
|
Sugihara J, Wong A, Shimizu H, Zhao J, Cho HR, Wang Y, Refetoff S, Arvan P, Liu M. Thyroidal Transcriptomic Profiles of Pathoadaptive Responses to Congenital Hypothyroidism in XB130 Knockout Mice. Cells 2022; 11:975. [PMID: 35326426 PMCID: PMC8947158 DOI: 10.3390/cells11060975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 01/26/2023] Open
Abstract
Congenital hypothyroidism is a genetic condition in which the thyroid gland fails to produce sufficient thyroid hormone (TH), resulting in metabolic dysfunction and growth retardation. Xb130-/- mice exhibit perturbations of thyrocyte cytoskeleton and polarity, and develop postnatal transient growth retardation due to congenital hypothyroidism, leading ultimately to multinodular goiter. To determine the underlying mechanisms, we performed transcriptomic analyses on thyroid glands of mice at three age points: week 2 (W2, before visible growth retardation), W4 (at the nadir of growth); and W12 (immediately before full growth recovery). Using gene set enrichment analysis, we compared a defined set of thyroidal genes between Xb130+/+ and Xb130-/- mice to identify differentially enriched gene clusters. At the earliest postnatal stage (W2), the thyroid glands of Xb130-/- mice exhibited significantly downregulated gene clusters related to cellular metabolism, which continued to W4. Additionally, mutant thyroids at W4 and W12 showed upregulated gene clusters related to extracellular matrix, angiogenesis, and cell proliferation. At W12, despite nearly normal levels of serum TH and TSH and body size, a significantly large number of gene clusters related to inflammatory response were upregulated. Early postnatal TH deficiency may suppress cellular metabolism within the thyroid gland itself. Upregulation of genes related to extracellular matrix and angiogenesis may promote subsequent thyroid growth. Chronic inflammatory responses may contribute to the pathogenesis of multinodular goiter in later life. Some of the pathoadaptive responses of Xb130-/- mice may overlap with those from other mutations causing congenital hypothyroidism.
Collapse
Affiliation(s)
- Junichi Sugihara
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (J.S.); (A.W.); (H.S.); (J.Z.); (H.-R.C.); (Y.W.)
| | - Aaron Wong
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (J.S.); (A.W.); (H.S.); (J.Z.); (H.-R.C.); (Y.W.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hiroki Shimizu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (J.S.); (A.W.); (H.S.); (J.Z.); (H.-R.C.); (Y.W.)
| | - Jinbo Zhao
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (J.S.); (A.W.); (H.S.); (J.Z.); (H.-R.C.); (Y.W.)
| | - Hae-Ra Cho
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (J.S.); (A.W.); (H.S.); (J.Z.); (H.-R.C.); (Y.W.)
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yingchun Wang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (J.S.); (A.W.); (H.S.); (J.Z.); (H.-R.C.); (Y.W.)
| | - Samuel Refetoff
- Departments of Medicine, Pediatrics and Committee on Genetics, The University of Chicago, Chicago, IL 60637, USA;
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (J.S.); (A.W.); (H.S.); (J.Z.); (H.-R.C.); (Y.W.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Departments of Surgery and Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
4
|
Zhou W, Shao W, Zhang Y, Liu D, Liu M, Jin T. Glucagon-like peptide-1 receptor mediates the beneficial effect of liraglutide in an acute lung injury mouse model involving the thioredoxin-interacting protein. Am J Physiol Endocrinol Metab 2020; 319:E568-E578. [PMID: 32723174 PMCID: PMC7839242 DOI: 10.1152/ajpendo.00292.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Repurposing clinically used drugs is among the important strategies in drug discovery. Glucagon-like peptide-1 (GLP-1) and its diabetes-based drugs, such as liraglutide, possess a spectrum of extra-pancreatic functions, while GLP-1 receptor (GLP-1R) is most abundantly expressed in the lung. Recent studies have suggested that GLP-1-based drugs exert beneficial effects in chronic, as well as acute, lung injury rodent models. Here, we show that liraglutide pretreatment reduced LPS induced acute lung injury in mice. It significantly reduced lung injury score, wet/dry lung weight ratio, bronchoalveolar lavage fluid immune cell count and protein concentration, and cell apoptosis in the lung, and it was associated with reduced lung inflammatory cytokine and chemokine gene expression. Importantly, these effects were virtually absent in GLP-1R-/- mice. A well-known function of GLP-1 and GLP-based drugs in pancreatic β-cells is the attenuation of high-glucose stimulated expression of thioredoxin-interacting protein (TxNIP), a key component of inflammasome. LPS-challenged lungs showed elevated TxNIP mRNA and protein expression, which was attenuated by liraglutide treatment in a GLP-1R-dependent manner. Hence, our observations suggest that GLP-1R is essential in mediating beneficial effects of liraglutide in acute lung injury, with the inflammasome component TxNIP as a potential target.
Collapse
Affiliation(s)
- Wenyong Zhou
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Weijuan Shao
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yu Zhang
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Dinghui Liu
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Mingyao Liu
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Tianru Jin
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Ge X, Meng X, Fei D, Kang K, Wang Q, Zhao M. Lycorine attenuates lipopolysaccharide-induced acute lung injury through the HMGB1/TLRs/NF-κB pathway. 3 Biotech 2020; 10:369. [PMID: 32818131 PMCID: PMC7395800 DOI: 10.1007/s13205-020-02364-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/25/2020] [Indexed: 12/20/2022] Open
Abstract
Lung injury associated with systemic inflammatory response is a common problem affecting human health. Previous studies have shown that lycorine exerts a anti-inflammatory effect. However, whether lycorine alleviates lung injury remains unclear. To explore this issue, BALB/c mice and MLE-12 cells were treated with lipopolysaccharide (LPS) to establish lung injury mouse model and cell model, respectively. Glycyrrhizic acid, known as an inhibitor of ALI, was also used to study the effects of lycorine in vitro. Our results showed that after LPS treatment, the lung injury score, lung wet-to-dry weight ratio, and malondialdehyde (MDA) production in the lung tissues and the expression levels of tumor necrosis factor-α, interleukin-1β, and interleukin-6 in bronchoalveolar lavage fluid were significantly increased, whereas their levels were decreased by lycorine. Additionally, LPS injection activated the high-mobility group box 1 (HMGB1)/Toll-like receptors (TLRs)/NF-κB pathway. However, lycorine treatment attenuated the activity of the HMGB1/TLRs/NF-κB pathway in the lung tissues. In vitro studies showed that lycorine administration significantly decreased the levels of inflammatory cytokines and MDA and attenuated the activity of the HMGB1/TLRs/NF-κB pathway in LPS-treated cells. Moreover, the inhibitory effects of lycorine on the inflammatory response and oxidative stress in LPS-treated lung cells were similar with that of glycyrrhizic acid, and this inhibition was intensified by both lycorine and glycyrrhizic acid treatment. We suggest that lycorine could alleviate LPS-induced lung injury of inflammation and oxidative stress by blocking the HMGB1/TLRs/NF-κB pathway, which gives a new perspective for ALI therapy to treat lycorine as a potential treatment clinically.
Collapse
Affiliation(s)
- Xin Ge
- Department of ICU, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001 Heilongjiang People’s Republic of China
- Department of ICU, Wuxi 9th Affiliated Hospital of Soochow University, Wuxi, 214000 Jiangsu People’s Republic of China
| | - Xianglin Meng
- Department of ICU, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001 Heilongjiang People’s Republic of China
| | - Dongsheng Fei
- Department of ICU, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001 Heilongjiang People’s Republic of China
| | - Kai Kang
- Department of ICU, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001 Heilongjiang People’s Republic of China
| | - Qiubo Wang
- Department of Clinical Laboratory, Wuxi 9th Affiliated Hospital of Soochow University, Wuxi, 214000 Jiangsu People’s Republic of China
| | - Mingyan Zhao
- Department of ICU, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001 Heilongjiang People’s Republic of China
| |
Collapse
|
6
|
Chen Y, Yang Z, Dong Y, Chen Y. Recombinant PAL/PilE/FlaA DNA vaccine provides protective immunity against Legionella pneumophila in BALB/c mice. BMC Biotechnol 2020; 20:28. [PMID: 32423439 PMCID: PMC7236329 DOI: 10.1186/s12896-020-00620-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/30/2020] [Indexed: 11/10/2022] Open
Abstract
Background Legionella pneumophila (L.pneumophila), a Gram-negative small microorganism, causes hospital-acquired pneumonia especially in immunocompromised patients. Vaccination may be an effective method for preventing L.pneumophila infection. Therefore, it is necessary to develop a better vaccine against this disease. In this study, we developed a recombinant peptidoglycan-associated lipoprotein (PAL)/type IV pilin (PilE)/lagellin (FlaA) DNA vaccine and evaluated its immunogenicity and efficacy to protect against L.pneumophila infection. Results According to the results, the expression of PAL, PilE, FlaA proteins and PAL/PilE/FlaA fusion protein in 293 cells was confirmed. Immunization with PAL/PilE/FlaA DNA vaccine resulted in highest IgG titer and strongest cytotoxic T-lymphocyte (CTL) response. Furthermore, the histopathological changes in lung tissues of mice challenged with a lethal dose of L.pneumophila were alleviated by PAL/PilE/FlaA DNA vaccine immunization. The production of T-helper-1 (Th1) cytokines (IFNγ, TGF-α, and IL-12), and Th2 cytokines (IL-4 and IL-10) were promoted in PAL/PilE/FlaA DNA vaccine group. Finally, immunization with PAL/PilE/FlaA vaccine raised the survival rate of mice to 100% after challenging with a lethal dose of L.pneumophila for 10 consecutive days. Conclusions Our study suggests that the newly developed PAL/PilE/FlaA DNA vaccine stimulates strong humoral and cellular immune responses and may be a potential intervention on L.pneumophila infection.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, People's Republic of China
| | - Zehui Yang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, People's Republic of China
| | - Ying Dong
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, People's Republic of China
| | - Yu Chen
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
7
|
Moodley S, Derouet M, Bai XH, Xu F, Kapus A, Yang BB, Liu M. Stimulus-dependent dissociation between XB130 and Tks5 scaffold proteins promotes airway epithelial cell migration. Oncotarget 2018; 7:76437-76452. [PMID: 27835612 PMCID: PMC5363521 DOI: 10.18632/oncotarget.13261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/02/2016] [Indexed: 02/07/2023] Open
Abstract
Repair of airway epithelium after injury requires migration of neighboring epithelial cells to injured areas. However, the molecular mechanisms regulating airway epithelial cell migration is not well defined. We have previously shown that XB130, a scaffold protein, is required for airway epithelial repair and regeneration in vivo, and interaction between XB130 and another scaffold protein, Tks5, regulates cell proliferation and survival in human bronchial epithelial cells. The objective of the present study was to determine the role of XB130 and Tks5 interaction in airway epithelial cell migration. Interestingly, we found that XB130 only promotes lateral cell migration, whereas, Tks5 promotes cell migration/invasion via proteolysis of extracellular matrix. Upon stimulation with EGF, PKC activator phorbol 12, 13-dibutyrate or a nicotinic acetylcholine receptor ligand, XB130 and Tks5 translocated to the cell membrane in a stimulus-dependent manner. The translocation and distribution of XB130 is similar to lamellipodial marker, WAVE2; whereas Tks5 is similar to podosome marker, N-WASP. Over-expression of XB130 or Tks5 alone enhances cell migration, whereas co-expression of both XB130 and Tks5 inhibits cell migration processes and signaling. Furthermore, XB130 interacts with Rac1 whereas Tks5 interacts with Cdc42 to promote Rho GTPase activity. Our results suggest that dissociation between XB130 and Tks5 may facilitate lateral cell migration via XB130/Rac1, and vertical cell migration via Tks5/Cdc42. These molecular mechanisms will help our understanding of airway epithelial repair and regeneration.
Collapse
Affiliation(s)
- Serisha Moodley
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Canada
| | - Mathieu Derouet
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Canada
| | - Xiao Hui Bai
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Canada
| | - Feng Xu
- Advanced Optical Microscopy Facility, UHN, Toronto, Canada
| | - Andras Kapus
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - Burton B Yang
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Mingyao Liu
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Canada
| |
Collapse
|