1
|
Meng S, Xing S, Xu H, Li J, Jiang Y, He H, Cai H, Li M. Integrated analysis of intestinal microbial community and muscle transcriptome profile in rabbits. Anim Biotechnol 2024:2387015. [PMID: 39145993 DOI: 10.1080/10495398.2024.2387015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Intestinal microbial community plays an important part in maintaining health and skeletal muscle development in livestock. This study is the first of its kind in the world. In order to better understand the relationship between gut microbiota and gene expression in skeletal muscle of rabbits, caecum contents and longissimus dorsi tissues of rabbits at 0 d (S1), 35 d (S2) and 70d (S3) were collected and subjected for 16S rRNA sequencing and transcriptome sequencing. Our results showed that, among three groups of rabbits, Firmicutes and Bacteroidetes were the dominant phyla at the phylum level, while Akmansia, Bacteroides and Ruminobacter were the dominant genera at the genus level, and the relative abundance of Akmansia and Bacteroides increased firstly and then decreased from 0 d to 70 d. By analyzing the transcriptome sequencing data, we identified 2866, 2446 and 4541 differentially expressed genes (DEGs) in S1 vs S2, S2 vs S3 and S1 vs S3 groups, respectively. Finally, we performed correlation analysis between gut microbiota and the expression levels of muscle development-related genes of rabbits at 0 d and 70 d. Compared with 0 day old rabbits, in 70 day old rabbits Acinetobacter and Cronbacter with decreased abundance, and Ruminococcaceae_UCG-014 and Ruminococcus_1 with increase abundance is beneficial to caecum health in rabbits. These results will lay a foundation for further re-searches about the relationship between caecum microflora and muscle development in rabbits.
Collapse
Affiliation(s)
- Shengbo Meng
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P.R. China
| | - Shanshan Xing
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P.R. China
| | - Huifen Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P.R. China
| | - Jing Li
- Animal Health Supervision Institute of Biyang, Henan, P.R. China
| | - Yixuan Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P.R. China
| | - Hui He
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P.R. China
| | - Hanfang Cai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P.R. China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P.R. China
| |
Collapse
|
2
|
Guimarães LHDS, Pereira Neto ARL, de Oliveira TL, Kataoka MSDS, Pinheiro JDJV, Alves Júnior SDM. Platelet-rich fibrin stimulates the proliferation and expression of proteins related to survival, adhesion, and angiogenesis in gingival fibroblasts cultured on a titanium nano-hydroxyapatite-treated surface. J Oral Biosci 2024; 66:160-169. [PMID: 38048849 DOI: 10.1016/j.job.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
OBJECTIVES This in vitro study aimed to evaluate the cell viability and expression of proteins related to angiogenesis, adhesion, and cell survival (vascular endothelial growth factor, paxillin, vinculin, fibronectin, and protein kinase B) in gingival fibroblasts that were cultured on titanium discs treated with or without nanohydroxyapatite and exposed to platelet-rich fibrin (PRF)-conditioned medium. METHODS To obtain the conditioned medium, the PRF membranes were prepared and incubated for 48 h in a culture medium without fetal bovine serum. Analyses were performed at 24 and 48 h for the cells cultured on machined-titanium discs or surfaces treated with nanohydroxyapatite in a control medium or PRF-conditioned medium, resulting in four experimental groups (CT-TI, CT-NANO, PRF-TI, and PRF-NANO). RESULTS A decrease in the viability of the gingival fibroblasts was not observed in any of the experimental groups. The PRF-NANO group showed significantly higher immunoexpression of paxillin and AKT at 24 and 48 h (p < 0.01). The same result was observed for vinculin expression at 24 h (p < 0.001). The expression of fibronectin at 48 h and VEGF at 24 and 48 h was significantly higher when the cells were exposed to the PRF-conditioned medium, regardless of the disc surface (p < 0.05). CONCLUSION Gingival fibroblasts cultured on a nanohydroxyapatite-treated surface and in a PRF-conditioned medium showed a greater expression of proteins modulating adhesion, angiogenesis, and cell survival. Our results may contribute to the understanding of the mechanisms related to peri-implant soft tissue sealing.
Collapse
Affiliation(s)
| | | | - Thaianna Lima de Oliveira
- Department of Periodontology, School of Dentistry, Federal University of Pará, Av. Augusto Correa 01, Belém, PA, Brazil.
| | - Maria Sueli da Silva Kataoka
- Department of Oral Pathology, School of Dentistry, Federal University of Pará, Av. Augusto Correa 01, Belém, PA, Brazil.
| | - João de Jesus Viana Pinheiro
- Department of Oral Pathology, School of Dentistry, Federal University of Pará, Av. Augusto Correa 01, Belém, PA, Brazil.
| | - Sérgio de Melo Alves Júnior
- Department of Oral Pathology, School of Dentistry, Federal University of Pará, Av. Augusto Correa 01, Belém, PA, Brazil.
| |
Collapse
|
3
|
Lee JH, Kim TK, Kang MC, Park MK, Park SH, Choi JS, Choi YS. Effect of Crude Polysaccharides from Ecklonia cava Hydrolysate on Cell Proliferation and Differentiation of Hanwoo Muscle Stem Cells for Cultured Meat Production. Foods 2024; 13:563. [PMID: 38397540 PMCID: PMC10887812 DOI: 10.3390/foods13040563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Ecklonia cava, a brown seaweed native to the East Asian coast, is known for its unique composition, including polysaccharides, polyphenols, and phlorotannins. Fucoidan is a sulfated polysaccharide widely used as a functional ingredient in foods. This study obtained crude polysaccharides (ECC_CPS) from E. cava celluclast enzymatic hydrolysate using ethanol precipitation. ECC_CPS increased cell viability during the proliferation of Hanwoo muscle satellite cells (HMSCs). The effect of ECC_CPS on the expression of proliferation-related markers was confirmed as MYF5 and MYOD expression significantly increased, whereas PAX7 expression was maintained. The evaluation of cell migration activity has a major impact on cell proliferation and differentiation, and the cell migration index significantly increased with ECC_CPS treatment (p < 0.01). This was related to the HGF/MET pathway and FAK pathway. Treatment with ECC_CPS promoted differentiation at the cell differentiation stage, thereby increasing the expression of differentiation markers, such as MYH2, MYH7, and MYOG (p < 0.001 or p < 0.01). Therefore, our findings imply that crude polysaccharide obtained from E. cava can be an additive ingredient that enhances the proliferation and differentiation of muscle satellite cells used in the manufacture of cultured meat products.
Collapse
Affiliation(s)
- Jae-Hoon Lee
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea; (J.-H.L.); (T.-K.K.); (M.-C.K.); (M.-K.P.)
| | - Tae-Kyung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea; (J.-H.L.); (T.-K.K.); (M.-C.K.); (M.-K.P.)
| | - Min-Cheol Kang
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea; (J.-H.L.); (T.-K.K.); (M.-C.K.); (M.-K.P.)
| | - Min-Kyung Park
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea; (J.-H.L.); (T.-K.K.); (M.-C.K.); (M.-K.P.)
| | - Sang-Hun Park
- Department of Animal Science, Chungbuk National University, Cheonju 28644, Republic of Korea
| | - Jung-Seok Choi
- Department of Animal Science, Chungbuk National University, Cheonju 28644, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea; (J.-H.L.); (T.-K.K.); (M.-C.K.); (M.-K.P.)
| |
Collapse
|
4
|
Cao C, Cai Y, Li Y, Li T, Zhang J, Hu Z, Zhang J. Characterization and comparative transcriptomic analysis of skeletal muscle in female Pekin duck and Hanzhong Ma duck during different growth stages using RNA-seq. Poult Sci 2023; 102:103122. [PMID: 37832186 PMCID: PMC10568565 DOI: 10.1016/j.psj.2023.103122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023] Open
Abstract
Duck is an economically important poultry, and there is currently a major focus on improving its meat quality through breeding. There are wide variations in the growth regulation mechanisms of different duck breeds, that fundamental research on skeletal muscle growth is essential for understanding the regulation of unknown genes. The study aimed to broaden the understanding the duck skeletal muscle development and thereby to improve the performance of domestic ducks. In this study, RNA-seq data from skeletal muscles (breast muscle and leg muscle) of Pekin duck and Hanzhong Ma duck sampled at d 17, 21, and 27 of embryo (E17d, E21d, and E27d), as well as at 6-mo-old following birth (M6), to investigate and compare the mRNA temporal expression profiles and associated pathways that regulate skeletal myogenesis of different duck breeds. There were 331 to 1,440 annotated differentially expressed genes (DEGs) in breast muscle and 380 to 1,790 annotated DEGs in leg muscle from different databases between 2 duck breeds. Gene ontology (GO) enrichment in skeletal muscles indicated that these DEGs were mainly involved in biosynthetic process, developmental process, regulation of protein metabolic process and regulation of gene expression. KEGG analysis in skeletal muscles showed that a total of 41 DEGs were mapped to 7 KEGG pathways, including ECM-receptor interaction, focal adhesion, carbon metabolism, regulation of actin cytoskeleton, calcium signaling pathway, biosynthesis of amino acids and PPAR signaling pathway. The differential expression of 8 selected DEGs was verified by qRT-PCR, and the results were consistent with RNA-seq data. The identified DEGs, such as SDC, SPP1, PAK1, MYL9, PGK1, NOS1, PHGDH, TNNT2, FN1, and AQP4, were specially highlighted, indicating their associations with muscle development in the Pekin duck and Hanzhong Ma duck. This study provides a basis for revealing the differences in skeletal muscle development between Pekin duck and Hanzhong Ma duck.
Collapse
Affiliation(s)
- Chang Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yingjie Cai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yuxiao Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Tao Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Jiqiao Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Zhigang Hu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Jianqin Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China.
| |
Collapse
|
5
|
He M, Zhang W, Wang S, Ge L, Cao X, Wang S, Yuan Z, Lv X, Getachew T, Mwacharo JM, Haile A, Sun W. Effects of YAP1 on proliferation and differentiation of Hu sheep skeletal muscle satellite cells in vitro. Anim Biotechnol 2023; 34:2691-2700. [PMID: 36001393 DOI: 10.1080/10495398.2022.2112688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
This study aimed to understand the expression level of YAP1 in the skeletal muscle of Hu sheep and to reveal the regulatory mechanism of YAP1 on Hu sheep skeletal muscle satellite cells (SMSCs). Previous research by our group has found that YAP1 may affect the growth and development of Hu sheep skeletal muscle. In the present study, we found the expression of YAP1 in the skeletal muscle is higher than in other tissues of Hu sheep. Then, we detected the effect of YAP1 on proliferation and differentiation in Hu sheep SMSCs. According to the results of qPCR, CCK-8, EDU, and Western blot, compared to the group of negative control, overexpression of YAP1 promoted the proliferation and inhibited the differentiation of SMSCs according to the results of qPCR, CCK-8, EDU, Western blot, while the interference of YAP1 was on the contrary. Overall, our study suggests that YAP1 is an important functional molecule in the growth and development of skeletal muscle by regulating the proliferation and differentiation of SMSCs. These findings are of great use for understanding the roles of YAP1 in the skeletal muscle of Hu sheep.
Collapse
Affiliation(s)
- Mingliang He
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Weibo Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Shan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Ling Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Nanjing, China
| | - Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Nanjing, China
| | - Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Nanjing, China
| | - Tesfaye Getachew
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa, Ethiopia
| | - Joram M Mwacharo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa, Ethiopia
| | - Aynalem Haile
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa, Ethiopia
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Nanjing, China
| |
Collapse
|
6
|
Brondolin M, Herzog D, Sultan S, Warburton F, Vigilante A, Knight RD. Migration and differentiation of muscle stem cells are coupled by RhoA signalling during regeneration. Open Biol 2023; 13:230037. [PMID: 37726092 PMCID: PMC10508982 DOI: 10.1098/rsob.230037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/31/2023] [Indexed: 09/21/2023] Open
Abstract
Skeletal muscle is highly regenerative and is mediated by a population of migratory adult muscle stem cells (muSCs). Effective muscle regeneration requires a spatio-temporally regulated response of the muSC population to generate sufficient muscle progenitor cells that then differentiate at the appropriate time. The relationship between muSC migration and cell fate is poorly understood and it is not clear how forces experienced by migrating cells affect cell behaviour. We have used zebrafish to understand the relationship between muSC cell adhesion, behaviour and fate in vivo. Imaging of pax7-expressing muSCs as they respond to focal injuries in trunk muscle reveals that they migrate by protrusive-based means. By carefully characterizing their behaviour in response to injury we find that they employ an adhesion-dependent mode of migration that is regulated by the RhoA kinase ROCK. Impaired ROCK activity results in reduced expression of cell cycle genes and increased differentiation in regenerating muscle. This correlates with changes to focal adhesion dynamics and migration, revealing that ROCK inhibition alters the interaction of muSCs to their local environment. We propose that muSC migration and differentiation are coupled processes that respond to changes in force from the environment mediated by RhoA signalling.
Collapse
Affiliation(s)
- Mirco Brondolin
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, London SE1 9RT, UK
| | - Dylan Herzog
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, London SE1 9RT, UK
| | - Sami Sultan
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, London SE1 9RT, UK
| | - Fiona Warburton
- Oral Clinical Research Unit, King's College London, London, London SE1 9RT, UK
| | | | - Robert D. Knight
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, London SE1 9RT, UK
| |
Collapse
|
7
|
Liu Q, Jin S, Li L, Ayi L, Ding H. Massage protects skeletal muscle from injury during long-term heavy-duty exercise via integrin β1 and laminin 2 channels of basement membrane. BMC Complement Med Ther 2023; 23:266. [PMID: 37495963 PMCID: PMC10369692 DOI: 10.1186/s12906-023-04094-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 07/15/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Massage is widely used in exercise-induced skeletal muscle damage (EIMD). It has been proven that massage can improve the morphology and function of damaged skeletal muscle in multiple ways. However, whether massage can protect skeletal muscles from injury during long-term heavy-duty exercise has not yet been determined. METHODS In this study, a rat model of overuse injury was established by eccentric running for 4 weeks, and pressing at constant pressure and frequency and massage were used as intervention methods to explore whether massage could protect skeletal muscle from injury through upregulating integrin and the basement membrane laminin. RESULTS The results showed that compared with the model group, the ultrastructure of skeletal muscle in the massage group was relatively complete and clear, and the maximum isotonic and tetanic contraction forces were significantly increased (P < 0.01). In addition, in the massage group, β1 integrin expression was significantly increased, p-FAK protein expression was decreased, and the co-localization of β1 integrin and the basement membrane laminin 2 was significantly increased (P < 0.01). CONCLUSION Our study shows that during long-term heavy-duty exercise, massage can enhance the cell adhesion function mediated by integrin β1 and laminin 2 to protect skeletal muscle from injury and prevent the occurrence of overuse injury.
Collapse
Affiliation(s)
- Qingsong Liu
- Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Songlin Jin
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Lunyu Li
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Liubu Ayi
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Haili Ding
- Insititute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China.
| |
Collapse
|
8
|
Yang R, Liu Y, Cheng Y, Wang C, Song J, Lu G, Feng T, Wang S, Sun X, Meng J, Hao L. Effects and Molecular Mechanism of Single-Nucleotide Polymorphisms of MEG3 on Porcine Skeletal Muscle Development. Front Genet 2021; 12:607910. [PMID: 33692824 PMCID: PMC7937967 DOI: 10.3389/fgene.2021.607910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/01/2021] [Indexed: 12/17/2022] Open
Abstract
Maternally expressed gene 3 (MEG3) is a long non-coding RNA that is a crucial regulator of skeletal muscle development. Some single-nucleotide polymorphism (SNP) mutants in MEG3 had strong associations with meat quality traits. Nevertheless, the function and mechanism of MEG3 mutants on porcine skeletal muscle development have not yet been well-demonstrated. In this study, eight SNPs were identified in MEG3 of fat- and lean-type pig breeds. Four of these SNPs (g.3087C > T, g.3108C > T, g.3398C > T, and g.3971A > C) were significantly associated with meat quality and consisted of the CCCA haplotype for fat-type pigs and the TTCC haplotype for lean-type pigs. Quantitative real-time PCR results showed that the expression of MEG3-TTCC was higher than that of MEG3-CCCA in transcription level (P < 0.01). The stability assay showed that the lncRNA stability of MEG3-TTCC was lower than that of MEG3-CCCA (P < 0.05). Furthermore, the results of qRT-PCR, Western blot, and Cell Counting Kit-8 assays demonstrated that the overexpression of MEG3-TTCC more significantly inhibited the proliferation of porcine skeletal muscle satellite cells (SCs) than that of MEG3-CCCA (P < 0.05). Moreover, the overexpression of MEG3-TTCC more significantly promoted the differentiation of SCs than that of MEG3-CCCA (P < 0.05). The Western blot assay suggested that the overexpression of MEG3-TTCC and MEG3-CCCA inhibited the proliferation of SCs by inhibiting PI3K/AKT and MAPK/ERK1/2 signaling pathways. The overexpression of the two haplotypes also promoted the differentiation of SCs by activating the JAK2/STAT3 signaling pathway in different degrees. These data are valuable for further studies on understanding the crucial role of lncRNAs in skeletal muscle development.
Collapse
Affiliation(s)
- Rui Yang
- College of Animal Science, Jilin University, Changchun, China
| | - Yinuo Liu
- Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Yunyun Cheng
- College of Public Health, Jilin University, Changchun, China
| | - Chunli Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Jie Song
- College of Animal Science, Jilin University, Changchun, China
| | - Guanhong Lu
- College of Animal Science, Jilin University, Changchun, China
| | - Tianqi Feng
- College of Animal Science, Jilin University, Changchun, China
| | - Siyao Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Xiaotong Sun
- College of Animal Science, Jilin University, Changchun, China
| | - Jilun Meng
- Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
9
|
Hu Z, Cao J, Zhang J, Ge L, Zhang H, Liu X. Skeletal Muscle Transcriptome Analysis of Hanzhong Ma Duck at Different Growth Stages Using RNA-Seq. Biomolecules 2021; 11:315. [PMID: 33669581 PMCID: PMC7927120 DOI: 10.3390/biom11020315] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 01/02/2023] Open
Abstract
As one of the most important poultry worldwide, ducks (Anas platyrhynchos) are raised mainly for meat and egg products, and muscle development in ducks is important for meat production. Therefore, an investigation of gene expression in duck skeletal muscle would significantly contribute to our understanding of muscle development. In this study, twenty-four cDNA libraries were constructed from breast and leg muscles of Hanzhong Ma ducks at day 17, 21, 27 of the embryo and postnatal at 6-month-old. High-throughput sequencing and bioinformatics were used to determine the abundances and characteristics of transcripts. A total of 632,172,628 (average 52,681,052) and 637,213,938 (average 53,101,162) reads were obtained from the sequencing data of breast and leg muscles, respectively. Over 71.63% and 77.36% of the reads could be mapped to the Anas platyrhynchos genome. In the skeletal muscle of Hanzhong duck, intron variant (INTRON), synonymous variant (SYNONYMOUS_CODING), and prime 3' UTR variant (UTR_3_PRIME) were the main single nucleotide polymorphisms (SNP) annotation information, and "INTRON", "UTR_3_PRIME", and downstream-gene variant (DOWNSTREAM) were the main insertion-deletion (InDel) annotation information. The predicted number of alternative splicing (AS) in all samples were mainly alternative 5' first exon (transcription start site)-the first exon splicing (TSS) and alternative 3' last exon (transcription terminal site)-the last exon splicing (TTS). Besides, there were 292 to 2801 annotated differentially expressed genes (DEGs) in breast muscle and 304 to 1950 annotated DEGs in leg muscle from different databases. It is worth noting that 75 DEGs in breast muscle and 49 DEGs in leg muscle were co-expressed at all developmental points of comparison, respectively. The RNA-Seq data were confirmed to be reliable by qPCR. The identified DEGs, such as CREBL2, RHEB, GDF6, SHISA2, MYLK2, ACTN3, RYR3, and STMN1, were specially highlighted, indicating their strong associations with muscle development in the Hanzhong Ma duck. KEGG pathway analysis suggested that regulation of actin cytoskeleton, oxidative phosphorylation, and focal adhesion were involved in the development of skeletal muscle. The findings from this study can contribute to future investigations of the growth and development mechanism in duck skeletal muscle.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaolin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (Z.H.); (J.C.); (J.Z.); (L.G.); (H.Z.)
| |
Collapse
|
10
|
Choi S, Ferrari G, Tedesco FS. Cellular dynamics of myogenic cell migration: molecular mechanisms and implications for skeletal muscle cell therapies. EMBO Mol Med 2020; 12:e12357. [PMID: 33210465 PMCID: PMC7721365 DOI: 10.15252/emmm.202012357] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/02/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
Directional cell migration is a critical process underlying morphogenesis and post-natal tissue regeneration. During embryonic myogenesis, migration of skeletal myogenic progenitors is essential to generate the anlagen of limbs, diaphragm and tongue, whereas in post-natal skeletal muscles, migration of muscle satellite (stem) cells towards regions of injury is necessary for repair and regeneration of muscle fibres. Additionally, safe and efficient migration of transplanted cells is critical in cell therapies, both allogeneic and autologous. Although various myogenic cell types have been administered intramuscularly or intravascularly, functional restoration has not been achieved yet in patients with degenerative diseases affecting multiple large muscles. One of the key reasons for this negative outcome is the limited migration of donor cells, which hinders the overall cell engraftment potential. Here, we review mechanisms of myogenic stem/progenitor cell migration during skeletal muscle development and post-natal regeneration. Furthermore, strategies utilised to improve migratory capacity of myogenic cells are examined in order to identify potential treatments that may be applied to future transplantation protocols.
Collapse
Affiliation(s)
- SungWoo Choi
- Department of Cell and Developmental Biology, University College London, London, UK.,The Francis Crick Institute, London, UK
| | - Giulia Ferrari
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Francesco Saverio Tedesco
- Department of Cell and Developmental Biology, University College London, London, UK.,The Francis Crick Institute, London, UK.,Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
11
|
Tan Y, Jin Y, Wang S, Cao J, Ren Z. The RNA surveillance factor UPF1 regulates the migration and adhesion of porcine skeletal muscle satellite cells. J Muscle Res Cell Motil 2020; 42:203-217. [PMID: 32990898 DOI: 10.1007/s10974-020-09585-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Skeletal muscle satellite cells (SCs) play an important role in the repairment and regeneration of damaged muscle. The activation, proliferation, migration, and differentiation of SCs are essential to the response to muscle injury. Up-frameshift 1 (UPF1) is involved in the regulation of many developmental processes. However, the role of UPF1 and its associated regulatory mechanism in SCs are still unclear. Here, we analyzed changes in the transcriptome of porcine SCs with UPF1 knockdown. The results showed that focal adhesion and actin cytoskeleton processes were regulated by UPF1. We also confirmed experimentally that UPF1 promoted SC migration and adhesion by regulating the expression of F-Actin, Vinculin, and several adhesion-related genes. Furthermore, we found that phosphorylated focal adhesion kinase (p-FAK) was down-regulated by UPF1 knockdown. This study identifies the role of UPF1 in regulating SC migration and adhesion and therefore provides new insight into the regulatory mechanism of UPF1 in the process of repairing damaged muscle.
Collapse
Affiliation(s)
- Yanjie Tan
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Yi Jin
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Sheng Wang
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Jianhua Cao
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|
12
|
Jin CL, Zhang ZM, Song ZW, Gao CQ, Yan HC, Wang XQ. mTORC1-Mediated Satellite Cell Differentiation Is Required for Lysine-Induced Skeletal Muscle Growth. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4884-4892. [PMID: 32275833 DOI: 10.1021/acs.jafc.0c01275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Skeletal muscle is the primary source of protein for humans. However, the mechanisms of skeletal muscle growth, such as nutrition control, remain unknown. Moreover, the function of lysine (Lys) in controling skeletal muscle growth has gradually demonstrated that Lys is not only substantial for protein synthesis but also a signaling molecule for satellite cell (SC) activation. In the current work, the number of differentiated SCs in the longissimus thoracis muscle and the fusion index of SCs were both governed by Lys supplementation. Meanwhile, the myogenic regulatory factors and the mammalian target of rapamycin complex 1 (mTORC1) pathway showed the same tendencies of changes as the differentiation of SCs. After Lys was resupplemented with rapamycin, the mTORC1 pathway was inhibited and the differentiation ability of SCs was suppressed. Collectively, the results showed that the mTORC1-pathway-mediated SC differentiation was required for Lys-promoted skeletal muscle growth.
Collapse
Affiliation(s)
- Cheng-Long Jin
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, People's Republic of China
| | - Zong-Ming Zhang
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, People's Republic of China
| | - Zhi-Wen Song
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, People's Republic of China
| | - Chun-Qi Gao
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, People's Republic of China
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, People's Republic of China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, People's Republic of China
| |
Collapse
|
13
|
The Role of Rho GTPases in Motility and Invasion of Glioblastoma Cells. Anal Cell Pathol (Amst) 2020; 2020:9274016. [PMID: 32089990 PMCID: PMC7013281 DOI: 10.1155/2020/9274016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 12/27/2022] Open
Abstract
Astrocytomas are primary malignant brain tumors that originate from astrocytes. Grade IV astrocytoma or glioblastoma is a highly invasive tumor that occur within the brain parenchyma. The Rho family of small GTPases, which includes Rac1, Cdc42, and RhoA, is an important family whose members are key regulators of the invasion and migration of glioblastoma cells. In this review, we describe the role played by the Rho family of GTPases in the regulation of the invasion and migration of glioblastoma cells. Specifically, we focus on the role played by RhoA, Rac1, RhoG, and Cdc42 in cell migration through rearrangement of actin cytoskeleton, cell adhesion, and invasion. Finally, we highlight the importance of potentially targeting Rho GTPases in the treatment of glioblastoma.
Collapse
|
14
|
Kyei B, Li L, Yang L, Zhan S, Zhang H. CDR1as/miRNAs-related regulatory mechanisms in muscle development and diseases. Gene 2020; 730:144315. [PMID: 31904497 DOI: 10.1016/j.gene.2019.144315] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/18/2022]
Abstract
Muscles are critical tissues for mammals due to their close association with movement and physiology. Myogenesis involves proliferation, differentiation, and fusion of myoblast, in which many well-known protein-coding genes, as well as linear non-coding RNAs such as microRNAs (miRNAs), are involved. Recently, circular RNAs (circRNAs) have attracted much attention since several circRNAs are known to play significant roles in muscle development and diseases through limited mechanisms, particularly through sponging miRNAs. Through advanced researches, increasing evidence suggests that Cerebellar Degeneration-Related protein 1 antisense (CDR1as) is an important circRNA that regulates the levels of mRNAs expression via competitively sponged miRNAs. Here, we reviewed the robust expression and base pairing relationships of CDR1as and several myogenic miRNAs, as well as these miRNAs and their targeted genes in muscles or some muscle-related diseases. These potential CDR1as/miRNAs/mRNA pathways will provide the basis for further research on the function of CDR1as in muscle development, and eventually extend the versatile roles of CDR1as in mammals.
Collapse
Affiliation(s)
- Bismark Kyei
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Liu Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Siyuan Zhan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongping Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
15
|
mTORC1 Mediates Lysine-Induced Satellite Cell Activation to Promote Skeletal Muscle Growth. Cells 2019; 8:cells8121549. [PMID: 31801253 PMCID: PMC6953079 DOI: 10.3390/cells8121549] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 12/19/2022] Open
Abstract
As the first limiting amino acid, lysine (Lys) has been thought to promote muscle fiber hypertrophy by increasing protein synthesis. However, the functions of Lys seem far more complex than that. Despite the fact that satellite cells (SCs) play an important role in skeletal muscle growth, the communication between Lys and SCs remains unclear. In this study, we investigated whether SCs participate directly in Lys-induced skeletal muscle growth and whether the mammalian target of rapamycin complex 1 (mTORC1) pathway was activated both in vivo and in vitro to mediate SC functions in response to Lys supplementation. Subsequently, the skeletal muscle growth of piglets was controlled by dietary Lys supplementation. Isobaric tag for relative and absolute quantitation (iTRAQ) analysis showed activated SCs were required for longissimus dorsi muscle growth, and this effect was accompanied by mTORC1 pathway upregulation. Furthermore, SC proliferation was governed by medium Lys concentrations, and the mTORC1 pathway was significantly enhanced in vitro. After verifying that rapamycin inhibits the mTORC1 pathway and suppresses SC proliferation, we conclude that Lys is not only a molecular building block for protein synthesis but also a signal that activates SCs to manipulate muscle growth via the mTORC1 pathway.
Collapse
|
16
|
Jin CL, Zhang ZM, Ye JL, Gao CQ, Yan HC, Li HC, Yang JZ, Wang XQ. Lysine-induced swine satellite cell migration is mediated by the FAK pathway. Food Funct 2019; 10:583-591. [PMID: 30672919 DOI: 10.1039/c8fo02066c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lysine (Lys) is an essential amino acid for mammals in promoting protein synthesis and skeletal muscle growth. However, the underlying mechanism by which Lys governs muscle growth remains unknown. Lys is not only a material for protein synthesis but also a signaling molecule. Cell migration is a fundamental process for satellite cells (SCs) to promote muscle fiber hypertrophy and thus increase muscle mass. Nevertheless, the communication between Lys and SC has not yet attracted sufficient attention. In this study, we investigated whether Lys directly stimulates SC migration and whether this effect is mediated via the focal adhesion kinase (FAK) pathway. The results of a cell wound-healing assay and transwell assays indicated a significant inhibition of migration ability by Lys deficiency. In addition, the phosphorylation of FAK, paxillin and protein kinase B (Akt) was significantly suppressed, as were the level of integrin β3. Fortunately, we found that increasing Lys levels from deficiency to sufficiency rescued the migration ability to the control level. Moreover, compared with those in the Lys-deficiency group, the proteins in the FAK pathways were reactivated in the Lys-resupplementation group. In conclusion, these findings indicate that the FAK pathway mediates Lys-induced SC migration.
Collapse
Affiliation(s)
- Cheng-Long Jin
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Du Y, Liu P, Chen Z, He Y, Zhang B, Dai G, Xia W, Liu Y, Chen X. PTEN improve renal fibrosis in vitro and in vivo through inhibiting FAK/AKT signaling pathway. J Cell Biochem 2019; 120:17887-17897. [PMID: 31144376 DOI: 10.1002/jcb.29057] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 01/24/2023]
Affiliation(s)
- Yongchao Du
- Department of Urology, Xiangya Hospital Central South University Changsha Hunan PR China
| | - Peihua Liu
- Department of Urology, Xiangya Hospital Central South University Changsha Hunan PR China
| | - Zhi Chen
- Department of Urology, Xiangya Hospital Central South University Changsha Hunan PR China
| | - Yao He
- Department of Urology, Xiangya Hospital Central South University Changsha Hunan PR China
| | - Bo Zhang
- Department of Urology, Xiangya Hospital Central South University Changsha Hunan PR China
| | - Guoyu Dai
- Department of Urology, Xiangya Hospital Central South University Changsha Hunan PR China
| | - Weiping Xia
- Department of Urology, Xiangya Hospital Central South University Changsha Hunan PR China
| | - Yuhang Liu
- Department of Urology, Xiangya Hospital Central South University Changsha Hunan PR China
| | - Xiang Chen
- Department of Urology, Xiangya Hospital Central South University Changsha Hunan PR China
| |
Collapse
|
18
|
Zhang Z, Du H, Yang C, Li Q, Qiu M, Song X, Yu C, Jiang X, Liu L, Hu C, Xia B, Xiong X, Yang L, Peng H, Jiang X. Comparative transcriptome analysis reveals regulators mediating breast muscle growth and development in three chicken breeds. Anim Biotechnol 2019; 30:233-241. [PMID: 30601081 DOI: 10.1080/10495398.2018.1476377] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective: The goal of this study was to investigate the mechanisms of muscle growth and development of three chicken breeds. Participants: Eighteen chickens, including three different breeds with different growth speeds (White Broiler, Daheng, and Commercial Layers of Roman), were used. Methods: Total RNA from breast muscle of these chickens was subjected to a gene expression microarray. Differentially expressed genes (DEGs) were screened and functional enrichment analysis was performed using DAVID. Seven DEGs were confirmed by quantitative reverse transcription PCR. Results: Overall, 8,398 DEGs were found among the different lines. The DEGs between each two lines that were unique for a developmental stage were greater than those that were common during all stages. Functional analysis revealed that DEGs across the entire developmental process were primarily involved in positive cell proliferation, growth, cell differentiation, and developmental processes. Genes involved in muscle regulation, muscle construction, and muscle cell differentiation were upregulated in the faster-growing breed compared to the slower-growing breed. DEGs including myosin heavy chain 15 (MYH15), myozenin 2 (MYOZ2), myosin-binding protein C (MYBPC3), insulin-like growth factor 2 (IGF2), apoptosis regulator (BCL-2), AP-1 transcription factor subunit (JUN), and AP-1 transcription factor subunit (FOS) directly regulated muscle growth or were in the center of the protein-protein interaction network. Pathways, including the extracellular matrix (ECM)-receptor interaction, mitogen-activated protein kinase (MAPK) signaling pathway, and focal adhesion, were the most enriched DEGs between lines or within lines under different developmental stages. Conclusions: Genes involved in muscle construction and cell differentiation were differentially expressed among the three breeds.
Collapse
Affiliation(s)
- Zengrong Zhang
- a Sichuan Animal Science Academy , Chengdu , Sichuan , China.,b Sichuan Daheng Poultry Breeding Company , Chengdu , Sichuan , China
| | - Huarui Du
- a Sichuan Animal Science Academy , Chengdu , Sichuan , China
| | - Chaowu Yang
- a Sichuan Animal Science Academy , Chengdu , Sichuan , China
| | - Qingyun Li
- c Animal Breeding and Genetics Key Laboratory of Sichuan Province , Chengdu , Sichuan , China
| | - Mohan Qiu
- a Sichuan Animal Science Academy , Chengdu , Sichuan , China
| | - Xiaoyan Song
- b Sichuan Daheng Poultry Breeding Company , Chengdu , Sichuan , China
| | - Chunlin Yu
- c Animal Breeding and Genetics Key Laboratory of Sichuan Province , Chengdu , Sichuan , China
| | - Xiaoyu Jiang
- c Animal Breeding and Genetics Key Laboratory of Sichuan Province , Chengdu , Sichuan , China
| | - Lan Liu
- c Animal Breeding and Genetics Key Laboratory of Sichuan Province , Chengdu , Sichuan , China
| | - Chenming Hu
- c Animal Breeding and Genetics Key Laboratory of Sichuan Province , Chengdu , Sichuan , China
| | - Bo Xia
- a Sichuan Animal Science Academy , Chengdu , Sichuan , China
| | - Xia Xiong
- a Sichuan Animal Science Academy , Chengdu , Sichuan , China
| | - Li Yang
- c Animal Breeding and Genetics Key Laboratory of Sichuan Province , Chengdu , Sichuan , China
| | - Han Peng
- b Sichuan Daheng Poultry Breeding Company , Chengdu , Sichuan , China
| | - Xiaosong Jiang
- a Sichuan Animal Science Academy , Chengdu , Sichuan , China.,b Sichuan Daheng Poultry Breeding Company , Chengdu , Sichuan , China
| |
Collapse
|
19
|
Ohmi Y, Kambe M, Ohkawa Y, Hamamura K, Tajima O, Takeuchi R, Furukawa K, Furukawa K. Differential roles of gangliosides in malignant properties of melanomas. PLoS One 2018; 13:e0206881. [PMID: 30462668 PMCID: PMC6248923 DOI: 10.1371/journal.pone.0206881] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/22/2018] [Indexed: 12/18/2022] Open
Abstract
Ganglioside GD3 is widely expressed in human malignant melanomas, and has been reported to be involved in the increased cell proliferation and invasion. In this study, we established GM3-, GM2-, GM1-, GD3-, or GD2-expressing melanoma cell lines by transfecting cDNAs of glyscosyltransferases, and effects of individual gangliosides on the cell phenotypes and signals were examined. The phenotypes of established ganglioside-expressing cells were quite different, i.e. cell growth increased as following order; GD2+, GD3+ > GM1+, GM2+, GM3+ cells. Cell invasion activity increased as GD3+ ≧ GM2+ > GM1+, GM3+, GD2+ cells. Intensity of cell adhesion to collagen I (CL-I) and spreading increased as GD2+ >> GD3+, GM1+ > GM2+, GM3+ cells. In particular, cell adhesion of GD2+ cells was markedly strong. As for cell migration velocity, GD2+ cells were slower than all other cells. The immunocytostaining revealed close localization of gangliosides and F-actin in lamellipodia. Immunoblotting of phosphorylated p130Cas and paxillin by serum treatment reveled that these phosphorylations were more increased in GD3+ cells than in GD2+ or GM3+ cells, while phosphorylation of Akt underwent similarly increased phosphorylation between GD3+ and GD2+ cells compared with GM3+ cells. While GD2 and GD3 enhanced cell growth, GD3 might also contribute in cell invasion. On the other hand, GD2 might contribute in the solid fixation of melanoma cells at metastasized sites. These results suggested that individual gangliosides exert distinct roles in the different aspects of melanomas by differentially regulating cytoskeletons and signaling molecules.
Collapse
Affiliation(s)
- Yuhsuke Ohmi
- Department of Clinical Engineering, Chubu University College of Life and Health Sciences, Kasugai, Aichi, Japan
| | - Mariko Kambe
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Aichi, Japan
| | - Yuki Ohkawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Aichi, Japan
| | - Kazunori Hamamura
- Department of Pharmacology, School of Dentistry, Aichigakuin University, Nagoya, Japan
| | - Orie Tajima
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Aichi, Japan
| | - Rika Takeuchi
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Aichi, Japan
| | - Koichi Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Aichi, Japan
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiko Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Aichi, Japan
- * E-mail:
| |
Collapse
|
20
|
Type I collagen-induced YAP nuclear expression promotes primary cilia growth and contributes to cell migration in confluent mouse embryo fibroblast 3T3-L1 cells. Mol Cell Biochem 2018; 450:87-96. [DOI: 10.1007/s11010-018-3375-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 05/23/2018] [Indexed: 12/18/2022]
|
21
|
Miersch C, Stange K, Röntgen M. Effects of trypsinization and of a combined trypsin, collagenase, and DNase digestion on liberation and in vitro function of satellite cells isolated from juvenile porcine muscles. In Vitro Cell Dev Biol Anim 2018; 54:406-412. [PMID: 29785535 PMCID: PMC5997727 DOI: 10.1007/s11626-018-0263-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/02/2018] [Indexed: 12/27/2022]
Abstract
Muscle stem cells, termed satellite cells (SC), and SC-derived myogenic progenitor cells (MPC) are involved in postnatal muscle growth, regeneration, and muscle adaptability. They can be released from their natural environment by mechanical disruption and tissue digestion. The literature contains several isolation protocols for porcine SC/MPC including various digestion procedures, but comparative studies are missing. In this report, classic trypsinization and a more complex trypsin, collagenase, and DNase (TCD) digestion were performed with skeletal muscle tissue from 4- to 5-d-old piglets. The two digestion procedures were compared regarding cell yield, viability, myogenic purity, and in vitro cell function. The TCD digestion tended to result in higher cell yields than digestion with solely trypsin (statistical trend p = 0.096), whereas cell size and viability did not differ. Isolated myogenic cells from both digestion procedures showed comparable proliferation rates, expressed the myogenic marker Desmin, and initiated myogenic differentiation in vitro at similar levels. Thus, TCD digestion tended to liberate slightly more cells without changes in the tested in vitro properties of the isolated cells. Both procedures are adequate for the isolation of SC/MPC from juvenile porcine muscles but the developmental state of the animal should always be considered.
Collapse
Affiliation(s)
- Claudia Miersch
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, Growth and Development Unit, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Katja Stange
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, Growth and Development Unit, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Monika Röntgen
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, Growth and Development Unit, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
22
|
Gao CQ, Xu YL, Jin CL, Hu XC, Li HC, Xing GX, Yan HC, Wang XQ. Differentiation capacities of skeletal muscle satellite cells in Lantang and Landrace piglets. Oncotarget 2017; 8:43192-43200. [PMID: 28574820 PMCID: PMC5522138 DOI: 10.18632/oncotarget.17860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/03/2017] [Indexed: 01/31/2023] Open
Abstract
We isolated and cultured satellite cells (SCs) from the longissimus dorsi muscles of 1-day-old male Landrace and Lantang piglets to compare the SC differentiation capacity in the two breeds. Lantang piglets yielded more (P < 0.05) SCs per gram of muscle than Landrace piglets (5.2 ± 0.9×104 vs. 2.4 ± 0.2×104). Transcription of the differentiation markers myogenin and myosin heavy chain I (MyHC I) in the longissimus dorsi muscle was higher in Lantang than Landrace piglets (P < 0.05). Protein levels of myogenin (P < 0.05), MyHC I (P < 0.05), and myogenic regulatory factor 4 (P = 0.07) were higher in Lantang than Landrace piglet SCs after 72 h of differentiation. Creatine kinase activity was higher in Lantang than Landrace piglet SCs after 24, 48, and 72 h of differentiation (P < 0.05), and there was a greater fusion index in Landrace piglet SCs after 72 h of differentiation. In addition, phosphorylation of Akt, mTOR, S6K1, S6, and 4EBP1 was lower in Lantang than Landrace piglet SCs (P < 0.05). Thus differentiation was more extensive in Lantang than Landrace piglet SCs, but expression of the mTOR signaling pathway was lower in Lantang piglet SCs, suggesting mTOR signaling may inhibit myogenic differentiation. These findings reveal that mTOR signaling is a factor in myogenesis and imply that mTOR could potentially serve as an activator of myoblast differentiation and muscle regeneration.
Collapse
Affiliation(s)
- Chun-Qi Gao
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation/ National Engineering Research Center for Breeding Swine Industry, Guangdong, China
| | - Yin-Long Xu
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation/ National Engineering Research Center for Breeding Swine Industry, Guangdong, China
- Guangzhou United Bio-Technology Feed Co., Ltd, Guangzhou, China
| | - Cheng-Long Jin
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation/ National Engineering Research Center for Breeding Swine Industry, Guangdong, China
| | - Xiao-Chao Hu
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation/ National Engineering Research Center for Breeding Swine Industry, Guangdong, China
| | - Hai-Chang Li
- Davis Heart & Lung Research Institute, Wexner Medical Center at the Ohio State University, Columbus, OH, USA
| | - Guang-Xu Xing
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation/ National Engineering Research Center for Breeding Swine Industry, Guangdong, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation/ National Engineering Research Center for Breeding Swine Industry, Guangdong, China
| |
Collapse
|
23
|
Targeted inhibition of Focal Adhesion Kinase Attenuates Cardiac Fibrosis and Preserves Heart Function in Adverse Cardiac Remodeling. Sci Rep 2017; 7:43146. [PMID: 28225063 PMCID: PMC5320468 DOI: 10.1038/srep43146] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/16/2016] [Indexed: 12/02/2022] Open
Abstract
Cardiac fibrosis in post-myocardial infarction (MI), seen in both infarcted and non-infarcted myocardium, is beneficial to the recovery of heart function. But progressively pathological fibrosis impairs ventricular function and leads to poor prognosis. FAK has recently received attention as a potential mediator of fibrosis, our previous study reported that pharmacological inhibition of FAK can attenuate cardiac fibrosis in post MI models. However, the long-term effects on cardiac function and adverse cardiac remodelling were not clearly investigated. In this study, we tried to determine the preliminary mechanisms in regulating CF transformation to myofibroblasts and ECM synthesis relevant to the development of adverse cardiac remolding in vivo and in vitro. Our study provides even more evidence that FAK is directly related to the activation of CF in hypoxia condition in a dose-dependent and time-dependent manner. Pharmacological inhibition of FAK significantly reduces myofibroblast differentiation; our in vivo data demonstrated that a FAK inhibitor significantly decreases fibrotic score, and preserves partial left ventricular function. Both PI3K/AKT signalling and ERK1/2 are necessary for hypoxia-induced CF differentiation and ECM synthesis; this process also involves lysyl oxidase (LOX). These findings suggest that pharmacological inhibition of FAK may become an effective therapeutic strategy against adverse fibrosis.
Collapse
|