1
|
Zhang Y, Sui P, Zhong C, Liu J. Development and Validation of the novel Cuproptosis- and Immune-related Signature for Predicting Prognosis in Hepatocellular Carcinoma. J Cancer 2024; 15:2260-2275. [PMID: 38495502 PMCID: PMC10937287 DOI: 10.7150/jca.92558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Background: Hepatocellular carcinoma often results in late-stage diagnosis, leading to decreased treatment success. To improve prognosis, this study integrates cuproptosis with immune risk scoring models for HCC patients. Method: We identified differentially expressed genes connected to cuproptosis and immune responses using Pearson correlation. A risk signature was then constructed via LASSO regression, and its robustness was validated in the International Cancer Genome Consortium dataset. Additionally, qPCR confirmed findings in tumor and normal tissues. Results: Eight genes emerged as key prognostic markers from the 110 differentially expressed genes linked to cuproptosis and immunity. A risk-scoring model was developed using gene expression, effectively categorizing patients into low- or high-risk groups. Validated in the ICGC dataset, high-risk patients had significantly reduced survival times. Multivariate Cox regression affirmed the risk signature's independent predictive capability. A clinical nomogram based on the risk signature was generated. Notably, low-risk patients might benefit more from immune checkpoint inhibitors. qPCR and western blotting results substantiated our bioinformatics findings. Conclusions: The genetic risk signature linked to cuproptosis and immunity holds potential as a vital prognostic biomarker for Hepatocellular carcinoma, providing avenues for tailored therapeutic strategies.
Collapse
Affiliation(s)
- Yongping Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Ping Sui
- Department of Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Cheng Zhong
- Department of Orthopedics, The first clinical medical college of Guangzhou University of Chinese Medicine, Guangzhou, 515000, China
- Department of Orthopedics, Jiangmen Hospital of Traditional Chinese Medicine Affiliated to Jinan University, Jiangmen, 52900, China
| | - Jiansheng Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| |
Collapse
|
2
|
许 云, 苏 征, 郑 林, 张 孟, 谭 珺, 杨 亚, 张 梦, 徐 苗, 陈 铌, 陈 雪, 周 桥. [Read-through circular RNA rt-circ-HS promotes hypoxia inducible factor 1α expression and renal carcinoma cell proliferation, migration and invasiveness]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2023; 55:217-227. [PMID: 37042131 PMCID: PMC10091263 DOI: 10.19723/j.issn.1671-167x.2023.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Indexed: 04/07/2024]
Abstract
OBJECTIVE To identify and characterize read-through RNAs and read-through circular RNAs (rt-circ-HS) derived from transcriptional read-through hypoxia inducible factor 1α (HIF1α) and small nuclear RNA activating complex polypeptide 1 (SNAPC1) the two adjacent genes located on chromosome 14q23, in renal carcinoma cells and renal carcinoma tissues, and to study the effects of rt-circ-HS on biological behavior of renal carcinoma cells and on regulation of HIF1α. METHODS Reverse transcription-polymerase chain reaction (RT-PCR) and Sanger sequencing were used to examine expression of read-through RNAs HIF1α-SNAPC1 and rt-circ-HS in different tumor cells. Tissue microarrays of 437 different types of renal cell carcinoma (RCC) were constructed, and chromogenic in situ hybridization (ISH) was used to investigate expression of rt-circ-HS in different RCC types. Small interference RNA (siRNA) and artificial overexpression plasmids were designed to examine the effects of rt-circ-HS on 786-O and A498 renal carcinoma cell proliferation, migration and invasiveness by cell counting kit 8 (CCK8), EdU incorporation and Transwell cell migration and invasion assays. RT-PCR and Western blot were used to exa-mine expression of HIF1α and SNAPC1 RNA and proteins after interference of rt-circ-HS with siRNA, respectively. The binding of rt-circ-HS with microRNA 539 (miR-539), and miR-539 with HIF1α 3' untranslated region (3' UTR), and the effects of these interactions were investigated by dual luciferase reporter gene assays. RESULTS We discovered a novel 1 144 nt rt-circ-HS, which was derived from read-through RNA HIF1α-SNAPC1 and consisted of HIF1α exon 2-6 and SNAPC1 exon 2-4. Expression of rt-circ-HS was significantly upregulated in 786-O renal carcinoma cells. ISH showed that the overall positive expression rate of rt-circ-HS in RCC tissue samples was 67.5% (295/437), and the expression was different in different types of RCCs. Mechanistically, rt-circ-HS promoted renal carcinoma cell proliferation, migration and invasiveness by functioning as a competitive endogenous inhibitor of miR-539, which we found to be a potent post-transcriptional suppressor of HIF1α, thus promoting expression of HIF1α. CONCLUSION The novel rt-circ-HS is highly expressed in different types of RCCs and acts as a competitive endogenous inhibitor of miR-539 to promote expression of its parental gene HIF1α and thus the proliferation, migration and invasion of renal cancer cells.
Collapse
Affiliation(s)
- 云屹 许
- 四川大学华西医院病理科,成都 610041Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 征征 苏
- 四川大学华西医院病理科,成都 610041Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 林茂 郑
- 四川大学华西医院病理科,成都 610041Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 孟尼 张
- 四川大学华西医院病理科,成都 610041Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 珺娅 谭
- 四川大学华西医院病理科,成都 610041Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学华西医院病理研究室,成都 610041Research Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 亚蓝 杨
- 四川大学华西医院病理科,成都 610041Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 梦鑫 张
- 四川大学华西医院病理科,成都 610041Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 苗 徐
- 四川大学华西医院病理科,成都 610041Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 铌 陈
- 四川大学华西医院病理科,成都 610041Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学华西医院病理研究室,成都 610041Research Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 雪芹 陈
- 四川大学华西医院病理科,成都 610041Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学华西医院病理研究室,成都 610041Research Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 桥 周
- 四川大学华西医院病理科,成都 610041Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学华西医院病理研究室,成都 610041Research Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Wang X, Yu G, Yan Z, Wan L, Wang W, Cui L. Lung Cancer Subtype Diagnosis by Fusing Image-Genomics Data and Hybrid Deep Networks. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:512-523. [PMID: 34855599 DOI: 10.1109/tcbb.2021.3132292] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Accurate diagnosis of cancer subtypes is crucial for precise treatment, because different cancer subtypes are involved with different pathology and require different therapies. Although deep learning techniques have made great success in computer vision and other fields, they do not work well on Lung cancer subtype diagnosis, due to the distinction of slide images between different cancer subtypes is ambiguous. Furthermore, they often over-fit to high-dimensional genomics data with limited samples, and do not fuse the image and genomics data in a sensible way. In this paper, we propose a hybrid deep network based approach LungDIG for Lung cancer subtype Diagnosis by fusing Image-Genomics data. LungDIG first tiles the tissue slide image into small patches and extracts the patch-level features by fine-tuning an Inception-V3 model. Since the patches may contain some false positives in non-diagnostic regions, it further designs a patch-level feature combination strategy to integrate the extracted patch features and maintain the diversity between different cancer subtypes. At the same time, it extracts the genomics features from Copy Number Variation data by an attention based nonlinear extractor. Next, it fuses the image and genomics features by an attention based multilayer perceptron (MLP) to diagnose cancer subtype. Experiments on TCGA lung cancer data show that LungDIG can not only achieve higher accuracy for cancer subtype diagnosis than state-of-the-art methods, but also have a high authenticity and good interpretability.
Collapse
|
4
|
Zhang Y, Li Y, Sun N, Tang H, Ye J, Liu Y, He Q, Fu Y, Zhu H, Jiang C, Xu J. NETosis is critical in patients with severe community-acquired pneumonia. Front Immunol 2022; 13:1051140. [PMID: 36466920 PMCID: PMC9709478 DOI: 10.3389/fimmu.2022.1051140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2023] Open
Abstract
Pneumonia is the fourth leading cause of death globally, and the reason for the high mortality rate of patients with severe community-acquired pneumonia (SCAP) remains elusive. Corticosteroid treatment reduces mortality in adults with SCAP but can cause numerous adverse events. Therefore, novel therapeutic targets need to be explored and new adjunctive immune drugs are urgently required. We analyzed the transcriptome data of peripheral blood leukocytes from patients with SCAP and healthy controls from three perspectives: differentially expressed genes, predicted functions of differentially expressed long non-coding RNAs, and transcriptional read-through. We discovered that the NETosis pathway was top-ranked in patients with SCAP caused by diverse kinds of pathogens. This provides a potential therapeutic strategy for treating patients. Furthermore, we calculated the correlation between the expression of genes involved in NETosis and the ratio of arterial oxygen partial pressure to fractional inspired oxygen. We identified four novel potential therapeutic targets for NETosis in patients with SCAP, including H4C15, H3-5, DNASE1, and PRKCB. In addition, a higher occurrence of transcriptional read-through is associated with a worse outcome in patients with SCAP, which probably can explain the high mortality rate of patients with SCAP.
Collapse
Affiliation(s)
- Yiming Zhang
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yan Li
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Na Sun
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hanqi Tang
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jun Ye
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yang Liu
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Quan He
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yangyang Fu
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Huadong Zhu
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Chengyu Jiang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jun Xu
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Weber D, Ibn-Salem J, Sorn P, Suchan M, Holtsträter C, Lahrmann U, Vogler I, Schmoldt K, Lang F, Schrörs B, Löwer M, Sahin U. Accurate detection of tumor-specific gene fusions reveals strongly immunogenic personal neo-antigens. Nat Biotechnol 2022; 40:1276-1284. [PMID: 35379963 PMCID: PMC7613288 DOI: 10.1038/s41587-022-01247-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/02/2022] [Indexed: 02/03/2023]
Abstract
Cancer-associated gene fusions are a potential source for highly immunogenic neoantigens, but the lack of computational tools for accurate, sensitive identification of personal gene fusions has limited their targeting in personalized cancer immunotherapy. Here we present EasyFuse, a machine learning computational pipeline for detecting cancer-specific gene fusions in transcriptome data obtained from human cancer samples. EasyFuse predicts personal gene fusions with high precision and sensitivity, outperforming previously described tools. By testing immunogenicity with autologous blood lymphocytes from patients with cancer, we detected pre-established CD4+ and CD8+ T cell responses for 10 of 21 (48%) and for 1 of 30 (3%) identified gene fusions, respectively. The high frequency of T cell responses detected in patients with cancer supports the relevance of individual gene fusions as neoantigens that might be targeted in personalized immunotherapies, especially for tumors with low mutation burden.
Collapse
Affiliation(s)
- D Weber
- TRON − Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - J Ibn-Salem
- TRON − Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - P Sorn
- TRON − Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - M Suchan
- TRON − Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - C Holtsträter
- TRON − Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | | | | | | | - F Lang
- TRON − Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - B Schrörs
- TRON − Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - M Löwer
- TRON − Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - U Sahin
- TRON − Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz, Germany,BioNTech SE, Mainz, Germany,Johannes Gutenberg University Mainz, Mainz, Germany,corresponding author:
| |
Collapse
|
6
|
López-Torres CD, Torres-Mena JE, Castro-Gil MP, Villa-Treviño S, Arellanes-Robledo J, Del Pozo-Yauner L, Pérez-Carreón JI. Downregulation of Indolethylamine N-methyltransferase is an early event in the rat hepatocarcinogenesis and is associated with poor prognosis in hepatocellular carcinoma patients. J Gene Med 2022; 24:e3439. [PMID: 35816441 DOI: 10.1002/jgm.3439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/25/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers worldwide, often preceded by cirrhosis and usually diagnosed at advanced stages; therefore, identifying molecular changes at early stages is an attractive strategy for detection and timely treatment. Here, we investigated the progressive transcriptomic changes during experimental hepatocarcinogenesis to identify novel early tumor markers in an HCC model induced by chronic administration of sublethal doses of diethylnitrosamine. An analysis of differentially expressed genes showed that four processes associated with oxidation-reduction and detoxification were significantly overrepresented during hepatocarcinogenesis progression, of which the Nuclear Factor, Erythroid 2 Like 2 (NRF2) pathway showed several dysregulated genes. Interestingly, we also identified 91 genes dysregulated at early HCC stages, but the expression of the indolethylamine N-methyltransferase gene (Inmt), as well as the level of its encoding protein, were strongly downregulated. INMT was increased in perivenular hepatocytes of normal livers but decreased in livers of experimental HCC. Furthermore, a gene expression and survival analysis performed using data from the liver hepatocellular carcinoma project of The Cancer Genome Atlas Program revealed that INMT is also significantly downregulated in human HCC and is associated with poor overall survival. In conclusion, by performing a transcriptome analysis of the HCC progression, we identified that INMT is early downregulated in the rat hepatocarcinogenesis and is associated with poor prognosis in human HCC, suggesting that INMT downregulation may be a promising prognostic marker for HCC in high-risk populations.
Collapse
Affiliation(s)
- Carlos David López-Torres
- Laboratorio de Enfermedades Hepáticas. Instituto Nacional de Medicina Genómica. Ciudad de México, México
| | | | - María Paulette Castro-Gil
- Laboratorio de Enfermedades Hepáticas. Instituto Nacional de Medicina Genómica. Ciudad de México, México
| | - Saúl Villa-Treviño
- Departamento de Biología Celular. Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional. Ciudad de México, México
| | - Jaime Arellanes-Robledo
- Laboratorio de Enfermedades Hepáticas. Instituto Nacional de Medicina Genómica. Ciudad de México, México.,Dirección de Cátedras. Consejo Nacional de Ciencia y Tecnología. Ciudad de México, México
| | - Luis Del Pozo-Yauner
- Department of Pathology, College of Medicine, University of South Alabama. Alabama, USA
| | - Julio Isael Pérez-Carreón
- Laboratorio de Enfermedades Hepáticas. Instituto Nacional de Medicina Genómica. Ciudad de México, México
| |
Collapse
|
7
|
Ma J, Du R, Huang Y, Zhong W, Gui H, Mao C, Song X, Lu J. Expression, Prognosis and Gene Regulation Network of NFAT Transcription Factors in Non-Small Cell Lung Cancer. Pathol Oncol Res 2021; 27:529240. [PMID: 34257525 PMCID: PMC8262184 DOI: 10.3389/pore.2021.529240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/26/2021] [Indexed: 12/09/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide. The nuclear factor of activated T cells (NFAT) family is implicated in tumorigenesis and progression in various types of cancer. However, little is known about their expression patterns, distinct prognostic values, and potential regulatory networks in NSCLC. In this study, we comprehensively analyzed the distinct expression and prognostic value of NFATs in NSCLC through various large databases, including the Oncomine, UCSC Xena Browser, UALCAN databases, Kaplan–Meier Plotter, cBioPortal, and Enrichr. In lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), NFAT1/2/4/5 mRNA expression levels were significantly decreased and NFAT3 mRNA expression level was significantly increased. The cBioPortal database analysis showed that the mRNA dysregulation was one of the single most important factors for NFAT alteration in LUAD and LUSC and that both LUAD and LUSC cases with the alterations in the mRNA expression of NFATs had significantly better overall survival (OS). High expression levels of NFAT1/2/4/5 were significantly associated with better OS in LUAD, whereas high NFAT3 expression led to a worse OS. Overexpression of NFAT1/2 predicted better OS in LUSC, whereas high NFAT5 expression led to a worse OS. The networks for NFATs and the 50 most frequently altered neighbor genes in LUAD and LUSC were also constructed. NFATs and genes significantly associated with NFAT mRNA expression in LUAD and LUSC were significantly enriched in the cGMP-dependent protein kinase and Wnt signaling pathways. These results showed that the NFAT family members displayed varying degrees of abnormal expressions, suggesting that NFATs may be therapeutic targets for patients with NSCLC. Aberrant expression of NFATs was found to be associated with OS in the patients with NSCLC; among NFATs, NFAT3/4 may be new biomarkers for the prognosis of LUAD. However, further studies are required to validate our findings.
Collapse
Affiliation(s)
- Jin Ma
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, China
| | - Rao Du
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, China
| | - Yan Huang
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, China
| | - Wen Zhong
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, China
| | - Huan Gui
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, China
| | - Chenmei Mao
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, China
| | - Xiudao Song
- Clinical Pharmaceutical Laboratory of Traditional Chinese Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Jun Lu
- Department of Haematology, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
8
|
Maspero D, Dassano A, Pintarelli G, Noci S, De Cecco L, Incarbone M, Tosi D, Santambrogio L, Dragani TA, Colombo F. Read-through transcripts in lung: germline genetic regulation and correlation with the expression of other genes. Carcinogenesis 2021; 41:918-926. [PMID: 32157280 DOI: 10.1093/carcin/bgaa020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 01/24/2020] [Accepted: 03/06/2020] [Indexed: 11/14/2022] Open
Abstract
Transcripts originating from the transcriptional read through of two adjacent, similarly oriented genes have been identified in normal and neoplastic tissues, but their functional role and the mechanisms that regulate their expression are mostly unknown. Here, we investigated whether the expression of read-through transcripts previously identified in the non-involved lung tissue of lung adenocarcinoma patients was genetically regulated. Data on genome-wide single nucleotide variant genotypes and expression levels of 10 read-through transcripts in 201 samples of lung tissue were combined to identify expression quantitative trait loci (eQTLs). Then, to identify genes whose expression levels correlated with the 10 read-through transcripts, we used whole transcriptome profiles available for 154 patients. For 8 read-though transcripts, we identified 60 eQTLs (false discovery rate <0.05), including 17 cis-eQTLs and 43 trans-eQTLs. These eQTLs did not maintain their behavior on the 'parental' genes involved in the read-through transcriptional event. The expression levels of 7 read-through transcripts were found to correlate with the expression of other genes: CHIA-PIFO and CTSC-RAB38 correlated with CHIA and RAB38, respectively, while 5 other read-through transcripts correlated with 43 unique non-parental transcripts; thus offering indications about the molecular processes in which these chimeric transcripts may be involved. We confirmed 9 eQTLs (for 4 transcripts) in the non-involved lung tissue from an independent series of 188 lung adenocarcinoma patients. Therefore, this study indicates that the expression of four read-through transcripts in normal lung tissue is under germline genetic regulation, and that this regulation is independent of that of the genes involved in the read-through event.
Collapse
Affiliation(s)
- Davide Maspero
- Genetic Epidemiology and Pharmacogenomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Informatics, Systems and Communication, University of Milan-Bicocca, Milan, Italy
| | - Alice Dassano
- Genetic Epidemiology and Pharmacogenomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giulia Pintarelli
- Genetic Epidemiology and Pharmacogenomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Noci
- Genetic Epidemiology and Pharmacogenomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Loris De Cecco
- Platform of Integrated Biology, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Matteo Incarbone
- Department of Surgery, IRCCS Multimedica, Sesto S. Giovanni, Milan, Italy
| | - Davide Tosi
- Department of Surgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Luigi Santambrogio
- Department of Surgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Tommaso A Dragani
- Genetic Epidemiology and Pharmacogenomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Colombo
- Genetic Epidemiology and Pharmacogenomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
9
|
Vidal AF. Read-through circular RNAs reveal the plasticity of RNA processing mechanisms in human cells. RNA Biol 2020; 17:1823-1826. [PMID: 32783578 PMCID: PMC7714478 DOI: 10.1080/15476286.2020.1805233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 01/22/2023] Open
Abstract
In the human genome, there are several genes whose primary transcripts are both canonically and non-canonically spliced to generate mRNAs and RNA circles, respectively. These RNA circles are a novel class of long non-coding RNAs that became known as circular RNAs (circRNAs). Recently, a new type of circRNA was discovered and called read-through circRNAs (rt-circRNAs). They are hybrid circles that include coding exons from two adjacent and similarly oriented genes. The function of rt-circRNAs, as well as the impact of read-through transcription in our transcriptome, remains to be elucidated. Although we have just begun to scratch it, here I discussed some insights that these fascinating circRNAs are already giving us about the plasticity of RNA processing in our cells.
Collapse
Affiliation(s)
- Amanda F. Vidal
- Laboratory of Human and Medical Genetics, Federal University of Pará, Belém, Brazil
- Graduate Program of Genetics and Molecular Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|
10
|
Yao J, Xue X, Qu D, Westphalen CB, Ge Y, Zhang L, Li M, Gao T, Chandrakesan P, Vega KJ, Peng J, An G, Weygant N. Reverse engineering a predictive signature characterized by proliferation, DNA damage, and immune escape from stage I lung adenocarcinoma recurrence. Acta Biochim Biophys Sin (Shanghai) 2020; 52:638-653. [PMID: 32395755 DOI: 10.1093/abbs/gmaa036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/14/2020] [Indexed: 12/24/2022] Open
Abstract
Identifying early-stage cancer patients at risk for progression is a major goal of biomarker research. This report describes a novel 19-gene signature (19-GCS) that predicts stage I lung adenocarcinoma (LAC) recurrence and response to therapy and performs comparably in pancreatic adenocarcinoma (PAC), which shares LAC molecular traits. Kaplan-Meier, Cox regression, and cross-validation analyses were used to build the signature from training, test, and validation sets comprising 831 stage I LAC transcriptomes from multiple independent data sets. A statistical analysis was performed using the R language. Pathway and gene set enrichment were used to identify underlying mechanisms. 19-GCS strongly predicts overall survival and recurrence-free survival in stage I LAC (P=0.002 and P<0.001, respectively) and in stage I-II PAC (P<0.0001 and P<0.0005, respectively). A multivariate cox regression analysis demonstrated the independence of 19-GCS from significant clinical factors. Pathway analyses revealed that 19-GCS high-risk LAC and PAC tumors are characterized by increased proliferation, enhanced stemness, DNA repair deficiency, and compromised MHC class I and II antigen presentation along with decreased immune infiltration. Importantly, high-risk LAC patients do not appear to benefit from adjuvant cisplatin while PAC patients derive additional benefit from FOLFIRINOX compared with gemcitabine-based regimens. When validated prospectively, this proof-of-concept biomarker may contribute to tailoring treatment, recurrence reduction, and survival improvements in early-stage lung and pancreatic cancers.
Collapse
Affiliation(s)
- Jiannan Yao
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xinying Xue
- Department of Respiratory and Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Dongfeng Qu
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, 73103, OK, USA
- Stephenson Cancer Center, Oklahoma City, 73104, OK, USA
| | - C Benedikt Westphalen
- Comprehensive Cancer Center Munich & Department of Medicine III, Ludwig Maximilian University of Munich, 81377, Munich, Germany
| | - Yang Ge
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Liyang Zhang
- Xiangya Hospital, Central South University, Changsha 410008, China
| | - Manyu Li
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Tianbo Gao
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Parthasarathy Chandrakesan
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, 73103, OK, USA
- Stephenson Cancer Center, Oklahoma City, 73104, OK, USA
| | - Kenneth J Vega
- Division of Gastroenterology and Hepatology, Augusta University, Augusta, 30912, GA, USA
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fuzhou 350122, China
| | - Guangyu An
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Nathaniel Weygant
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fuzhou 350122, China
| |
Collapse
|
11
|
Barresi V, Cosentini I, Scuderi C, Napoli S, Di Bella V, Spampinato G, Condorelli DF. Fusion Transcripts of Adjacent Genes: New Insights into the World of Human Complex Transcripts in Cancer. Int J Mol Sci 2019; 20:ijms20215252. [PMID: 31652751 PMCID: PMC6862657 DOI: 10.3390/ijms20215252] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 12/12/2022] Open
Abstract
The awareness of genome complexity brought a radical approach to the study of transcriptome, opening eyes to single RNAs generated from two or more adjacent genes according to the present consensus. This kind of transcript was thought to originate only from chromosomal rearrangements, but the discovery of readthrough transcription opens the doors to a new world of fusion RNAs. In the last years many possible intergenic cis-splicing mechanisms have been proposed, unveiling the origins of transcripts that contain some exons of both the upstream and downstream genes. In some cases, alternative mechanisms, such as trans-splicing and transcriptional slippage, have been proposed. Five databases, containing validated and predicted Fusion Transcripts of Adjacent Genes (FuTAGs), are available for the scientific community. A comparative analysis revealed that two of them contain the majority of the results. A complete analysis of the more widely characterized FuTAGs is provided in this review, including their expression pattern in normal tissues and in cancer. Gene structure, intergenic splicing patterns and exon junction sequences have been determined and here reported for well-characterized FuTAGs. The available functional data and the possible roles in cancer progression are discussed.
Collapse
Affiliation(s)
- Vincenza Barresi
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy.
| | - Ilaria Cosentini
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy.
| | - Chiara Scuderi
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy.
| | - Salvatore Napoli
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy.
| | - Virginia Di Bella
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy.
| | - Giorgia Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy.
| | - Daniele Filippo Condorelli
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy.
| |
Collapse
|
12
|
Tuna M, Amos CI, Mills GB. Molecular mechanisms and pathobiology of oncogenic fusion transcripts in epithelial tumors. Oncotarget 2019; 10:2095-2111. [PMID: 31007851 PMCID: PMC6459343 DOI: 10.18632/oncotarget.26777] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/22/2019] [Indexed: 02/07/2023] Open
Abstract
Recurrent fusion transcripts, which are one of the characteristic hallmarks of cancer, arise either from chromosomal rearrangements or from transcriptional errors in splicing. DNA rearrangements include intrachromosomal or interchromosomal translocation, tandem duplication, deletion, inversion, or result from chromothripsis, which causes complex rearrangements. In addition, fusion proteins can be created through transcriptional read-through. Fusion genes can be transcribed to fusion transcripts and translated to chimeric proteins, with many having demonstrated transforming activities through multiple mechanisms in cells. Fusion proteins represent novel therapeutic targets and diagnostic biomarkers of diagnosis, disease status, or progression. This review focuses on the mechanisms underlying the formation of oncogenic fusion genes and transcripts and their impact on the pathobiology of epithelial tumors.
Collapse
Affiliation(s)
- Musaffe Tuna
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Christopher I. Amos
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Gordon B. Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Cell, Developmental and Cancer Biology, School of Medicine, Oregon Health Science University, Portland, OR, USA
- Precision Oncology, Knight Cancer Institute, Portland, OR, USA
| |
Collapse
|
13
|
Choi ES, Lee H, Lee CH, Goh SH. Overexpression of KLHL23 protein from read-through transcription of PHOSPHO2-KLHL23 in gastric cancer increases cell proliferation. FEBS Open Bio 2016; 6:1155-1164. [PMID: 27833855 PMCID: PMC5095152 DOI: 10.1002/2211-5463.12136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/20/2016] [Accepted: 09/28/2016] [Indexed: 01/05/2023] Open
Abstract
Gene fusion, as a prototypical pathognomonic mutation, contributes to genome complexity, and the cis‐transcription‐induced gene fusions generated by read‐through transcription of adjacent genes have been found to be important for tumor development. We screened read‐through transcription events from stomach adenocarcinoma RNA‐seq data and selected three candidates PHOSPHO2‐KLHL23, RPL17‐C18orf32, and PRR5‐ARHGAP8, to assess their biological role in gastric cancer. The expression of all three read‐through fusion transcripts was confirmed in gastric cancer cell lines and paired normal/tumor gastric cancer tissues by real‐time quantitative reverse transcription polymerase chain reaction and their expression was found to be significantly higher in the tumor (P < 0.05; n = 75). The correlation between the expression level and clinicopathological information was statistically analyzed. The level of the PHOSPHO2‐KLHL23 read‐through fusion transcript correlated with the Lauren classification and was significantly associated with the presence of perineural invasion. Overexpression of KLHL23 from PHOSPHO2‐KLHL23 read‐through transcript led to a significant increase in cell proliferation and resistance to anticancer drug treatment. Silencing of KLHL23 expression decreased cyclin D1 levels. The expression of KLHL23 from prevalent read‐through transcripts of PHOSPHO2‐KLHL23 in gastric cancer may undermine the efficacy of anticancer drug treatment.
Collapse
Affiliation(s)
- Eun-Seok Choi
- Precision Medicine Branch Research Institute National Cancer Center Goyang Gyeonggi-do Korea; Department of Environmental Medical Biology Institute of Tropical Medicine Yonsei University College of Medicine Seoul Korea
| | - Hanna Lee
- Precision Medicine Branch Research Institute National Cancer Center Goyang Gyeonggi-do Korea
| | - Chang-Hun Lee
- Cancer Cell and Molecular Biology Branch Research Institute National Cancer Center Goyang Gyeonggi-do Korea
| | - Sung-Ho Goh
- Precision Medicine Branch Research Institute National Cancer Center Goyang Gyeonggi-do Korea
| |
Collapse
|