1
|
Lunger C, Shen Z, Holcombe H, Mannion AJ, Dzink-Fox J, Kurnick S, Feng Y, Muthupalani S, Carrasco SE, Wilson KT, Peek RM, Piazuelo MB, Morgan DR, Armijo AL, Mammoliti M, Wang TC, Fox JG. Gastric coinfection with thiopeptide-positive Cutibacterium acnes decreases FOXM1 and pro-inflammatory biomarker expression in a murine model of Helicobacter pylori-induced gastric cancer. Microbiol Spectr 2024; 12:e0345023. [PMID: 38014984 PMCID: PMC10783005 DOI: 10.1128/spectrum.03450-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/19/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE H. pylori infects half of the world population and is the leading cause of gastric cancer. We previously demonstrated that gastric cancer risk is associated with gastric microbiota. Specifically, gastric urease-positive Staphylococcus epidermidis and Streptococcus salivarius had contrasting effects on H. pylori-associated gastric pathology and immune responses in germ-free INS-GAS mice. As gastritis progresses to gastric cancer, the oncogenic transcription factor Foxm1 becomes increasingly expressed. In this study, we evaluated the gastric commensal C. acnes, certain strains of which produce thiopeptides that directly inhibit FOXM1. Thiopeptide-positive C. acnes was isolated from Nicaraguan patient gastric biopsies and inoculated into germ-free INS-GAS mice with H. pylori. We, therefore, asked whether coinfection with C. acnes expressing thiopeptide and H. pylori would decrease gastric Foxm1 expression and pro-inflammatory cytokine mRNA and protein levels. Our study supports the growing literature that specific non-H. pylori gastric bacteria affect inflammatory and cancer biomarkers in H. pylori pathogenesis.
Collapse
Affiliation(s)
- Courtney Lunger
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Zeli Shen
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Hilda Holcombe
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Anthony J. Mannion
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - JoAnn Dzink-Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Susanna Kurnick
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Yan Feng
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sureshkumar Muthupalani
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sebastian E. Carrasco
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Keith T. Wilson
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Richard M. Peek
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M. Blanca Piazuelo
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Douglas R. Morgan
- Division of Gastroenterology and Hepatology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Amanda L. Armijo
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Melissa Mammoliti
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Timothy C. Wang
- Division of Gastroenterology and Irvine Cancer Research Center, Columbia University, New York, New York, USA
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Cristóbal I, Santos A, Rojo F, García-Foncillas J. The SMAD3-induced effects in colorectal cancer are orchestrated by a complex network of long noncoding RNAs. J Cell Physiol 2023; 238:3-4. [PMID: 35023150 DOI: 10.1002/jcp.30681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 12/08/2021] [Accepted: 01/03/2022] [Indexed: 02/02/2023]
Affiliation(s)
- Ion Cristóbal
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, IIS-Fundación Jimenez Díaz-UAM, Madrid, Spain.,Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jimenez Díaz-UAM, Madrid, Spain
| | - Andrea Santos
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, IIS-Fundación Jimenez Díaz-UAM, Madrid, Spain.,Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jimenez Díaz-UAM, Madrid, Spain
| | - Federico Rojo
- Pathology Department, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain
| | - Jesús García-Foncillas
- Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jimenez Díaz-UAM, Madrid, Spain.,Medical Oncology Department, University Hospital "Fundacion Jimenez Diaz", Madrid, Spain
| |
Collapse
|
3
|
Zangouei AS, Tolue Ghasaban F, Dalili A, Akhlaghipour I, Moghbeli M. MicroRNAs as the pivotal regulators of Forkhead box protein family during gastrointestinal tumor progression and metastasis. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Alshaer W, Hasan H, Albakri KA, Alkhafaji E, Issa NN, Al-Holy MA, Abderrahman SM, Abdallah AM, Mohamud R. Immunomodulatory Properties of Human Breast Milk: MicroRNA Contents and Potential Epigenetic Effects. Biomedicines 2022; 10:1219. [PMID: 35740242 PMCID: PMC9219990 DOI: 10.3390/biomedicines10061219] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Infants who are exclusively breastfed in the first six months of age receive adequate nutrients, achieving optimal immune protection and growth. In addition to the known nutritional components of human breast milk (HBM), i.e., water, carbohydrates, fats and proteins, it is also a rich source of microRNAs, which impact epigenetic mechanisms. This comprehensive work presents an up-to-date overview of the immunomodulatory constituents of HBM, highlighting its content of circulating microRNAs. The epigenetic effects of HBM are discussed, especially those regulated by miRNAs. HBM contains more than 1400 microRNAs. The majority of these microRNAs originate from the lactating gland and are based on the remodeling of cells in the gland during breastfeeding. These miRNAs can affect epigenetic patterns by several mechanisms, including DNA methylation, histone modifications and RNA regulation, which could ultimately result in alterations in gene expressions. Therefore, the unique microRNA profile of HBM, including exosomal microRNAs, is implicated in the regulation of the genes responsible for a variety of immunological and physiological functions, such as FTO, INS, IGF1, NRF2, GLUT1 and FOXP3 genes. Hence, studying the HBM miRNA composition is important for improving the nutritional approaches for pregnancy and infant's early life and preventing diseases that could occur in the future. Interestingly, the composition of miRNAs in HBM is affected by multiple factors, including diet, environmental and genetic factors.
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman 11942, Jordan;
| | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Khaled A. Albakri
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Enas Alkhafaji
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Nada N. Issa
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Murad A. Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Salim M. Abderrahman
- Department of Biology and Biotechnology, Faculty of Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| |
Collapse
|
5
|
Krasniqi E, Sacconi A, Marinelli D, Pizzuti L, Mazzotta M, Sergi D, Capomolla E, Donzelli S, Carosi M, Bagnato A, Gamucci T, Tomao S, Natoli C, Marchetti P, Grassadonia A, Tinari N, De Tursi M, Vizza E, Ciliberto G, Landi L, Cappuzzo F, Barba M, Blandino G, Vici P. MicroRNA-based signatures impacting clinical course and biology of ovarian cancer: a miRNOmics study. Biomark Res 2021; 9:57. [PMID: 34256855 PMCID: PMC8276429 DOI: 10.1186/s40364-021-00289-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
Background In Western countries, ovarian cancer (OC) still represents the leading cause of gynecological cancer-related deaths, despite the remarkable gains in therapeutical options. Novel biomarkers of early diagnosis, prognosis definition and prediction of treatment outcomes are of pivotal importance. Prior studies have shown the potentials of micro-ribonucleic acids (miRNAs) as biomarkers for OC and other cancers. Methods We focused on the prognostic and/or predictive potential of miRNAs in OC by conducting a comprehensive array profiling of miRNA expression levels in ovarian tissue samples from 17 non-neoplastic controls, and 60 tumor samples from OC patients treated at the Regina Elena National Cancer Institute (IRE). A set of 54 miRNAs with differential expression in tumor versus normal samples (T/N-deregulated) was identified in the IRE cohort and validated against data from the Cancer Genoma Atlas (TCGA) related to 563 OC patients and 8 non-neoplastic controls. The prognostic/predictive role of the selected 54 biomarkers was tested in reference to survival endpoints and platinum resistance (P-res). Results In the IRE cohort, downregulation of the 2 miRNA-signature including miR-99a-5p and miR-320a held a negative prognostic relevance, while upregulation of miR-224-5p was predictive of less favorable event free survival (EFS) and P-res. Data from the TCGA showed that downregulation of 5 miRNAs, i.e., miR-150, miR-30d, miR-342, miR-424, and miR-502, was associated with more favorable EFS and overall survival outcomes, while miR-200a upregulation was predictive of P-res. The 9 miRNAs globally identified were all included into a single biologic signature, which was tested in enrichment analysis using predicted/validated miRNA target genes, followed by network representation of the miRNA-mRNA interactions. Conclusions Specific dysregulated microRNA sets in tumor tissue showed predictive/prognostic value in OC, and resulted in a promising biological signature for this disease. Supplementary Information The online version contains supplementary material available at 10.1186/s40364-021-00289-6.
Collapse
Affiliation(s)
- E Krasniqi
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - A Sacconi
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - D Marinelli
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Medical Oncology Unit, Sapienza University, Via di Grottarossa 1035/1039, 00189, Rome, Italy
| | - L Pizzuti
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - M Mazzotta
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - D Sergi
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - E Capomolla
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - S Donzelli
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - M Carosi
- Pathology Department IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - A Bagnato
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - T Gamucci
- Medical Oncology, Sandro Pertini Hospital, Via dei Monti Tiburtini 385, 00157, Rome, Italy
| | - S Tomao
- Department of Radiological Oncological and Pathological Sciences, Division of Medical Oncology A, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - C Natoli
- Department of Medical, Oral & Biotechnological Sciences, University G. D'Annunzio, Via dei Vestini, 31, 66100, Chieti, Italy
| | - P Marchetti
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Medical Oncology Unit, Sapienza University, Via di Grottarossa 1035/1039, 00189, Rome, Italy
| | - A Grassadonia
- Department of Medical, Oral & Biotechnological Sciences, University G. D'Annunzio, Via dei Vestini, 31, 66100, Chieti, Italy
| | - N Tinari
- Department of Medical, Oral & Biotechnological Sciences, University G. D'Annunzio, Via dei Vestini, 31, 66100, Chieti, Italy
| | - M De Tursi
- Department of Medical, Oral & Biotechnological Sciences, University G. D'Annunzio, Via dei Vestini, 31, 66100, Chieti, Italy
| | - E Vizza
- Department of Oncological Surgery, Gynecologic Oncologic Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - G Ciliberto
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - L Landi
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - F Cappuzzo
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - M Barba
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - G Blandino
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - P Vici
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| |
Collapse
|
6
|
Jingyang Z, Jinhui C, Lu X, Weizhong Y, Yunjiu L, Haihong W, Wuyuan Z. Mir-320b Inhibits Pancreatic Cancer Cell Proliferation by Targeting FOXM1. Curr Pharm Biotechnol 2021; 22:1106-1113. [PMID: 32942974 DOI: 10.2174/1389201021999200917144704] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/20/2020] [Accepted: 08/08/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Pancreatic Ductal Adenocarcinoma (PDAC) is the most common and deadly cancer. Surgical resection is the only possible cure for pancreatic cancer but often has a poor prognosis, and the role of adjuvant therapy is urgently explored. METHODS MicroRNAs (miRNAs) play a very important role in tumorigenesis by regulating the target genes. In this study, we identified miR-320b lower-expressed in human pancreatic cancer tissues but relatively higher-expressed in the adjacent non-tumor tissues. RESULTS Consistently, the expression of miR-320b in different pancreatic cancer cell lines was significantly lower than the normal pancreatic cells. In order to identify the effects of miR-320b on cell growth, we overexpressed miR-320b in PANC-1 and FG pancreatic cancer cell lines, CCK8 and BrdU incorporation assay results showed that miR-320b inhibited cell proliferation. DISCUSSION We next predicted miR-320b targeted FOXM1 (Forkhead box protein M1) and identified the negative relationship between miR-320b and FOXM1. We also demonstrated that elevated miR- 320b expression inhibited tumor growth in vivo. CONCLUSION All of these results showed that miR-320b suppressed pancreatic cancer cell proliferation by targeting FOXM1, which might provide a new diagnostic marker for pancreatic cancer.
Collapse
Affiliation(s)
- Zhou Jingyang
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, 330027, China
| | - Che Jinhui
- The Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu 221005, China
| | - Xu Lu
- The Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu 221005, China
| | - Yang Weizhong
- The Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu 221005, China
| | - Li Yunjiu
- The Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu 221005, China
| | - Wang Haihong
- The Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu 221005, China
| | - Zhou Wuyuan
- The Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu 221005, China
| |
Collapse
|
7
|
Liang Y, Li S, Tang L. MicroRNA 320, an Anti-Oncogene Target miRNA for Cancer Therapy. Biomedicines 2021; 9:biomedicines9060591. [PMID: 34071109 PMCID: PMC8224659 DOI: 10.3390/biomedicines9060591] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs are a set of highly conserved non-coding RNAs that control gene expression at the post-transcriptional/translational levels by binding to the 3′-UTR of diverse target genes. Increasing evidence indicates that miRNAs not only play a vital role in many biological processes, but they are also frequently deregulated in pathological conditions, including cancer. The miR-320 family is one of many tumor suppressor families and is composed of five members, which has been demonstrated to be related to the repression of epithelial-mesenchymal transition (EMT) inhibition, cell proliferation, and apoptosis. Moreover, this family has been shown to regulate drug resistance, and act as a potential biomarker for the diagnosis, prognosis, and prediction of cancer. In this review, we summarized recent research with reference to the tumor suppressor function of miR-320 and the regulation mechanisms of miR-320 expression. The collected evidence shown here supports that miR-320 may act as a novel biomarker for cancer prognosis and therapeutic response to cancer treatment.
Collapse
Affiliation(s)
- Yuanyuan Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China;
| | - Shun Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu 610500, China
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu 610500, China
- Correspondence: (S.L.); (L.T.)
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China;
- Correspondence: (S.L.); (L.T.)
| |
Collapse
|
8
|
Arzi L, Hoshyar R. Saffron anti-metastatic properties, ancient spice novel application. Crit Rev Food Sci Nutr 2021; 62:3939-3950. [PMID: 33653190 DOI: 10.1080/10408398.2020.1871320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Crocus sativus L. (saffron), was applied as a spice, food colorant and medicine since four millennia ago and has been used as a remedy for various maladies. In the last three decades, the anti-primary tumor properties of saffron and its main carotenoids, crocin and crocetin, have been well explored. Despite the fact that metastasis is the leading cause of death in cancer patients, the anti-metastatic potential of saffron and its carotenoids has been surveyed only this decade. This review aims to provide an unprecedented overview of the anti-metastatic effects of saffron, crocin and crocetin, and the mechanisms underlying these effects. Investigations on various cancers demonstrated the anti-migratory, anti-invasion, anti-angiogenic potentials of saffron and its carotenoids, as well as their effects suppressing cell-ECM adhesion and enhancing cell-cell attachment. Saffron and its carotenoids exert their impact through different mechanisms such as reduction of CD34 and suppression of Wnt/β-catenin, Ras/ERK, P38, DCLK1, EMT, matrix metalloproteinases and urokinases. Crocin displayed more effective anti-metastatic potency, in comparison with saffron extract and crocetin. The bioaccessibility/bioavailability, nontoxicity on normal cells, confirmed anti-tumor efficiency and the recent evidence on the anti-metastatic potential of saffron and its carotenoids, recommends them as a propitious multipotent dietary agent and herbal medicine.
Collapse
Affiliation(s)
- Laleh Arzi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Reyhane Hoshyar
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
9
|
Zhang L, Chen H, He F, Zhang S, Li A, Zhang A, Zhang A. MicroRNA-320a Promotes Epithelial Ovarian Cancer Cell Proliferation and Invasion by Targeting RASSF8. Front Oncol 2021; 11:581932. [PMID: 33718138 PMCID: PMC7947674 DOI: 10.3389/fonc.2021.581932] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) play important roles in tumorigenesis by controlling target gene expression. With opposing roles as a tumor suppressor or oncogene, microRNA-320a (miR-320a) was found to participate in tumor genesis and progression and also identified as a potentially useful marker in cancer diagnosis, treatment, and prognosis. To better understand the role of miR-320a in ovarian cancer, we investigated miR-320a expression in epithelial ovarian cancer (EOC) specimens as well as EOC cell lines and analyzed correlations between miR-320a expression and processes associated with EOC progression. The miR-320a level in EOC specimens was found to be associated with ovarian cancer progression and infiltration. Through in vitro and in vivo studies, we found that miR-320a significantly promoted the proliferation, migration, and invasion of EOC cells, and we identified RASSF8 as a target gene of miR-320a that was downregulated in EOC tissues and cell lines. In vitro downregulation of RASSF8 promoted the growth, migration, and invasion of EOC cells. Together these findings indicate that RASSF8 is a direct target of miR-320a, through which miR-320a promotes the progression of EOC.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Obstetrics and Gynecology, Liaocheng People's Hospital, Liaocheng, China.,Shandong University, Jinan, China
| | - Huixiao Chen
- Department of Obstetrics and Gynecology, Liaocheng People's Hospital, Liaocheng, China
| | - Fengxi He
- Department of Obstetrics and Gynecology, Liaocheng People's Hospital, Liaocheng, China
| | - Shiqian Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Aihua Li
- Department of Obstetrics and Gynecology, Liaocheng People's Hospital, Liaocheng, China
| | - Aifeng Zhang
- Department of Obstetrics and Gynecology, Tongzhou Maternal and Child Health Hospital of Beijing, Beijing, China
| | - Anqi Zhang
- Department of Obstetrics and Gynecology, Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|
10
|
Pirlog R, Cismaru A, Nutu A, Berindan-Neagoe I. Field Cancerization in NSCLC: A New Perspective on MicroRNAs in Macrophage Polarization. Int J Mol Sci 2021; 22:ijms22020746. [PMID: 33451052 PMCID: PMC7828565 DOI: 10.3390/ijms22020746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is currently the first cause of cancer-related death. The major lung cancer subtype is non-small cell lung cancers (NSCLC), which accounts for approximatively 85% of cases. The major carcinogenic associated with lung cancer is tobacco smoke, which produces long-lasting and progressive damage to the respiratory tract. The progressive and diffuse alterations that occur in the respiratory tract of patients with cancer and premalignant lesions have been described as field cancerization. At the level of tumor cells, adjacent tumor microenvironment (TME) and cancerized field are taking place dynamic interactions through direct cell-to-cell communication or through extracellular vesicles. These molecular messages exchanged between tumor and nontumor cells are represented by proteins, noncoding RNAs (ncRNAs) and microRNAs (miRNAs). In this paper, we analyze the miRNA roles in the macrophage polarization at the level of TME and cancerized field in NSCLC. Identifying molecular players that can influence the phenotypic states at the level of malignant cells, tumor microenvironment and cancerized field can provide us new insights into tumor regulatory mechanisms that can be further modulated to restore the immunogenic capacity of the TME. This approach could revert alterations in the cancerized field and could enhance currently available therapy approaches.
Collapse
Affiliation(s)
- Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.P.); (A.C.); (A.N.)
- Department of Morphological Sciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andrei Cismaru
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.P.); (A.C.); (A.N.)
- Department of Functional Sciences, Immunology and Allergology, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.P.); (A.C.); (A.N.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.P.); (A.C.); (A.N.)
- The Functional Genomics Department, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-743-111-800
| |
Collapse
|
11
|
Reza AMMT, Yuan YG. microRNAs Mediated Regulation of the Ribosomal Proteins and its Consequences on the Global Translation of Proteins. Cells 2021; 10:110. [PMID: 33435549 PMCID: PMC7827472 DOI: 10.3390/cells10010110] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022] Open
Abstract
Ribosomal proteins (RPs) are mostly derived from the energy-consuming enzyme families such as ATP-dependent RNA helicases, AAA-ATPases, GTPases and kinases, and are important structural components of the ribosome, which is a supramolecular ribonucleoprotein complex, composed of Ribosomal RNA (rRNA) and RPs, coordinates the translation and synthesis of proteins with the help of transfer RNA (tRNA) and other factors. Not all RPs are indispensable; in other words, the ribosome could be functional and could continue the translation of proteins instead of lacking in some of the RPs. However, the lack of many RPs could result in severe defects in the biogenesis of ribosomes, which could directly influence the overall translation processes and global expression of the proteins leading to the emergence of different diseases including cancer. While microRNAs (miRNAs) are small non-coding RNAs and one of the potent regulators of the post-transcriptional gene expression, miRNAs regulate gene expression by targeting the 3' untranslated region and/or coding region of the messenger RNAs (mRNAs), and by interacting with the 5' untranslated region, and eventually finetune the expression of approximately one-third of all mammalian genes. Herein, we highlighted the significance of miRNAs mediated regulation of RPs coding mRNAs in the global protein translation.
Collapse
Affiliation(s)
- Abu Musa Md Talimur Reza
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Yu-Guo Yuan
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
12
|
Association of miR-21-5p, miR-122-5p, and miR-320a-3p with 90-Day Mortality in Cardiogenic Shock. Int J Mol Sci 2020; 21:ijms21217925. [PMID: 33114482 PMCID: PMC7662780 DOI: 10.3390/ijms21217925] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiogenic shock (CS) is a life-threatening emergency. New biomarkers are needed in order to detect patients at greater risk of adverse outcome. Our aim was to assess the characteristics of miR-21-5p, miR-122-5p, and miR-320a-3p in CS and evaluate the value of their expression levels in risk prediction. Circulating levels of miR-21-5p, miR-122-5p, and miR-320a-3p were measured from serial plasma samples of 179 patients during the first 5-10 days after detection of CS, derived from the CardShock study. Acute coronary syndrome was the most common cause (80%) of CS. Baseline (0 h) levels of miR-21-5p, miR-122-5p, and miR-320a-3p were all significantly elevated in nonsurvivors compared to survivors (p < 0.05 for all). Above median levels at 0h of each miRNA were each significantly associated with higher lactate and alanine aminotransferase levels and decreased glomerular filtration rates. After adjusting the multivariate regression analysis with established CS risk factors, miR-21-5p and miR-320a-3p levels above median at 0 h were independently associated with 90-day all-cause mortality (adjusted hazard ratio 1.8 (95% confidence interval 1.1-3.0), p = 0.018; adjusted hazard ratio 1.9 (95% confidence interval 1.2-3.2), p = 0.009, respectively). In conclusion, circulating plasma levels of miR-21-5p, miR-122-5p, and miR-320a-3p at baseline were all elevated in nonsurvivors of CS and associated with markers of hypoperfusion. Above median levels of miR-21-5p and miR-320a-3p at baseline appear to independently predict 90-day all-cause mortality. This indicates the potential of miRNAs as biomarkers for risk assessment in cardiogenic shock.
Collapse
|
13
|
P53-regulated miR-320a targets PDL1 and is downregulated in malignant mesothelioma. Cell Death Dis 2020; 11:748. [PMID: 32929059 PMCID: PMC7490273 DOI: 10.1038/s41419-020-02940-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer, related to asbestos exposure, which has a dismal prognosis. MPM diagnosis is late and often challenging, suggesting the need to identify more reliable molecular biomarkers. Here, we set out to identify differentially expressed miRNAs in epithelioid, biphasic, and sarcomatoid MPMs versus normal mesothelium and explored specific miRNA contribution to mesothelial tumorigenesis. We screened an LNA™-based miRNA-microrray with 14 formalin-fixed paraffin-embedded (FFPE) MPMs and 6 normal controls. Through real-time qRT-PCR we extended the analysis of a miRNA subset and further investigated miR-320a role through state-of-the-art techniques. We identified 16 upregulated and 32 downregulated miRNAs in MPMs versus normal tissue, including the previously identified potential biomarkers miR-21, miR-126, miR-143, miR-145. We showed in an extended series that miR-145, miR-10b, and miR-320a levels can discriminate tumor versus controls with high specificity and sensitivity. We focused on miR-320a because other family members were found downregulated in MPMs. However, stable miR-320a ectopic expression induced higher proliferation and migration ability, whereas miR-320a silencing reduced these processes, not supporting a classic tumor-suppressor role in MPM cell lines. Among putative targets, we found that miR-320a binds the 3'-UTR of the immune inhibitory receptor ligand PDL1 and, consistently, miR-320a modulation affects PDL1 levels in MPM cells. Finally, we showed that p53 over-expression induces the upregulation of miR-320a, along with miR-200a and miR-34a, both known to target PDL1, and reduces PDL1 levels in MPM cells. Our data suggest that PDL1 expression might be due to a defective p53-regulated miRNA response, which could contribute to MPM immune evasion or tumorigenesis through tumor-intrinsic roles.
Collapse
|
14
|
Zimta AA, Tigu AB, Braicu C, Stefan C, Ionescu C, Berindan-Neagoe I. An Emerging Class of Long Non-coding RNA With Oncogenic Role Arises From the snoRNA Host Genes. Front Oncol 2020; 10:389. [PMID: 32318335 PMCID: PMC7154078 DOI: 10.3389/fonc.2020.00389] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/04/2020] [Indexed: 12/24/2022] Open
Abstract
The small nucleolar RNA host genes (SNHGs) are a group of long non-coding RNAs, which are reported in many studies as being overexpressed in various cancers. With very few exceptions, the SNHGs (SNHG1, SNHG3, SNHG5, SNHG6, SNHG7, SNHG12, SNHG15, SNHG16, SNHG20) are recognized as inducing increased proliferation, cell cycle progression, invasion, and metastasis of cancer cells, which makes this class of transcripts a viable biomarker for cancer development and aggressiveness. Through our literature research, we also found that silencing of SNHGs through small interfering RNAs or short hairpin RNAs is very effective in both in vitro and in vivo experiments by lowering the aggressiveness of solid cancers. The knockdown of SNHG as a new cancer therapeutic option should be investigated more in the future.
Collapse
Affiliation(s)
- Alina-Andreea Zimta
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adrian Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Stefan
- African Organisation for Research and Training in Cancer, Cape Town, South Africa
| | - Calin Ionescu
- Surgical Department, Municipal Hospital, Cluj-Napoca, Romania
- Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. I. Chiricuta”, Cluj-Napoca, Romania
| |
Collapse
|
15
|
Wang Y, Yang J, Chen P, Song Y, An W, Zhang H, Butegeleqi B, Yan J. MicroRNA-320a inhibits invasion and metastasis in osteosarcoma by targeting cytoplasmic polyadenylation element-binding protein 1. Cancer Med 2020; 9:2833-2845. [PMID: 32064777 PMCID: PMC7163091 DOI: 10.1002/cam4.2919] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/07/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma is a primary malignant bone tumor, which affects children, adolescents, and young adults commonly. MicroRNAs (miRNAs) have been proved to be dysregulated in different cancers, including osteosarcoma. Although miR‐320a has been implicated in many types of malignancies, little is known about the role of miR‐320a in osteosarcoma. In this study, we show that the overexpression of miR‐320a or knockdown of cytoplasmic polyadenylation element‐binding protein 1 (CPEB1) inhibited osteosarcoma cell migration and invasion. miR‐320a downregulates CPEB1 expression by directly targeting the CPEB1 3′‐UTR. Furthermore, CPEB1 reintroduction reversed the antiproliferation, antimigration, and antiinvasion roles of miR‐320a, indicating that miR‐320a might function as a tumor suppressor in osteosarcoma through CPEB1. In conclusion, our study demonstrates that miR‐320a plays a critical role in osteosarcoma progression and may provide a potential therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Yanlong Wang
- Departments of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Jiyu Yang
- Departments of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Pangtao Chen
- Departments of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Yu Song
- Departments of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Weizheng An
- Departments of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Haoran Zhang
- Departments of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Butegeleqi Butegeleqi
- Departments of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Jinglong Yan
- Departments of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| |
Collapse
|
16
|
Chou LF, Chen CY, Yang WH, Chen CC, Chang JL, Leu YL, Liou MJ, Wang TH. Suppression of Hepatocellular Carcinoma Progression through FOXM1 and EMT Inhibition via Hydroxygenkwanin-Induced miR-320a Expression. Biomolecules 2019; 10:biom10010020. [PMID: 31877715 PMCID: PMC7022487 DOI: 10.3390/biom10010020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023] Open
Abstract
Daphne genkwa, a Chinese medicinal herb, is used frequently in Southeast Asian countries to treat diseases; the flavonoid hydroxygenkwanin (HGK) is extracted from its flower buds. The bioactivity of HGK, particularly as an anti-liver cancer agent, has not been explored. In this study, human hepatocellular carcinoma (HCC) cell lines and an animal xenograft model were employed to investigate both the activity of HGK against liver cancer and its cellular signaling mechanisms. HCC cells treated with HGK were subjected to cell function assays. Whole transcriptome sequencing was used to identify genes whose expression was influenced by HGK, and the flavonoid’s cancer suppression mechanisms were further investigated through gain- and loss-of-function assays. Finally, in vitro findings were tested in a mouse xenograft model. The data showed that HGK induced the expression of the microRNA miR-320a, which in turn inhibited the expression of the transcription factor ‘forkhead box protein M1’ (FOXM1) and downstream FOXM1-regulated proteins related to epithelial–mesenchymal transition, thereby leading to the suppression of liver cancer cell growth and invasion. Significant inhibition of tumor growth was also observed in HGK-treated mice. Hence, the present study demonstrated the activity of HGK against liver cancer and validated its potential use as a therapeutic agent.
Collapse
Affiliation(s)
- Li-Fang Chou
- Kidney Research Center, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan;
| | - Chi-Yuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan; (C.-Y.C.); (C.-C.C.)
- Graduate Institute of Health Industry Technology and Research Center for Industry of Human Ecology, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan 33303, Taiwan
| | - Wan-Hua Yang
- Department of Pathology and Laboratory Medicine Taipei Veterans General Hospital, Hsinchu Branch, Hsin-chu 31064, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsin-chu 30015, Taiwan
| | - Chin-Chuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan; (C.-Y.C.); (C.-C.C.)
- Graduate Institute of Natural Products, Chang Gung University, Tao-Yuan 33303, Taiwan;
| | - Junn-Liang Chang
- Department of Pathology and Laboratory Medicine, Taoyuan Armed Forces General Hospital, Tao-Yuan 32551, Taiwan;
- Biomedical Engineering Department, Ming Chuan University, Tao-Yuan 33348, Taiwan
| | - Yann-Lii Leu
- Graduate Institute of Natural Products, Chang Gung University, Tao-Yuan 33303, Taiwan;
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Tao-Yuan 33303, Taiwan
- Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan
| | - Miaw-Jene Liou
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan;
| | - Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan; (C.-Y.C.); (C.-C.C.)
- Graduate Institute of Health Industry Technology and Research Center for Industry of Human Ecology, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan 33303, Taiwan
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan
- Correspondence: ; Tel.: +886-3-3281200 (ext. 5412)
| |
Collapse
|
17
|
Yuan L, Ma T, Liu W, Chen Y, Yuan Q, Ye M, Yu L, Li J, Niu Y, Nan Y. LINC00994 promoted invasion and proliferation of gastric cancer cell via regulating miR-765-3p. Am J Transl Res 2019; 11:6641-6649. [PMID: 31737214 PMCID: PMC6834511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Emerging studies indicated that lncRNA is one crucial regulator in development and tumorigenesis. We firstly showed that LINC00994 was overexpressed in GC cells compare with GES-1. Compared to adjacent samples, the LINC00994 expression was increased in GC tissues by qRT-PCR assay. Furthermore, Elevated expression of LINC00994 induced GC cell invasion, proliferation and cycle. Luciferase reporter analysis indicated that ectopic miR-765-3p expression suppressed wild type LINC00994 luciferase activity, but not mutant LINC00994 in GC cells. Elevated expression of LINC00994 inhibited the miR-765-3p expression in GC cells. Compared to adjacent samples, the miR-765-3p expression was decreased in GC tissues by qRT-PCR assay. LINC00994 induced GC cell invasion and growth via modulating miR-765-3p. Thus, our data suggested an oncogenic role of LINC00994 in development of GC.
Collapse
Affiliation(s)
- Ling Yuan
- Pharmacy College of Ningxia Medical UniversityYinchuan 750004, China
- Ningxia Medical University Key Laboratory of Hui Ethnic Medicine Modernization Ministry of EducationYinchuan 750004, China
| | - Tingting Ma
- Pharmacy College of Ningxia Medical UniversityYinchuan 750004, China
| | - Wenjing Liu
- Traditional Chinese Medicine College of Ningxia Medical UniversityYinchuan 750004, China
| | - Yan Chen
- Traditional Chinese Medicine College of Ningxia Medical UniversityYinchuan 750004, China
| | - Qihui Yuan
- Traditional Chinese Medicine College of Ningxia Medical UniversityYinchuan 750004, China
| | - Mengyi Ye
- Traditional Chinese Medicine College of Ningxia Medical UniversityYinchuan 750004, China
| | - Lei Yu
- Department of Infectious Disease, The Fourth Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| | - Jiaxin Li
- Pharmacy College of Ningxia Medical UniversityYinchuan 750004, China
| | - Yang Niu
- Ningxia Medical University Key Laboratory of Hui Ethnic Medicine Modernization Ministry of EducationYinchuan 750004, China
- Traditional Chinese Medicine College of Ningxia Medical UniversityYinchuan 750004, China
| | - Yi Nan
- Ningxia Medical University Key Laboratory of Hui Ethnic Medicine Modernization Ministry of EducationYinchuan 750004, China
- Traditional Chinese Medicine College of Ningxia Medical UniversityYinchuan 750004, China
| |
Collapse
|
18
|
Li YS, Zou Y, Dai DQ. MicroRNA-320a suppresses tumor progression by targeting PBX3 in gastric cancer and is downregulated by DNA methylation. World J Gastrointest Oncol 2019; 11:842-856. [PMID: 31662823 PMCID: PMC6815930 DOI: 10.4251/wjgo.v11.i10.842] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/19/2019] [Accepted: 07/28/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Ectopic expression of miRNAs promotes tumor development and progression. miRNA (miR)-320a is downregulated in many cancers, including gastric cancer (GC). However, the mechanism underlying its downregulation and the role of miR-320a in GC are unknown.
AIM To determine expression and biological functions of miR-320a in GC and investigate the underlying molecular mechanisms.
METHODS Quantitative real-time polymerase chain reaction (PCR) was used to determine expression of miR-320a in GC cell lines and tissues. TargetScanHuman7.1, miRDB, and microRNA.org were used to predict the possible targets of miR-320a, and a dual luciferase assay was used to confirm the findings. Western blotting was used to detect the protein levels of pre-B-cell leukemia homeobox 3 (PBX3) in GC cells and tissue samples. Cell Counting Kit-8 proliferation, Transwell, wound healing, and apoptosis assays were performed to analyze the biological functions of miR-320a in GC cells. Methylation-specific PCR was used to analyze the methylation level of the miR-320a promoter CpG islands. 5-Aza-2’-deoxycytidine (5-Aza-CdR) and trichostatin A (TSA) were used to treat GC cells.
RESULTS miR-320a expression was lower in GC cell lines and tissues than in the normal gastric mucosa cell line GES-1 and matched adjacent normal tissues. miR-320a overexpression suppressed GC cell proliferation, invasion and migration, and induced apoptosis. PBX3 was a target of miR-320a in GC. The methylation level of the miR-320a promoter CpG islands was elevated and this was partly reversed by 5-Aza-CdR and TSA.
CONCLUSION miR-320a acts as a tumor suppressor and inhibits malignant behavior of GC cells, partly by targeting PBX3. DNA methylation is an important mechanism associated with low expression of miR-320a.
Collapse
Affiliation(s)
- Yong-Shuang Li
- Department of Gastrointestinal Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning Province, China
| | - Ying Zou
- Department of Gastrointestinal Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning Province, China
| | - Dong-Qiu Dai
- Department of Gastrointestinal Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning Province, China
| |
Collapse
|
19
|
Rafieenia F, Abbaszadegan MR, Poursheikhani A, Razavi SMS, Jebelli A, Molaei F, Aghaee‐Bakhtiari SH. In silico evidence of high frequency of miRNA‐related SNPs in Esophageal Squamous Cell Carcinoma. J Cell Physiol 2019; 235:966-978. [DOI: 10.1002/jcp.29012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/31/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Fatemeh Rafieenia
- Medical Genetics Research Center Mashhad University of Medical Sciences Mashhad Iran
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center Mashhad University of Medical Sciences Mashhad Iran
- Immunology Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Arash Poursheikhani
- Medical Genetics Research Center Mashhad University of Medical Sciences Mashhad Iran
| | | | - Amir Jebelli
- Stem Cell and Regenerative Medicine Research Department Iranian Academic Center for Education, Culture and Research (ACECR), Mashhad Branch Mashhad Iran
| | - Fatemeh Molaei
- Medical Genetics Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Seyed Hamid Aghaee‐Bakhtiari
- Bioinformatics Research Group Mashhad University of Medical Sciences Mashhad Iran
- Department of Medical Biotechnology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
20
|
Zhou Y, Xu Q, Shang J, Lu L, Chen G. Crocin inhibits the migration, invasion, and epithelial-mesenchymal transition of gastric cancer cells via miR-320/KLF5/HIF-1α signaling. J Cell Physiol 2019; 234:17876-17885. [PMID: 30851060 DOI: 10.1002/jcp.28418] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/31/2019] [Accepted: 02/14/2019] [Indexed: 12/11/2022]
Abstract
The biological activities of crocin, one of the main bioactive compounds of saffron, include anti-inflammatory, antioxidant, antidepressant, and anticancer effects. Crocin has been shown to trigger the apoptosis of gastric cancer cells, but its effect on the metastasis of gastric cancer cells remains unclear. Krüppel-like factor 5 (KLF5) and hypoxia-inducible factor-1α (HIF-1α) are important transcription factors in the development of gastric cancer. KLF5 and HIF-1α expression were analyzed in gastric cancer tissues and cells. Following exposure to crocin, AGS and HGC-27 gastric cancer cells were assessed with regard to migration, invasion, and epithelial-mesenchymal transition (EMT) as well as the expression of KLF5, HIF-1α, and microRNA-320 (miR-320). The miR-320/KLF5/HIF-1α signaling pathway became the focus for further investigation of the mechanism of crocin in gastric cancer cell migration, invasion, and EMT. KLF5 and HIF-1α expression were elevated in gastric cancer tissues and cells, and KLF5 expression was positively correlated with the HIF-1α level in gastric cancer tissues. Crocin was associated with reduced expression of KLF5 and HIF-1α, whereas miR-320 expression was increased. Crocin also inhibited the migration, invasion, and EMT of gastric cancer cells. Upregulation of KLF5 attenuated crocin's function and elevated HIF-1α expression. Dual-luciferase reporter assay demonstrated that KLF5 was a target gene of miR-320. Crocin modulated KLF5 expression via elevation of miR-320 expression. In conclusion, crocin inhibits the EMT, migration, and invasion of gastric cancer cells, and this activity is mediated through miR-320/KLF5/HIF-1α signaling.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Gastroenterology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qihua Xu
- Department of Gastroenterology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingjuan Shang
- Department of Gastroenterology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihua Lu
- Department of Gastroenterology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guoyan Chen
- Department of Gastroenterology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
21
|
Fortunato O, Borzi C, Milione M, Centonze G, Conte D, Boeri M, Verri C, Moro M, Facchinetti F, Andriani F, Roz L, Caleca L, Huber V, Cova A, Camisaschi C, Castelli C, Cancila V, Tripodo C, Pastorino U, Sozzi G. Circulating mir-320a promotes immunosuppressive macrophages M2 phenotype associated with lung cancer risk. Int J Cancer 2019; 144:2746-2761. [PMID: 30426475 PMCID: PMC6590261 DOI: 10.1002/ijc.31988] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/29/2018] [Accepted: 11/06/2018] [Indexed: 12/21/2022]
Abstract
miRNAs play a central role in the complex signaling network of cancer cells with the tumor microenvironment. Little is known on the origin of circulating miRNAs and their relationship with the tumor microenvironment in lung cancer. Here, we focused on the cellular source and relative contribution of different cell types to circulating miRNAs composing our risk classifier of lung cancer using in vitro/in vivo models and clinical samples. A cell‐type specific expression pattern and topography of several miRNAs such as mir‐145 in fibroblasts, mir‐126 in endothelial cells, mir‐133a in skeletal muscle cells was observed in normal and lung cancer tissues. Granulocytes and platelets are the major contributors of miRNAs release in blood. miRNAs modulation observed in plasma of lung cancer subjects was consistent with de‐regulation of the same miRNAs observed during immunosuppressive conversion of immune cells. In particular, activated neutrophils showed a miRNA profile mirroring that observed in plasma of lung cancer subjects. Interestingly mir‐320a secreted by neutrophils of high‐risk heavy‐smokers promoted an M2‐like protumorigenic phenotype through downregulation of STAT4 when shuttled into macrophages. These findings suggest a multifactorial and nonepithelial cell‐autonomous origin of circulating miRNAs associated with risk of lung cancer and that circulating miRNAs may act in paracrine signaling with causative role in lung carcinogenesis and immunosuppression. What's new? microRNAs play a central role in the complex signaling network of cancer cells with the tumor microenvironment. However, little is known on the origin of circulating miRNAs and their mechanisms of action. This study found a multifactorial and non‐epithelial cell‐autonomous origin of circulating miRNAs associated with lung cancer risk. The findings also suggest a link between an immunosuppressive and pro‐tumorigenic microenvironment and modulation of circulating miRNAs associated with lung cancer risk. The authors propose a novel mechanism whereby miRNA released by neutrophils induce macrophage polarization to support lung cancer growth, highlighting the potential for reprogramming macrophages toward an anti‐tumor polarization.
Collapse
Affiliation(s)
- Orazio Fortunato
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Cristina Borzi
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Massimo Milione
- Anatomic Pathology Unit, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Centonze
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Davide Conte
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Mattia Boeri
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Carla Verri
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Massimo Moro
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Federica Facchinetti
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Andriani
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Roz
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laura Caleca
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy, Milan, Italy
| | - Veronica Huber
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Agata Cova
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara Camisaschi
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara Castelli
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Science, Human Pathology Section, University of Palermo School of Medicine, Milan, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Science, Human Pathology Section, University of Palermo School of Medicine, Milan, Italy
| | - Ugo Pastorino
- Thoracic Surgery Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Gabriella Sozzi
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
22
|
miR-320b Is Down-Regulated in Psoriasis and Modulates Keratinocyte Proliferation by Targeting AKT3. Inflammation 2018; 41:2160-2170. [DOI: 10.1007/s10753-018-0859-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
23
|
Wu J, Qin W, Wang Y, Sadik A, Liu J, Wang Y, Song P, Wang X, Sun K, Zeng J, Wang L. SPDEF is overexpressed in gastric cancer and triggers cell proliferation by forming a positive regulation loop with FoxM1. J Cell Biochem 2018; 119:9042-9054. [PMID: 30076647 DOI: 10.1002/jcb.27161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 05/14/2018] [Indexed: 12/20/2022]
Abstract
The SAM-pointed domain-containing ETS transcription factor (SPDEF) is an epithelial-specific transcription factor of the E26 transformation-specific (ETS) family, which binds the target gene through the high-affinity sequence of GGAT. It is suggested that SPDEF targets the promoter activity of Forkhead Box M1 (FoxM1), which has been proven to be highly expressed in gastric cancer. We found that SPDEF was overexpressed both at the messenger RNA (mRNA) and at the protein level in human gastric cancer species. The gastric cancer cells transfected with the SPDEF expression plasmid or SPDEF small interfering RNA (siRNA) led to observations on the clone genetics assay that indicated the promotion or the inhibition of gastric cancer cell proliferation, respectively. Both mRNA and protein levels of FoxM1 were regulated by SPDEF in gastric cancer cells and FoxM1 was also overexpressed in the corresponding human gastric cancer species. The overexpression and inhibition of FoxM1 could upregulate and downregulate the mRNA and protein levels of SPDEF expression, respectively. The recovery experiments verified that the overexpression of FoxM1 could at least partially revert both the expression of SPDEF and the proliferation of the cell lines even with the siRNA inhibition of SPDEF. The result of the dual luciferase activity assay showed that SPDEF bound to the promoter of FoxM1 and activated it. FoxM1 might also bind to the promoter of SPDEF to affect its expression. The results were checked in vivo. In conclusion, SPDEF is overexpressed in gastric cancer, which can form a positive regulation loop with FoxM1 to promote gastric carcinogenesis.
Collapse
Affiliation(s)
- Jing Wu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Wen Qin
- Department of Medical Administration, Shandong University Hospital, Shandong University, Jinan, China
| | - Ying Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Arsil Sadik
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jilan Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yangyang Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Ping Song
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiaoyun Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Kaiyue Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jiping Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Lixiang Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
24
|
Luo C, Tao Y, Zhang Y, Zhu Y, Minyao DN, Haleem M, Dong C, Zhang L, Zhang X, Zhao J, Liao Q. Regulatory network analysis of high expressed long non-coding RNA LINC00941 in gastric cancer. Gene 2018; 662:103-109. [PMID: 29653230 DOI: 10.1016/j.gene.2018.04.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/13/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022]
Abstract
Accumulating evidence suggests that the aberrant expression of long non-coding RNAs is closely related to the carcinogenesis and progression of gastric cancer (GC), which is a type of prevalent tumor with a high incidence and mortality rate. However, it is still a challenge to find reliable biomarkers and to understand their molecular mechanisms in GC. In this study, we first confirmed that LINC00941was up-regulated in GC tumor tissues compared with adjacent normal tissues by RT-PCR, and found that the expression level of LINC00941 was correlated with invasion depth, lymphatic metastasis, and the TNM stage of patients with GC. Furthermore, by performing enrichment analysis based on the co-expression network and regulatory network, we found that LINC00941 was associated with cancer related biological processes such as cell cycle, cell communication, cell migration, cell division, as well as processes associated with the immune system. Our results suggested that LINC00941 may be a potential novel biomarker for therapeutic or diagnostic of GC.
Collapse
Affiliation(s)
- Cong Luo
- Department of Abdominal Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yang Tao
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Yuwei Zhang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Yinyin Zhu
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Derry Ng Minyao
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Maria Haleem
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Changzheng Dong
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Lina Zhang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Xiaohong Zhang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Qi Liao
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China.
| |
Collapse
|
25
|
Meng Q, Xiang L, Fu J, Chu X, Wang C, Yan B. Transcriptome profiling reveals miR-9-3p as a novel tumor suppressor in gastric cancer. Oncotarget 2018; 8:37321-37331. [PMID: 28418879 PMCID: PMC5514911 DOI: 10.18632/oncotarget.16310] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/13/2017] [Indexed: 01/08/2023] Open
Abstract
It has been well established that microRNAs (miRNAs) play important roles in biological processes. To comprehensively measure the altered miRNA expression, we presented the miRNA expression profile of gastric cancer using microarray. We identified 33 miRNAs that were significantly differentially regulated in gastric specimens compared to adjacent normal tissues, among which miR-9-3p expression are significantly down-regulated in gastric cancers. Next, a cohort of 100 gastric cancer tissues and matched normal tissues were enrolled. Kaplan–Meier and multivariate Cox survival analyses were applied to evaluate the prognostic value of miR-9-3p expression, and the result showed that patients with lower miR-9-3p expression level have significantly poorer overall survival. The expression level of miR-9-3p has been proved to be an independent prognostic factor for 5-year overall survival. Furthermore, the result indicated that over-expression of miR-9-3p can inhibit gastric cancer cell invasion. Taken together, our results suggested that miR-9-3p plays important role in tumor invasion, and these findings implicated the potential effects of miR-9-3p on prognosis of gastric cancer.
Collapse
Affiliation(s)
- Qingshun Meng
- Department of Gastroenterology, Jining No.1 People's Hospital, Shandong, China
| | - Longquan Xiang
- Department of Pathology, Jining No.1 People's Hospital, Shandong, China
| | - Jingwei Fu
- Department of Gastrointestinal Surgery, Jining No.1 People's Hospital, Shandong, China
| | - Xianqun Chu
- Department of Gastrointestinal Surgery, Jining No.1 People's Hospital, Shandong, China
| | - Chunlin Wang
- Department of Gastrointestinal Surgery, Jining No.1 People's Hospital, Shandong, China
| | - Bingzheng Yan
- Department of General Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
26
|
Gao T, Deng M, Wang Q. MiRNA-320a inhibits trophoblast cell invasion by targeting estrogen-related receptor-gamma. J Obstet Gynaecol Res 2018; 44:756-763. [PMID: 29345032 DOI: 10.1111/jog.13560] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/21/2017] [Indexed: 02/05/2023]
Abstract
AIM MicroRNAs (miRs) play an essential role in the modulation of trophoblast function. We explored miR-320a expression in the human placenta. In addition, we report the promising effect and target functional loop of miR-320a in trophoblasts. METHODS MiR-320a expression was investigated in both pre-eclamptic and healthy placenta tissues by quantitative real time-polymerase chain reaction to determine how miR-320a affected invasion, proliferation and migration in trophoblasts. A lipopolysaccharide (LPS) model was established in trophoblasts to reveal how LPS supplementation stimulated miR-320a expression. Western blot was applied to measure protein expression, which was involved in pathways modulated by miR-320a in pre-eclamptic placentas. RESULTS MiR-320a expression was enhanced in the placental specimens of pre-eclamptic patients. Excessive miR-320a expression remarkably suppressed trophoblast invasion but did not affect migration or proliferation. However, transfection with miR-320a inhibitor reinforced trophoblast invasion in vitro. Luciferase assays verified that estrogen-related receptor-gamma (ERRγ) served as a direct target of miR-320a. Quantitative real-time polymerase chain reaction and Western blot demonstrated that excessive miR-320a expression downregulated ERRγ transcription and translation. Additionally, LPS supplementation showed excessive miR-320a expression and ERRγ downregulation. Impaired ERRγ and enhanced miR-320a expression occurred in PE placentas compared to controls. Pearson correlation and linear regression analysis revealed that miR-320a expression was negatively related to ERRγ expression in normal and pre-eclamptic placentas. CONCLUSIONS These findings indicate that miR-320a overexpression causes anomalous placentation by targeting ERRγ. Our research reveals the promising effect of miR-320a and the ERRγ functional loop on placentation.
Collapse
Affiliation(s)
- Tian Gao
- Department of Gynecology and Obstetrics, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Mou Deng
- Department of Gynecology and Obstetrics, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qian Wang
- Department of Gynecology and Obstetrics, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
27
|
Xu Y, Hu J, Zhang C, Liu Y. MicroRNA‑320 targets mitogen‑activated protein kinase 1 to inhibit cell proliferation and invasion in epithelial ovarian cancer. Mol Med Rep 2017; 16:8530-8536. [PMID: 28990044 DOI: 10.3892/mmr.2017.7664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 06/21/2017] [Indexed: 11/06/2022] Open
Abstract
Ovarian cancer is the second most frequently occurring cancer and the most fatal gynecological malignancy of all gynecological cancers worldwide. MicroRNAs (miR) have been reported to be downregulated or upregulated in a variety of human malignancies, and involved in the formation and progression of the majority of human cancers, including epithelial ovarian cancer (EOC). miR‑320 has been identified as a tumor suppressor in multiple human cancers. However, the expression levels, biological role and underlying mechanisms of miR‑320 in EOC remain to be elucidated. In the present study, reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) was performed to detect miR‑320 expression in EOC tissues and cell lines. Following transfection with miR‑320 mimics, Cell Counting Kit 8 and cell invasion assays were utilized to investigate the effects of miR‑320 on EOC cell proliferation and invasion. Bioinformatic analysis, luciferase reporter assay, RT‑qPCR and western blotting were used to explore the underlying mechanism of how miR‑320 affects cell proliferation and invasion in EOC. Mitogen‑activated protein kinase (MAPK) 1 expression and its association with the miR‑320 expression level was examined in EOC tissues. The role of MAPK1 in EOC cells was additionally evaluated by using a loss‑of‑function assay. The results demonstrated that miR‑320 was markedly downregulated in EOC tissues and cell lines. A decreased miR‑320 expression was significantly correlated with the Federation of Gynecology and Obstetrics stage and lymph node metastasis of EOC patients. Additionally, reintroduction of miR‑320 expression suppressed cell proliferation and invasion in EOC. Furthermore, it was verified that MAPK1 is a direct target gene of miR‑320 in EOC. MAPK1 expression was markedly upregulated in EOC tissues and inversely correlated with miR‑320 expression. Furthermore, silencing of MAPK1 by RNA interference inhibited cell proliferation and invasion of EOC cells. Overall, the present study demonstrated that miR‑320 may act as a useful diagnostic and therapeutic target in the treatment of EOC.
Collapse
Affiliation(s)
- Yongqian Xu
- Department of Gynecology and Obstetrics, Shengli Oilfield Central Hospital, Dongying, Shandong 257034, P.R. China
| | - Jian Hu
- Department of Gynecology and Obstetrics, Shengli Oilfield Central Hospital, Dongying, Shandong 257034, P.R. China
| | - Chunxia Zhang
- Department of Gynecology and Obstetrics, Shengli Oilfield Central Hospital, Dongying, Shandong 257034, P.R. China
| | - Yuanyuan Liu
- Department of Gynecology and Obstetrics, Shengli Oilfield Central Hospital, Dongying, Shandong 257034, P.R. China
| |
Collapse
|
28
|
Zhang J, Huang J, Wang X, Chen W, Tang Q, Fang M, Qian Y. CMIP is oncogenic in human gastric cancer cells. Mol Med Rep 2017; 16:7277-7286. [PMID: 28944848 PMCID: PMC5865856 DOI: 10.3892/mmr.2017.7541] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 07/17/2017] [Indexed: 12/26/2022] Open
Abstract
Gastric cancer is one of the most common cancers and the second leading cause of cancer-associated mortality worldwide. Recurrence, metastasis and resistance to drug treatment are the main barrier to survival of patients with advanced stage gastric cancer. Further study of the molecular mechanisms involved will improve the therapeutic options for gastric cancer. In a previous study, c-Maf was discovered as an oncogene transduced in the avian AS42 retrovirus, and was found to be overexpressed in multiple myeloma and angioimmunoblastic T-cell lymphoma. c-Maf inducing protein (CMIP) is involved in the c-Maf signaling pathway, which was reported to serve an important role in human minimal change nephrotic syndrome and in human reading and language related behavior. However, the relationship between CMIP and human gastric cancer has not yet been reported. In the present study, CMIP protein levels in gastric cancer tissues and cells were measured using immunohistochemistry and western blot analysis; the expression of CMIP protein was significantly higher in gastric cancer tissues compared with normal gastric tissues. Expression was positively associated with poorer clinical parameters, relapse-free survival and overall survival. Furthermore, using cell counting, Cell Counting Kit-8, colony formation, wound healing and Transwell assays, together with flow cytometry, CMIP depletion by RNA interference was observed to reduce the capacity of gastric cancer cells to proliferate and migrate in vitro. Furthermore, the upstream and downstream genes of CMIP were analyzed by luciferase reporter assay and reverse transcription quantitative polymerase chain reaction, which indicated that CMIP was a direct target of miR-101-3p. In addition, CMIP knockdown was observed to result in the downregulation of MDM2 and mitogen activated protein kinase (MAPK) expression at the mRNA level. In conclusion, CMIP demonstrated an oncogenic role in human gastric cancer cells. Furthermore, microRNA-101-3p, MDM2 and MAPK were involved in the CMIP signaling pathway in gastric cancer. CMIP could be a novel target for further investigation in the clinical therapeutic management of gastric cancer.
Collapse
Affiliation(s)
- Jianlin Zhang
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jin Huang
- Department of Pathology, The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| | - Xingyu Wang
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Weidong Chen
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Qinqing Tang
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Maoyong Fang
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yeben Qian
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
29
|
Wang J, Li W, Zhao Y, Kang D, Fu W, Zheng X, Pang X, Du G. Members of FOX family could be drug targets of cancers. Pharmacol Ther 2017; 181:183-196. [PMID: 28830838 DOI: 10.1016/j.pharmthera.2017.08.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FOX families play important roles in biological processes, including metabolism, development, differentiation, proliferation, apoptosis, migration, invasion and longevity. Here we are focusing on roles of FOX members in cancers, FOX members and drug resistance, FOX members and stem cells. Finally, FOX members as drug targets of cancer treatment were discussed. Future perspectives of FOXC1 research were described in the end.
Collapse
Affiliation(s)
- Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China
| | - Wan Li
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China
| | - Ying Zhao
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China
| | - De Kang
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China
| | - Weiqi Fu
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China
| | - Xiangjin Zheng
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China
| | - Xiaocong Pang
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 100050 Beijing, China.
| |
Collapse
|
30
|
Zhang Z, Li X, Sun W, Yue S, Yang J, Li J, Ma B, Wang J, Yang X, Pu M, Ruan B, Zhao G, Huang Q, Wang L, Tao K, Dou K. Loss of exosomal miR-320a from cancer-associated fibroblasts contributes to HCC proliferation and metastasis. Cancer Lett 2017; 397:33-42. [PMID: 28288874 DOI: 10.1016/j.canlet.2017.03.004] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 02/18/2017] [Accepted: 03/04/2017] [Indexed: 12/12/2022]
Abstract
Cancer-associated fibroblasts (CAFs) play a pivotal role in regulating tumour progression. Therefore, understanding how CAFs communicate with hepatocellular carcinoma (HCC) is crucial for HCC therapy. Recently, exosomes have been considered an important "messenger" between cells. In this study, we performed microRNA (miRNA) sequencing of exosomes derived from CAFs and corresponding para-cancer fibroblasts (PAFs) of HCC patients. We found a significant reduction in the miR-320a level in CAF-derived exosomes. Using exogenous miRNAs, we demonstrated that stromal cells could transfer miRNA to HCC cells. In vitro and in vivo studies further revealed that miR-320a could function as an antitumour miRNA by binding to its direct downstream target PBX3 to suppress HCC cell proliferation, migration and metastasis. The miR-320a-PBX3 pathway inhibited tumour progression by suppressing the activation of the MAPK pathway, which could induce the epithelial-mesenchymal transition and upregulate cyclin-dependent kinase 2 (CDK2) and MMP2 expression to promote cell proliferation and metastasis. In xenograft experiments involving CAFs mixed with MHCC97-H cells, miR-320a overexpression in CAFs could inhibit tumourigenesis. Therefore, these data suggest that CAF-mediated HCC tumour progression is partially related to the loss of antitumour miR-320a in the exosomes of CAFs and that promoting the transfer of stromal cell-derived miR-320a might be a potential treatment option to overcome HCC progression.
Collapse
Affiliation(s)
- Zhuochao Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Xiao Li
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Wei Sun
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Shuqiang Yue
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Jingyue Yang
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Junjie Li
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Ben Ma
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Jianlin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Xisheng Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Meng Pu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Bai Ruan
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Ge Zhao
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Qike Huang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China.
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China.
| |
Collapse
|
31
|
Li H, Chen C. Quercetin Has Antimetastatic Effects on Gastric Cancer Cells via the Interruption of uPA/uPAR Function by Modulating NF-κb, PKC-δ, ERK1/2, and AMPKα. Integr Cancer Ther 2017. [PMID: 28627240 PMCID: PMC6041899 DOI: 10.1177/1534735417696702] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gastric cancer (GC) is a malignancy with few effective treatment options after metastasis occurs. Quercetin (Qu) intake has been associated with reduced incidence and slow development of GC, probably due to its anti-proliferative and apoptotic effects, but it is unclear whether Qu can inhibit the metastatic activity. The urokinase plasminogen activator (uPA)/uPA receptor (uPAR) system plays an important role in cancer metastasis. In this study, we measured both uPA activity and uPAR expression in GC and pericarcinous tissues, and we investigated the correlation between uPAR expression and the migratory and invasive activities of various GC cell lines. GC BGC823 and AGS cells were subjected to treatment with 10 μM Qu for 72 hours and uPAR knockdown, alone or in combination, before evaluating cell metastasis. The results showed that uPA activity and uPAR expression were higher in GC tissues than in pericarcinous tissues. Migratory and invasive activities of GC cell lines positively correlated with uPAR expression. Qu treatment decreased BGC823 and AGS cell migration and invasion, accompanied by reduced uPA and uPAR protein expression. Both Qu treatment and uPAR knockdown decreased matrix metalloproteinase-2 and -9 activity and blocked Pak1-Limk1-cofilin signaling. Qu treatment was associated with inhibition of NF-κb, PKC-δ, and ERK1/2, and with AMPKα activation. Specific inhibitors of NF-κb, PKC, and ERK1/2, and an AMPKα activator suppressed uPA and uPAR expression in GC cells. Collectively, Qu showed an antimetastatic effect on GC cells via the interruption of uPA/uPAR function and modulation of NF-κb, PKC-δ, ERK1/2, and AMPKα. This suggests that Qu is a promising agent against GC metastasis.
Collapse
Affiliation(s)
- Hai Li
- 1 Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Chen
- 2 Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Li Q, Li J, Dai W, Li YX, Li YY. Differential regulation analysis reveals dysfunctional regulatory mechanism involving transcription factors and microRNAs in gastric carcinogenesis. Artif Intell Med 2017; 77:12-22. [PMID: 28545608 DOI: 10.1016/j.artmed.2017.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/23/2017] [Accepted: 02/23/2017] [Indexed: 12/12/2022]
Abstract
Gastric cancer (GC) is one of the most incident malignancies in the world. Although lots of featured genes and microRNAs (miRNAs) have been identified to be associated with gastric carcinogenesis, underlying regulatory mechanisms still remain unclear. In order to explore the dysfunctional mechanisms of GC, we developed a novel approach to identify carcinogenesis relevant regulatory relationships, which is characterized by quantifying the difference of regulatory relationships between stages. Firstly, we applied the strategy of differential coexpression analysis (DCEA) to transcriptomic datasets including paired mRNA and miRNA of gastric samples to identify a set of genes/miRNAs related to gastric cancer progression. Based on these genes/miRNAs, we constructed conditional combinatorial gene regulatory networks (cGRNs) involving both transcription factors (TFs) and miRNAs. Enrichment of known cancer genes/miRNAs and predicted prognostic genes/miRNAs was observed in each cGRN. Then we designed a quantitative method to measure differential regulation level of every regulatory relationship between normal and cancer, and the known cancer genes/miRNAs proved to be ranked significantly higher. Meanwhile, we defined differentially regulated link (DRL) by combining differential regulation, differential expression and the regulation contribution of the regulator to the target. By integrating survival analysis and DRL identification, three master regulators TCF7L1, TCF4, and MEIS1 were identified and testable hypotheses of dysfunctional mechanisms underlying gastric carcinogenesis related to them were generated. The fine-tuning effects of miRNAs were also observed. We propose that this differential regulation network analysis framework is feasible to gain insights into dysregulated mechanisms underlying tumorigenesis and other phenotypic changes.
Collapse
Affiliation(s)
- Quanxue Li
- School of biotechnology, East China University of Science and Technology, Shanghai, China; Shanghai Center for Bioinformation Technology, Shanghai, China
| | - Junyi Li
- Shanghai Center for Bioinformation Technology, Shanghai, China; Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wentao Dai
- Shanghai Center for Bioinformation Technology, Shanghai, China; Shanghai Industrial Technology Institute, Shanghai, China; Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, China
| | - Yi-Xue Li
- School of biotechnology, East China University of Science and Technology, Shanghai, China; Shanghai Center for Bioinformation Technology, Shanghai, China; Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; Shanghai Industrial Technology Institute, Shanghai, China; Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, China.
| | - Yuan-Yuan Li
- Shanghai Center for Bioinformation Technology, Shanghai, China; Shanghai Industrial Technology Institute, Shanghai, China; Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, China.
| |
Collapse
|
33
|
Lv Q, Hu JX, Li YJ, Xie N, Song DD, Zhao W, Yan YF, Li BS, Wang PY, Xie SY. MiR-320a effectively suppresses lung adenocarcinoma cell proliferation and metastasis by regulating STAT3 signals. Cancer Biol Ther 2017; 18:142-151. [PMID: 28106481 DOI: 10.1080/15384047.2017.1281497] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs play important roles in tumorigenesis of various types of cancers. MiR-320a can inhibits cell proliferation of some cancers, but the biologic roles of miR-320a in lung cancer need to be further studied. Here, we investigated the roles of miR-320a in suppressing the proliferation of lung adenocarcinoma cells. MiR-320a treatment was found to effectively suppress LTEP-a-2 and A549 cell proliferation, and induce more apoptotic cells with irradiation treatment compared with control treatment. Our results also showed that miR-320a, as a novel miRNA, directly regulated signal transducer and activator of transcription 3 (STAT3) and its signals, such as Bcl-2, Bax, and Caspase 3. The siRNA-inhibited STAT3 levels further proved its roles in regulating STAT3 signals. Moreover, miR-320a treatment effectively suppressed cancer cell growth in mice xenografts compared with controls, and significantly inhibited cell migration in vitro and in vivo. Our findings collectively demonstrated that miR-320a, by directly regulating STAT3 signals, not only suppressed cell proliferation and metastasis, but also enhanced irradiation-induced apoptosis of adenocarcinomia cells.
Collapse
Affiliation(s)
- Qing Lv
- a Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology , Binzhou Medical University , YanTai , Shandong , P.R. China
| | - Jin-Xia Hu
- a Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology , Binzhou Medical University , YanTai , Shandong , P.R. China
| | - You-Jie Li
- a Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology , Binzhou Medical University , YanTai , Shandong , P.R. China
| | - Ning Xie
- b YanTaiShan Hospital , YanTai , Shandong , P.R. China
| | - Dan Dan Song
- a Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology , Binzhou Medical University , YanTai , Shandong , P.R. China
| | - Wei Zhao
- a Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology , Binzhou Medical University , YanTai , Shandong , P.R. China
| | - Yun-Fei Yan
- a Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology , Binzhou Medical University , YanTai , Shandong , P.R. China
| | - Bao-Sheng Li
- c Department of Radiation Oncology , Shandong Cancer Hospital, Shandong Academy of Medical Sciences , Jinan , P.R. China
| | - Ping-Yu Wang
- a Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology , Binzhou Medical University , YanTai , Shandong , P.R. China
| | - Shu-Yang Xie
- a Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology , Binzhou Medical University , YanTai , Shandong , P.R. China
| |
Collapse
|
34
|
Chang JTH, Wang F, Chapin W, Huang RS. Identification of MicroRNAs as Breast Cancer Prognosis Markers through the Cancer Genome Atlas. PLoS One 2016; 11:e0168284. [PMID: 27959953 PMCID: PMC5154569 DOI: 10.1371/journal.pone.0168284] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/29/2016] [Indexed: 12/21/2022] Open
Abstract
Breast cancer is the second-most common cancer and second-leading cause of cancer mortality in American women. The dysregulation of microRNAs (miRNAs) plays a key role in almost all cancers, including breast cancer. We comprehensively analyzed miRNA expression, global gene expression, and patient survival from the Cancer Genomes Atlas (TCGA) to identify clinically relevant miRNAs and their potential gene targets in breast tumors. In our analysis, we found that increased expression of 12 mature miRNAs-hsa-miR-320a, hsa-miR-361-5p, hsa-miR-103a-3p, hsa-miR-21-5p, hsa-miR-374b-5p, hsa-miR-140-3p, hsa-miR-25-3p, hsa-miR-651-5p, hsa-miR-200c-3p, hsa-miR-30a-5p, hsa-miR-30c-5p, and hsa-let-7i-5p -each predicted improved breast cancer survival. Of the 12 miRNAs, miR-320a, miR-361-5p, miR-21-5p, miR-103a-3p were selected for further analysis. By correlating global gene expression with miRNA expression and then employing miRNA target prediction analysis, we suggest that the four miRNAs may exert protective phenotypes by targeting breast oncogenes that contribute to patient survival. We propose that miR-320a targets the survival-associated genes RAD51, RRP1B, and TDG; miR-361-5p targets ARCN1; and miR-21-5p targets MSH2, RMND5A, STAG2, and UBE2D3. The results of our stringent bioinformatics approach for identifying clinically relevant miRNAs and their targets indicate that miR-320a, miR-361-5p, and miR-21-5p may contribute to breast cancer survival.
Collapse
Affiliation(s)
- Jeremy T-H. Chang
- Biological Sciences Collegiate Division, University of Chicago, Chicago, Illinois, United States of America
| | - Fan Wang
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - William Chapin
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - R. Stephanie Huang
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
35
|
Fehlmann T, Ludwig N, Backes C, Meese E, Keller A. Distribution of microRNA biomarker candidates in solid tissues and body fluids. RNA Biol 2016; 13:1084-1088. [PMID: 27687236 DOI: 10.1080/15476286.2016.1234658] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Small non-coding RNAs, especially microRNAs, are discussed as promising biomarkers for a substantial number of human pathologies. A broad understanding in which solid tissues, cell types or body fluids a microRNA is expressed helps also to understand and to improve the suitability of miRNAs as non- or minimally-invasive disease markers. We recently reported the Human miRNA Tissue Atlas ( http://www.ccb.uni-saarland.de/tissueatlas ) containing 105 miRNA profiles of 31 organs from 2 corpses. We subsequently added miRNA profiles measured by others and us using the same array technology as for the first version of the Human miRNA Tissue Atlas. The latter profiles stem from 163 solid organs including lung, prostate and gastric tissue, from 253 whole blood samples and 66 fractioned blood cell isolates, from body fluids including 72 serum samples, 278 plasma samples, 29 urine samples, and 16 saliva samples and from different collection and storage conditions. While most miRNAs are ubiquitous abundant in solid tissues and whole blood, we also identified miRNAs that are rather specific for tissues. Our web-based repository now hosting 982 full miRNomes all of which are measured by the same microarray technology. The knowledge of these variant abundances of miRNAs in solid tissues, in whole blood and in other body fluids is essential to judge the value of miRNAs as biomarker.
Collapse
Affiliation(s)
- Tobias Fehlmann
- a Chair for Clinical Bioinformatics, Saarland University , Germany
| | - Nicole Ludwig
- b Department of Human Genetics , Saarland University , Germany
| | - Christina Backes
- a Chair for Clinical Bioinformatics, Saarland University , Germany
| | - Eckart Meese
- b Department of Human Genetics , Saarland University , Germany
| | - Andreas Keller
- a Chair for Clinical Bioinformatics, Saarland University , Germany
| |
Collapse
|