1
|
Wang Y, Mei N, Zhou Z, Fang Y, Lin J, Zhao F, Fang Z, Li Y. A novel prediction model for the prognosis of non-small cell lung cancer with clinical routine laboratory indicators: a machine learning approach. BMC Med Inform Decis Mak 2024; 24:344. [PMID: 39558294 PMCID: PMC11575007 DOI: 10.1186/s12911-024-02753-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Lung cancer is characterized by high morbidity and mortality due to the lack of practical early diagnostic and prognostic tools. The present study uses machine learning algorithms to construct a clinical predictive model for non-small cell lung cancer (NSCLC) patients. METHODS Laboratory indices of the NSCLC patients at their initial visit were collected for quality control and exploratory analysis. By comparing the levels of the above indices between the survival and death groups, the statistically significant indices were selected for subsequent machine learning modeling. Ten machine learning algorithms were then employed to develop the predictive models with survival and recurrence as outcomes, respectively. Moreover, regression models were constructed using the random survival forest algorithm by incorporating the survival time dimension. Finally, critical variables in the optimal model were screened based on the interpretable algorithms to build a decision tree to facilitate clinical application. RESULTS 682 patients were enrolled according to the inclusion and exclusion criteria. The preliminary comparison results revealed that except for fast blood glucose, CD3+T cell proportion, NK cell proportion, and CA72-4, there were significant statistical differences in other tumor markers, inflammation, metabolism, and immune-related indices between the survival and death groups (p < 0.01). Subsequently, indices with statistical differences were incorporated into machine learning modeling and evaluation. The results showed that among the ten prognostic models constructed using survival status as the outcome, the neural network model obtained the best predictive performance, with accuracy, sensitivity, specificity, AUC, and precision values of 0.993, 0.987, 1.000, 0.994, and 1.000, respectively. The corresponding SHAP16 algorithm revealed that the top five variables in terms of importance were interleukin6 (IL-6), soluble interleukin2 receptor (sIL-2R), cholesterol, CEA, and Cy211, respectively. The random survival forest model also confirmed the critical role of CEA, sIL-2R, and IL-6 in predicting the prognosis of NSCLC patients. A decision tree model with seven cut-off points based on the above three indices was eventually built for clinical application. CONCLUSION The neural network model exhibited ideal predictive performance in the survival status of NSCLC patients, and the decision tree model constructed based on selected important variables was conducive to rapid bedside prognosis assessment and decision-making.
Collapse
Affiliation(s)
- Yuli Wang
- Clinical Medical Center of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Na Mei
- Clinical Medical Center of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Ziyi Zhou
- Clinical Medical Center of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yuan Fang
- Clinical Medical Center of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Jiacheng Lin
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fanchen Zhao
- Clinical Medical Center of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Zhihong Fang
- Clinical Medical Center of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| | - Yan Li
- Clinical Medical Center of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|
2
|
Gao F, You X, Yang L, Zou X, Sui B. Boosting immune responses in lung tumor immune microenvironment: A comprehensive review of strategies and adjuvants. Int Rev Immunol 2024; 43:280-308. [PMID: 38525925 DOI: 10.1080/08830185.2024.2333275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/12/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024]
Abstract
The immune system has a substantial impact on the growth and expansion of lung malignancies. Immune cells are encompassed by a stroma comprising an extracellular matrix (ECM) and different cells like stromal cells, which are known as the tumor immune microenvironment (TIME). TME is marked by the presence of immunosuppressive factors, which inhibit the function of immune cells and expand tumor growth. In recent years, numerous strategies and adjuvants have been developed to extend immune responses in the TIME, to improve the efficacy of immunotherapy. In this comprehensive review, we outline the present knowledge of immune evasion mechanisms in lung TIME, explain the biology of immune cells and diverse effectors on these components, and discuss various approaches for overcoming suppressive barriers. We highlight the potential of novel adjuvants, including toll-like receptor (TLR) agonists, cytokines, phytochemicals, nanocarriers, and oncolytic viruses, for enhancing immune responses in the TME. Ultimately, we provide a summary of ongoing clinical trials investigating these strategies and adjuvants in lung cancer patients. This review also provides a broad overview of the current state-of-the-art in boosting immune responses in the TIME and highlights the potential of these approaches for improving outcomes in lung cancer patients.
Collapse
Affiliation(s)
- Fei Gao
- Department of Oncology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Xiaoqing You
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Liu Yang
- Department of Oncology, Da Qing Long Nan Hospital, Daqing, Heilongjiang Province, China
| | - Xiangni Zou
- Department of Nursing, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Bowen Sui
- Department of Oncology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| |
Collapse
|
3
|
Eichhorn F, Weigert A, Nandigama R, Klotz LV, Wilhelm J, Kriegsmann M, Allgäuer M, Muley T, Christopoulos P, Savai R, Eichhorn ME, Winter H. Prognostic Impact of the Immune-Cell Infiltrate in N1-Positive Non-Small-Cell Lung Cancer. Clin Lung Cancer 2023; 24:706-716.e1. [PMID: 37460340 DOI: 10.1016/j.cllc.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/29/2023] [Accepted: 06/24/2023] [Indexed: 11/24/2023]
Abstract
INTRODUCTION The tumoral immune milieu plays a crucial role for the development of non-small-cell lung cancer (NSCLC) and may influence individual prognosis. We analyzed the predictive role of immune cell infiltrates after curative lung cancer surgery. MATERIALS AND METHODS The tumoral immune-cell infiltrate from 174 patients with pN1 NSCLC and adjuvant chemotherapy was characterized using immunofluorescence staining. The density and distribution of specific immune cells in tumor center (TU), invasive front (IF) and normal tissue (NORM) were correlated with clinical parameters and survival data. RESULTS Tumor specific survival (TSS) of all patients was 69.9% at 5 years. The density of tumor infiltrating lymphocytes (TIL) was higher in TU and IF than in NORM. High TIL density in TU (low vs. high: 62.0% vs. 86.7%; p = .011) and the presence of cytotoxic T-Lymphocytes (CTLs) in TU and IF were associated with improved TSS (positive vs. negative: 90.6% vs. 64.7% p = .024). High TIL-density correlated with programmed death-ligand 1 expression levels ≥50% (p < .001). Multivariate analysis identified accumulation of TIL (p = .016) and low Treg density (p = .003) in TU as negative prognostic predictors in squamous cell carcinoma (p = .025), whereas M1-like tumor- associated macrophages (p = .019) and high programmed death-ligand 1 status (p = .038) were associated with better survival in adenocarcinoma. CONCLUSION The assessment of specific intratumoral immune cells may serve as a prognostic predictor in pN1 NSCLC. However differences were observed related to adenocarcinoma or squamous cell carcinoma histology. Prospective assessment of the immune-cell infiltrate and further clarification of its prognostic relevance could assist patient selection for upcoming perioperative immunotherapies.
Collapse
Affiliation(s)
- Florian Eichhorn
- Department of Thoracic Surgery, Thoraxklinik, Heidelberg University, Heidelberg, Germany; Translational Lung Research Center, German Center for Lung Research (DZL), Heidelberg, Germany.
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany; Frankfurt Cancer Institute (FCI), Goethe University, and German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
| | - Rajender Nandigama
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany; Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Laura V Klotz
- Department of Thoracic Surgery, Thoraxklinik, Heidelberg University, Heidelberg, Germany; Translational Lung Research Center, German Center for Lung Research (DZL), Heidelberg, Germany
| | - Jochen Wilhelm
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany; Internal Medicine, University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
| | - Mark Kriegsmann
- Translational Lung Research Center, German Center for Lung Research (DZL), Heidelberg, Germany; Institute of Pathology Wiesbaden, Wiesbaden, Germany
| | - Michael Allgäuer
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Muley
- Translational Lung Research Center, German Center for Lung Research (DZL), Heidelberg, Germany; Section Translational Research (STF), Thoraxklinik, Heidelberg University, Heidelberg, Germany
| | - Petros Christopoulos
- Translational Lung Research Center, German Center for Lung Research (DZL), Heidelberg, Germany; Department of Thoracic Oncology, Thoraxklinik, Heidelberg University Hospital, Heidelberg, Germany
| | - Rajkumar Savai
- Frankfurt Cancer Institute (FCI), Goethe University, and German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany; Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany; Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Martin E Eichhorn
- Department of Thoracic Surgery, Thoraxklinik, Heidelberg University, Heidelberg, Germany; Translational Lung Research Center, German Center for Lung Research (DZL), Heidelberg, Germany
| | - Hauke Winter
- Department of Thoracic Surgery, Thoraxklinik, Heidelberg University, Heidelberg, Germany; Translational Lung Research Center, German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
4
|
Smith R, Yendamuri S, Vedire Y, Rosario S, Zollo R, Washington D, Sass S, Ivanick NM, Reid M, Barbi J. Immunoprofiling bronchoalveolar lavage cells reveals multifaceted smoking-associated immune dysfunction. ERJ Open Res 2023; 9:00688-2022. [PMID: 37342091 PMCID: PMC10277872 DOI: 10.1183/23120541.00688-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/22/2023] [Indexed: 06/22/2023] Open
Abstract
Background Bronchoalveolar lavage (BAL) is an underutilised tool in the search for pulmonary disease biomarkers. While leukocytes with effector and suppressor function play important roles in airway immunity and tumours, it remains unclear if frequencies and phenotypes of BAL leukocytes can be useful parameters in lung cancer studies and clinical trials. We therefore explored the utility of BAL leukocytes as a source of biomarkers interrogating the impact of smoking, a major lung cancer risk determinant, on pulmonary immunity. Methods In this "test case" observational study, BAL samples from 119 donors undergoing lung cancer screening and biopsy procedures were evaluated by conventional and spectral flow cytometry to exemplify the comprehensive immune analyses possible with this biospecimen. Proportions of major leukocyte populations and phenotypic markers levels were found. Multivariate linear rank sum analysis considering age, sex, cancer diagnosis and smoking status was performed. Results Significantly increased frequencies of myeloid-derived suppressor cells and PD-L1-expressing macrophages were found in current and former smokers compared to never-smokers. While cytotoxic CD8 T-cells and conventional CD4 helper T-cell frequencies were significantly reduced in current and former smokers, expression of immune checkpoints PD-1 and LAG-3 as well as Tregs proportions were increased. Lastly, the cellularity, viability and stability of several immune readouts under cryostorage suggested BAL samples are useful for correlative end-points in clinical trials. Conclusions Smoking is associated with heightened markers of immune dysfunction, readily assayable in BAL, that may reflect a permissive environment for cancer development and progression in the airway.
Collapse
Affiliation(s)
- Randall Smith
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- These authors contributed equally
| | - Sai Yendamuri
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- These authors contributed equally
- These authors contributed equally to this article as lead authors and supervised the work
| | - Yeshwanth Vedire
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Spencer Rosario
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Robert Zollo
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Deschana Washington
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Stephanie Sass
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Nathaniel M. Ivanick
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Mary Reid
- Department of Medicine – Survivorship and Supportive Care, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Joseph Barbi
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- These authors contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
5
|
Lim JU, Lee E, Lee SY, Cho HJ, Ahn DH, Hwang Y, Choi JY, Yeo CD, Park CK, Kim SJ. Current literature review on the tumor immune micro-environment, its heterogeneity and future perspectives in treatment of advanced non-small cell lung cancer. Transl Lung Cancer Res 2023; 12:857-876. [PMID: 37197639 PMCID: PMC10183402 DOI: 10.21037/tlcr-22-633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/07/2023] [Indexed: 03/21/2023]
Abstract
Background and Objective Immune checkpoint inhibitors (ICI) were a major clinical advancement that provided an opportunity to improve the prognosis of patients with non-small cell lung cancer (NSCLC). However, programmed death-ligand-1 (PD-L1) expression does not sufficiently predict ICI efficacy in NSCLC patients. In recent studies, the tumor immune microenvironment (TIME) was shown to have a central role in lung cancer progression and to affect clinical outcome of patients diagnosed with lung cancer. As development of new therapeutic targets to overcome ICI resistance is a priority, understanding the TIME is important. Recently, a series of studies was conducted to target each component of TIME to improve efficacy of cancer treatment. In this review, important features related to TIME, its heterogeneity and current trends in treatment targeting the component of TIME are discussed. Methods PubMed and PMC were searched from January 1st, 2012 to August 16th, 2022 using the following key words: "NSCLC", "Tumor microenvironment", "Immune", "Metastasis" and "Heterogeneity". Key Content and Findings Heterogeneity in the TIME can be either spatial or temporal. Subsequent to heterogeneous changes in the TIME, treatment of lung cancer can be more challenging because drug resistance is more likely to occur. In terms of the TIME, the main concept for increasing the chance of successful NSCLC treatment is to activate immune responses against tumor cells and inhibit immunosuppressive activities. In addition, relevant research is focused on normalizing an otherwise aberrant TIME in NSCLC patients. Potential therapeutic targets include immune cells, cytokine interactions, and non-immune cells such as fibroblasts or vessels. Conclusions In management of lung cancer, understanding TIME and its heterogeneity is significant to treatment outcomes. Ongoing trials including various treatment modalities such as radiotherapy, cytotoxic chemotherapy, and anti-angiogenic treatment and regimens inhibiting other immunoinhibitory molecules are promising.
Collapse
Affiliation(s)
- Jeong Uk Lim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eunyoung Lee
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang-Yun Lee
- Department of Biomedical Engineering, Gachon University, Seongnam, Republic of Korea
| | - Hyeong Jun Cho
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong Hyuck Ahn
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yongki Hwang
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joon Young Choi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chang Dong Yeo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chan Kwon Park
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Joon Kim
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
6
|
Pabst L, Lopes S, Bertrand B, Creusot Q, Kotovskaya M, Pencreach E, Beau-Faller M, Mascaux C. Prognostic and Predictive Biomarkers in the Era of Immunotherapy for Lung Cancer. Int J Mol Sci 2023; 24:ijms24087577. [PMID: 37108738 PMCID: PMC10145126 DOI: 10.3390/ijms24087577] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The therapeutic algorithm of lung cancer has recently been revolutionized by the emergence of immune checkpoint inhibitors. However, an objective and durable response rate remains low with those recent therapies and some patients even experience severe adverse events. Prognostic and predictive biomarkers are therefore needed in order to select patients who will respond. Nowadays, the only validated biomarker is the PD-L1 expression, but its predictive value remains imperfect, and it does not offer any certainty of a sustained response to treatment. With recent progresses in molecular biology, genome sequencing techniques, and the understanding of the immune microenvironment of the tumor and its host, new molecular features have been highlighted. There are evidence in favor of the positive predictive value of the tumor mutational burden, as an example. From the expression of molecular interactions within tumor cells to biomarkers circulating in peripheral blood, many markers have been identified as associated with the response to immunotherapy. In this review, we would like to summarize the latest knowledge about predictive and prognostic biomarkers of immune checkpoint inhibitors efficacy in order to go further in the field of precision immuno-oncology.
Collapse
Affiliation(s)
- Lucile Pabst
- Pulmonology Department, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Sébastien Lopes
- Pharmacy Department, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Basil Bertrand
- Pulmonology Department, University Hospital of Strasbourg, 67000 Strasbourg, France
- Laboratory Streinth (STress REsponse and INnovative THerapy against Cancer), Inserm UMR_S 1113, IRFAC, Université de Strasbourg, ITI InnoVec, 67000 Strasbourg, France
| | - Quentin Creusot
- Pulmonology Department, University Hospital of Strasbourg, 67000 Strasbourg, France
- Laboratory Streinth (STress REsponse and INnovative THerapy against Cancer), Inserm UMR_S 1113, IRFAC, Université de Strasbourg, ITI InnoVec, 67000 Strasbourg, France
| | - Maria Kotovskaya
- Pulmonology Department, University Hospital of Strasbourg, 67000 Strasbourg, France
- Laboratory Streinth (STress REsponse and INnovative THerapy against Cancer), Inserm UMR_S 1113, IRFAC, Université de Strasbourg, ITI InnoVec, 67000 Strasbourg, France
| | - Erwan Pencreach
- Laboratory Streinth (STress REsponse and INnovative THerapy against Cancer), Inserm UMR_S 1113, IRFAC, Université de Strasbourg, ITI InnoVec, 67000 Strasbourg, France
- Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Michèle Beau-Faller
- Laboratory Streinth (STress REsponse and INnovative THerapy against Cancer), Inserm UMR_S 1113, IRFAC, Université de Strasbourg, ITI InnoVec, 67000 Strasbourg, France
- Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Céline Mascaux
- Pulmonology Department, University Hospital of Strasbourg, 67000 Strasbourg, France
- Laboratory Streinth (STress REsponse and INnovative THerapy against Cancer), Inserm UMR_S 1113, IRFAC, Université de Strasbourg, ITI InnoVec, 67000 Strasbourg, France
| |
Collapse
|
7
|
Sadeghirad H, Bahrami T, Layeghi SM, Yousefi H, Rezaei M, Hosseini-Fard SR, Radfar P, Warkiani ME, O'Byrne K, Kulasinghe A. Immunotherapeutic targets in non-small cell lung cancer. Immunology 2023; 168:256-272. [PMID: 35933597 DOI: 10.1111/imm.13562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/02/2022] [Indexed: 01/17/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common types of cancer in the world and has a 5-year survival rate of ~20%. Immunotherapies have shown promising results leading to durable responses, however, they are only effective for a subset of patients. To determine the best therapeutic approach, a thorough and in-depth profiling of the tumour microenvironment (TME) is required. The TME is a complex network of cell types that form an interconnected network, promoting tumour cell initiation, growth and dissemination. The stroma, immune cells and endothelial cells that comprise the TME generate a plethora of cytotoxic or cytoprotective signalling pathways. In this review, we discuss immunotherapeutic targets in NSCLC tumours and how the TME may influence patients' response to immunotherapy.
Collapse
Affiliation(s)
- Habib Sadeghirad
- University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Tayyeb Bahrami
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sepideh M Layeghi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, Louisiana, USA
| | - Meysam Rezaei
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Seyed R Hosseini-Fard
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Payar Radfar
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Majid E Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Ken O'Byrne
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Arutha Kulasinghe
- University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
8
|
A Ferroptosis-Related Gene Signature for Overall Survival Prediction and Immune Infiltration in Lung Squamous Cell Carcinoma. Biosci Rep 2022; 42:231598. [PMID: 35866375 PMCID: PMC9434561 DOI: 10.1042/bsr20212835] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/28/2022] [Accepted: 07/20/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Ferroptosis is associated with cancer initiation and progression. However, the molecular mechanism and prognostic value of ferroptosis-related genes in lung squamous cell carcinoma (LUSC) are poorly understood. Methods: The mRNA expression profiles, methylation data, and clinical information of patients with LUSC were downloaded from TCGA and GEO database. Ferroptosis-related differentially expressed genes (DEGs) were identified between cancerous and non-cancerous tissues, and their prognostic value was systemically investigated by bioinformatic analyses. Results: A ferroptosis-related gene signature (ALOX5, TFRC, PHKG2, FADS2, NOX1) was constructed using multivariate Cox regression analysis and represented as a risk score. Overall survival (OS) probability was significantly lower in the high-risk group than in the low-risk group (P<0.001), and receiver operating characteristic curve showed a good predictive capacity (AUC = 0.739). The risk score was an independent prognostic factor for LUSC. A nomogram was constructed to predict the OS probabilities at 1, 3, and 5 years. High-risk score was associated with increased immune infiltration, lower methylation levels, higher immune checkpoint genes expression levels, and better chemotherapy response. Cell adhesion molecules, focal adhesion, and extracellular matrix receptor interaction were the main pathways in the high-risk group. The signature was validated using the TCGA test cohort, entire TCGA cohort, GSE30219, GSE157010, GSE73403, and GSE4573 datasets. The gene disorders in patients with LUSC were validated using real-time PCR and single-cell RNA sequencing analysis. Conclusions: A ferroptosis-related gene signature was constructed to predict OS probability in LUSC. This could facilitate novel therapeutic methods and guide individualized therapy.
Collapse
|
9
|
SMARCA4-deficient lung carcinoma is an aggressive tumor highly infiltrated by FOXP3+ cells and neutrophils. Lung Cancer 2022; 169:13-21. [DOI: 10.1016/j.lungcan.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/25/2022] [Accepted: 05/01/2022] [Indexed: 11/19/2022]
|
10
|
Kikawa Y, Kotake T, Tsuyuki S, Kang Y, Takahara S, Fujimoto Y, Yamashiro H, Yoshibayashi H, Takada M, Yasuoka R, Nakatsukasa K, Yamagami K, Suwa H, Okuno T, Nakayama I, Kato T, Ogura N, Moriguchi Y, Ishiguro H, Kagimura T, Taguchi T, Sugie T, Toi M. Effectiveness of eribulin as first-line or second-line chemotherapy for HER2-negative hormone-resistant advanced or metastatic breast cancer: findings from the multi-institutional, prospective, observational KBCRN A001: E-SPEC study. Breast Cancer 2022; 29:796-807. [PMID: 35460066 DOI: 10.1007/s12282-022-01357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/03/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND The optimal positioning of eribulin treatment remains unclear. This study aimed to investigate the effectiveness of eribulin administration as first- and second-line chemotherapy in patients with endocrine-resistant advanced or metastatic breast cancer (AMBC) in the real-world clinical setting. METHODS This multi-institutional prospective cohort study enrolled patients with triple-negative AMBC or estrogen receptor-positive AMBC refractory to at least one previous endocrine therapy. The overall survival (OS) from the start of first-line (OS1) and second-line chemotherapy (OS2) was assessed. Data analysis included real-world chemotherapy sequences of first- to third-line chemotherapy regimens. The adjusted hazard ratio (HR) with 95% confidence interval (CI) for treatment regimen comparison was calculated using a stratified proportional hazards model. RESULTS Among 201 patients enrolled, 180 were included in the final analysis. Eribulin was administered as first- and second-line chemotherapy to 46 (26.6%) and 70 (47.9%) patients, respectively. Median OS1 and OS2 were 2.25 (95% CI 1.07-2.68) and 1.75 (95% CI, 1.28-2.45) years for first- and second-line eribulin, respectively. Oral 5-FU followed by eribulin had a numerically longer OS1 (2.84 years) than the other sequences. Among patients who proceeded to second-line or later chemotherapy, the median OS1 for those treated with anthracycline or taxane as first- or second-line (n = 98) was 2.56 years (95% CI 2.27-2.74), while it was 2.87 years (95% CI 2.20-4.32) for those who avoided anthracycline and taxane as first- and second-line (n = 48) (adjusted HR, 1.20; 95% CI 0.70-2.06). In the exploratory analysis, OS1 was 2.55 (95% CI 2.14-2.75) and 2.91 years (95% CI 2.61-4.32) for those aged < 65 and ≥ 65 years, respectively (adjusted HR of ≥ 65, 0.91; 95% CI 0.56-1.46). CONCLUSIONS Eribulin or oral 5-FU administration in first- and second-line chemotherapy without anthracycline/taxane was acceptable in the real-world setting. TRIAL REGISTRATION This study is registered with Clinical Trials.gov (NCT 02,551,263).
Collapse
Affiliation(s)
- Yuichiro Kikawa
- Department of Breast Surgery, Kansai Medical University, Hirakata-city, Osaka, 573-1191, Japan. .,Department of Breast Surgery, Kobe City Medical Center General Hospital, Kobe-city, Hyogo, 650-0047, Japan.
| | - Takeshi Kotake
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto-city, Kyoto, 606-8507, Japan.,Department of Breast Surgery, Kansai Electric Power Hospital, Osaka-city, Osaka, 553-0003, Japan
| | - Shigeru Tsuyuki
- Department of Breast Surgery, Osaka Red Cross Hospital, Osaka-city, Osaka, 543-8555, Japan
| | - Yookija Kang
- Department of Breast Surgery, Osaka Red Cross Hospital, Osaka-city, Osaka, 543-8555, Japan
| | - Sachiko Takahara
- Department of Breast Surgery, Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka-city, Osaka, 530-8480, Japan
| | - Yuri Fujimoto
- Department of Breast Surgery, Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka-city, Osaka, 530-8480, Japan
| | - Hiroyasu Yamashiro
- Department of Breast Surgery, Tenri Hospital, Tenri-city, Nara, 632-0018, Japan
| | | | - Masahiro Takada
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto-city, Kyoto, 606-8507, Japan
| | - Rie Yasuoka
- Department of Endocrine and Breast Surgery, Kyoto Prefectural University of Medicine, Kyoto-city, Kyoto, 602-8566, Japan
| | - Katsuhiko Nakatsukasa
- Department of Endocrine and Breast Surgery, Kyoto Prefectural University of Medicine, Kyoto-city, Kyoto, 602-8566, Japan
| | - Kazuhiko Yamagami
- Department of Breast Surgery, Shinko Hospital, Kobe-city, Hyogo, 651-0072, Japan
| | - Hirofumi Suwa
- Department of Breast Surgery, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki-city, Hyogo, 660-8550, Japan
| | - Toshitaka Okuno
- Department of Breast Surgery, Kobe City Nishi-Kobe Medical Center, Kobe-city, Hyogo, 651-2273, Japan
| | - Ichiro Nakayama
- Department of Breast Surgery, Kyoto Min-Iren Chuo Hospital, Kyoto-city, 616-8147, Japan
| | - Tatsushi Kato
- Department of Breast Surgery, Yamato Takada Municipal Hospital, Yamatotakada-city, Nara, 635-8501, Japan
| | - Nobuko Ogura
- Department of Breast Surgery, Kansai Electric Power Hospital, Osaka-city, Osaka, 553-0003, Japan
| | - Yoshio Moriguchi
- Department of Breast Surgery, Kyoto City Hospital, Kyoto-city, Kyoto, 604-8845, Japan
| | - Hiroshi Ishiguro
- Breast Oncology Service, Saitama Medical University International Medical Center, Hidaka-city, Saitama, 350-1298, Japan
| | - Tatsuo Kagimura
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe-city, Hyogo, 650-0047, Japan
| | - Tetsuya Taguchi
- Department of Endocrine and Breast Surgery, Kyoto Prefectural University of Medicine, Kyoto-city, Kyoto, 602-8566, Japan
| | - Tomoharu Sugie
- Department of Breast Surgery, Kansai Medical University, Hirakata-city, Osaka, 573-1191, Japan
| | - Masakazu Toi
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto-city, Kyoto, 606-8507, Japan
| |
Collapse
|
11
|
Gameiro SF, Evans AM, Mymryk JS. The tumor immune microenvironments of HPV + and HPV - head and neck cancers. WIREs Mech Dis 2022; 14:e1539. [PMID: 35030304 DOI: 10.1002/wsbm.1539] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022]
Abstract
Human papillomaviruses (HPVs) are the etiological agent of a significant, and increasing, fraction of head and neck squamous cell carcinomas (HNSCC)-a heterogenous group of malignancies in the head and neck region. HPV infection accounts for approximately 25% of all cases, with the remainder typically caused by smoking and excessive alcohol consumption. These distinct etiologies lead to profound clinical and immunological differences between HPV-positive (HPV+ ) and HPV-negative (HPV- ) HNSCC, likely related to the expression of exogenous viral antigens in the HPV+ subtype. Specifically, HPV+ HNSCC patients generally exhibit better treatment response compared to those with HPV- disease, leading to a more favorable prognosis, with lower recurrence rate, and longer overall survival time. Importantly, a plethora of studies have illustrated that the tumor immune microenvironment (TIME) of HPV+ HNSCC has a strikingly distinct immune composition to that of its HPV- counterpart. The HPV+ TIME is characterized as being immunologically "hot," with more immune infiltration, higher levels of T-cell activation, and higher levels of immunoregulation compared to the more immunologically "cold" HPV- TIME. In general, cancers with an immune "hot" TIME exhibit better treatment response and superior clinical outcomes in comparison to their immune "cold" counterparts. Indeed, this phenomenon has also been observed in HPV+ HNSCC patients, highlighting the critical role of the TIME in influencing prognosis, and further validating the use of cancer therapies that capitalize on the mobilization and/or modulation of the TIME. This article is categorized under: Cancer > Molecular and Cellular Physiology Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Steven F Gameiro
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Andris M Evans
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Joe S Mymryk
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada.,Department of Otolaryngology, The University of Western Ontario, London, Ontario, Canada.,Department of Oncology, The University of Western Ontario, London, Ontario, Canada.,London Regional Cancer Program, Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
12
|
Zhao W, Dai S, Yue L, Xu F, Gu J, Dai X, Qian X. Emerging mechanisms progress of colorectal cancer liver metastasis. Front Endocrinol (Lausanne) 2022; 13:1081585. [PMID: 36568117 PMCID: PMC9772455 DOI: 10.3389/fendo.2022.1081585] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancy and the second most common cause of cancer-related mortality worldwide. A total of 20% of CRC patients present with distant metastasis. The hepatic portal venous system, responsible for collecting most intestinal blood, makes the liver the most common site of CRC metastasis. The formation of liver metastases from colorectal cancer is a long and complex process. It involves the maintenance of primary tumors, vasculature invasion, distant colonization, and metastasis formation. In this review, we serve on how the CRC cells acquire stemness, invade the vascular, and colonize the liver. In addition, we highlight how the resident cells of the liver and immune cells interact with CRC cells. We also discuss the current immunotherapy approaches and challenges we face, and finally, we look forward to finding new therapeutic targets based on novel sequencing technologies.
Collapse
|
13
|
The Colorectal Cancer Tumor Microenvironment and Its Impact on Liver and Lung Metastasis. Cancers (Basel) 2021; 13:cancers13246206. [PMID: 34944826 PMCID: PMC8699466 DOI: 10.3390/cancers13246206] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Colorectal cancer (CRC) is the third most common cancer worldwide. Metastasis to secondary organs, such as the liver and lungs, is a key driver of CRC-related mortality. The tumor microenvironment, which consists of the primary cancer cells, as well as associated support and immune cells, significantly affects the behavior of CRC cells at the primary tumor site, as well as in metastatic lesions. In this paper, we review the role of the individual components of the tumor microenvironment on tumor progression, immune evasion, and metastasis, and we discuss the implications of these components on antitumor therapies. Abstract Colorectal cancer (CRC) is the third most common malignancy and the second most common cause of cancer-related mortality worldwide. A total of 20% of CRC patients present with distant metastases, most frequently to the liver and lung. In the primary tumor, as well as at each metastatic site, the cellular components of the tumor microenvironment (TME) contribute to tumor engraftment and metastasis. These include immune cells (macrophages, neutrophils, T lymphocytes, and dendritic cells) and stromal cells (cancer-associated fibroblasts and endothelial cells). In this review, we highlight how the TME influences tumor progression and invasion at the primary site and its function in fostering metastatic niches in the liver and lungs. We also discuss emerging clinical strategies to target the CRC TME.
Collapse
|
14
|
Ikarashi D, Okimoto T, Shukuya T, Onagi H, Hayashi T, Sinicropi-Yao SL, Amann JM, Nakatsura T, Kitano S, Carbone DP. Comparison of Tumor Microenvironments Between Primary Tumors and Brain Metastases in Patients With NSCLC. JTO Clin Res Rep 2021; 2:100230. [PMID: 34647108 PMCID: PMC8501504 DOI: 10.1016/j.jtocrr.2021.100230] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/01/2021] [Accepted: 09/03/2021] [Indexed: 12/26/2022] Open
Abstract
Introduction This study investigates the immune profile of the primary lung tumors and the corresponding brain metastasis from patients with NSCLC using multiplex fluorescence immunohistochemistry. Methods The study evaluated 34 patients who underwent autopsy or surgical resection for brain metastasis and autopsy, surgical resection, or core biopsy for primary lung cancer. We compared the densities of various immune cells in the primary tumors and the brain metastases by multiplex fluorescence immunohistochemical analysis. Results The density of CD4-positive (CD4+) T-cells, CD8-positive T-cells, and CD4+ Foxp3-positive T-cells were statistically higher in both tumor and stromal areas in primary lung cancer specimens when compared with brain metastases samples (p < 0.0001). Only CD204-positive cells were statistically higher in the tumor areas of the brain metastases (p = 0.0118). Tumor-infiltrating lymphocytes associated with brain metastases positively correlated with overall survival, but primary lung tumor-infiltrating lymphocytes did not. The density of CD4+ and CD4+ Foxp3-positive T-cells in brain metastases with radiation was statistically higher in the carcinoma and stromal areas compared with those without radiation (p = 0.0343, p = 0.0173). Conclusions Our findings that CD204-positive cells were higher in brain metastases may have broader implications for treatment as these macrophages may be immunosuppressive and make the immune environment less reactive. Furthermore, the finding that the density of CD4+ T-cells was higher in cancer and stroma areas of brain metastases after radiotherapy supports the addition of immunotherapy to radiation therapy in the treatment of brain metastases in NSCLC.
Collapse
Affiliation(s)
- Daiki Ikarashi
- Division of Cancer Immunotherapy Development, Advanced Medical Development Center, The Cancer Institute Hospital of the Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.,Division of Cancer Immunotherapy, Exploratory Oncology Research, and Clinical Trial Center, National Cancer Center, Kashiwa, Japan.,Department of Urology, Iwate Medical University, Iwate, Japan
| | - Tamio Okimoto
- Division of Medical Oncology, Department of Internal Medicine, James Thoracic Center, The Ohio State University, Columbus, Ohio
| | - Takehito Shukuya
- Division of Medical Oncology, Department of Internal Medicine, James Thoracic Center, The Ohio State University, Columbus, Ohio.,Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroko Onagi
- Department of Human Pathology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Takuo Hayashi
- Department of Human Pathology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Sara L Sinicropi-Yao
- Division of Medical Oncology, Department of Internal Medicine, James Thoracic Center, The Ohio State University, Columbus, Ohio
| | - Joseph M Amann
- Division of Medical Oncology, Department of Internal Medicine, James Thoracic Center, The Ohio State University, Columbus, Ohio
| | - Tetsuya Nakatsura
- Division of Medical Oncology, Department of Internal Medicine, James Thoracic Center, The Ohio State University, Columbus, Ohio
| | - Shigehisa Kitano
- Division of Cancer Immunotherapy Development, Advanced Medical Development Center, The Cancer Institute Hospital of the Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - David P Carbone
- Division of Medical Oncology, Department of Internal Medicine, James Thoracic Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
15
|
Martinez-Usatorre A, Kadioglu E, Boivin G, Cianciaruso C, Guichard A, Torchia B, Zangger N, Nassiri S, Keklikoglou I, Schmittnaegel M, Ries CH, Meylan E, De Palma M. Overcoming microenvironmental resistance to PD-1 blockade in genetically engineered lung cancer models. Sci Transl Med 2021; 13:13/606/eabd1616. [PMID: 34380768 DOI: 10.1126/scitranslmed.abd1616] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 03/23/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
Immune checkpoint blockade (ICB) with PD-1 or PD-L1 antibodies has been approved for the treatment of non-small cell lung cancer (NSCLC). However, only a minority of patients respond, and sustained remissions are rare. Both chemotherapy and antiangiogenic drugs may improve the efficacy of ICB in mouse tumor models and patients with cancer. Here, we used genetically engineered mouse models of Kras G12D/+;p53 -/- NSCLC, including a mismatch repair-deficient variant (Kras G12D/+;p53 -/-;Msh2 -/-) with higher mutational burden, and longitudinal imaging to study tumor response and resistance to combinations of ICB, antiangiogenic therapy, and chemotherapy. Antiangiogenic blockade of vascular endothelial growth factor A and angiopoietin-2 markedly slowed progression of autochthonous lung tumors, but contrary to findings in other cancer types, addition of a PD-1 or PD-L1 antibody was not beneficial and even accelerated progression of a fraction of the tumors. We found that antiangiogenic treatment facilitated tumor infiltration by PD-1+ regulatory T cells (Tregs), which were more efficiently targeted by the PD-1 antibody than CD8+ T cells. Both tumor-associated macrophages (TAMs) of monocyte origin, which are colony-stimulating factor 1 receptor (CSF1R) dependent, and TAMs of alveolar origin, which are sensitive to cisplatin, contributed to establish a transforming growth factor-β-rich tumor microenvironment that supported PD-1+ Tregs Dual TAM targeting with a combination of a CSF1R inhibitor and cisplatin abated Tregs, redirected the PD-1 antibody to CD8+ T cells, and improved the efficacy of antiangiogenic immunotherapy, achieving regression of most tumors.
Collapse
Affiliation(s)
- Amaia Martinez-Usatorre
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.,Agora Cancer Research Center, 1011 Lausanne, Switzerland
| | - Ece Kadioglu
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Gael Boivin
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.,Agora Cancer Research Center, 1011 Lausanne, Switzerland
| | - Chiara Cianciaruso
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.,Agora Cancer Research Center, 1011 Lausanne, Switzerland
| | - Alan Guichard
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.,Agora Cancer Research Center, 1011 Lausanne, Switzerland
| | - Bruno Torchia
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.,Agora Cancer Research Center, 1011 Lausanne, Switzerland
| | - Nadine Zangger
- Bioinformatics Core Facility (BCF), SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Sina Nassiri
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.,Agora Cancer Research Center, 1011 Lausanne, Switzerland.,Bioinformatics Core Facility (BCF), SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Ioanna Keklikoglou
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Martina Schmittnaegel
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.,Roche Innovation Center Munich, Oncology Discovery, Pharma Research and Early Development, 82377 Penzberg, Germany
| | - Carola H Ries
- Roche Innovation Center Munich, Oncology Discovery, Pharma Research and Early Development, 82377 Penzberg, Germany
| | - Etienne Meylan
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland. .,Agora Cancer Research Center, 1011 Lausanne, Switzerland
| |
Collapse
|
16
|
Principe DR, Chiec L, Mohindra NA, Munshi HG. Regulatory T-Cells as an Emerging Barrier to Immune Checkpoint Inhibition in Lung Cancer. Front Oncol 2021; 11:684098. [PMID: 34141625 PMCID: PMC8204014 DOI: 10.3389/fonc.2021.684098] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment paradigm for lung cancer in recent years. These strategies consist of neutralizing antibodies against negative regulators of immune function, most notably cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1), and PD-1 ligand 1 (PD-L1), thereby impeding the ability of tumor cells to escape immune surveillance. Though ICIs have proven a significant advance in lung cancer therapy, overall survival rates remain low, and lung cancer continues to be the leading cause of cancer-related death in the United States. It is therefore imperative to better understand the barriers to the efficacy of ICIs, particularly additional mechanisms of immunosuppression within the lung cancer microenvironment. Recent evidence suggests that regulatory T-lymphocytes (Tregs) serve as a central mediator of immune function in lung cancer, suppressing sterilizing immunity and contributing to the clinical failure of ICIs. Here, we provide a comprehensive summary of the roles of Tregs in lung cancer pathobiology and therapy, as well as the potential means through which these immunosuppressive mechanisms can be overcome.
Collapse
Affiliation(s)
- Daniel R Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL, United States.,Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, United States
| | - Lauren Chiec
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Nisha A Mohindra
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, United States.,Jesse Brown VA Medical Center, Chicago, IL, United States
| | - Hidayatullah G Munshi
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, United States.,Jesse Brown VA Medical Center, Chicago, IL, United States
| |
Collapse
|
17
|
Yu R, Wang M, Wang M, Han L. Melittin suppresses growth and induces apoptosis of non-small-cell lung cancer cells via down-regulation of TGF-β-mediated ERK signal pathway. ACTA ACUST UNITED AC 2020; 54:e9017. [PMID: 33331417 PMCID: PMC7747877 DOI: 10.1590/1414-431x20209017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 09/15/2020] [Indexed: 02/06/2023]
Abstract
The purpose of this study was to investigate the anti-cancer effect of melittin on growth, migration, invasion, and apoptosis of non-small-cell lung cancer (NSCLC) cells. This study also explored the potential anti-cancer mechanism of melittin in NSCLC cells. The results demonstrated that melittin suppressed growth, migration, and invasion, and induced apoptosis of NSCLC cells in vitro. Melittin increased pro-apoptotic caspase-3 and Apaf-1 gene expression. Melittin inhibited tumor growth factor (TGF)-β expression and phosphorylated ERK/total ERK (pERK/tERK) in NSCLC cells. However, TGF-β overexpression (pTGF-β) abolished melittin-decreased TGF-β expression and pERK/tERK in NSCLC cells. Treatment with melittin suppressed tumor growth and prolonged mouse survival during the 120-day observation in vivo. Treatment with melittin increased TUNEL-positive cells and decreased expression levels of TGF-β and ERK in tumor tissue compared to the control group. In conclusion, the findings of this study indicated that melittin inhibited growth, migration, and invasion, and induced apoptosis of NSCLC cells through down-regulation of TGF-β-mediated ERK signaling pathway, suggesting melittin may be a promising anti-cancer agent for NSCLC therapy.
Collapse
Affiliation(s)
- Renzhi Yu
- Department of Respiratory Medicine, Mudanjiang Medical University Affiliated Hongqi Hospital, Mudanjiang, China
| | - Miao Wang
- Department of Respiratory Medicine, Mudanjiang Medical University Affiliated Hongqi Hospital, Mudanjiang, China
| | - Minghuan Wang
- Community Health Service Center, Mudanjiang Medical University Affiliated Hongqi Hospital, Mudanjiang, China
| | - Lei Han
- Department of Respiratory Medicine, Mudanjiang Medical University Affiliated Hongqi Hospital, Mudanjiang, China
| |
Collapse
|
18
|
Cho JH, Lim YC. Prognostic impact of regulatory T cell in head and neck squamous cell carcinoma: A systematic review and meta-analysis. Oral Oncol 2020; 112:105084. [PMID: 33181417 DOI: 10.1016/j.oraloncology.2020.105084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVES The impact of regulatory T (Treg) cells as a prognostic factor of survival in head and neck squamous cell carcinoma (HNSCC) remains controversial. We aimed to evaluate the prognostic value of Treg cells in patients with HNSCC through a meta-analysis. MATERIALS AND METHODS Through a literature search in PubMed, Embase, and Cochrane, we included 11 articles in this meta-analysis and investigated the effect of Treg cell level on the survival of patients with HNSCC. Also, we performed a subgroup analysis according to the study sample (blood vs. tumor tissue), primary tumor site, HPV infectivity, or Treg cell marker. RESULTS High levels of circulating Treg cells in the peripheral blood of patients with HNSCC can significantly increase the disease specific survival rate of patients. Moreover, subgroup analysis showed that high levels of Treg in peripheral blood were significantly associated with better disease specific survival in patients with oral cancer, a subsite of HNSCC, but not in those with other head and neck subsite. Positivity of HPV infection did not influence the prognosis of patients with HNSCC. CONCLUSION Increase in the levels of circulating Treg cells in peripheral blood can be a prognostic factor of survival in patients with oral cancer.
Collapse
Affiliation(s)
- Jae Hoon Cho
- Department of Otorhinolaryngology-Head and Neck Surgery, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Young Chang Lim
- Department of Otorhinolaryngology-Head and Neck Surgery, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Domvri K, Petanidis S, Zarogoulidis P, Anestakis D, Tsavlis D, Bai C, Huang H, Freitag L, Hohenforst-Schmidt W, Porpodis K, Katopodi T. Treg-dependent immunosuppression triggers effector T cell dysfunction via the STING/ILC2 axis. Clin Immunol 2020; 222:108620. [PMID: 33176208 DOI: 10.1016/j.clim.2020.108620] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022]
Abstract
Lung cancer remains the leading cause of cancer-related deaths and despite extensive research, the survival rate of lung cancer patients remains significantly low. Recent data reveal that aberrant Kras signaling drives regulatory T cells (Tregs) present in lung tumor microenvironment to establish immune deregulation and immunosuppression but the exact pathogenic mechanism is still unknown. In this study, we investigate the role of oncogenic Kras in Treg-related immunosuppression and its involvement in tumor-associated metabolic reprogramming. Findings reveal Tregs to prompt GATA3/NOS2-related immunosuppression via STING inhibition which triggers a decline in CD4+ T infiltration, and a subsequent increase in lung metastatic burden. Enhanced Treg expression was also associated with low T/MDSC ratio through restriction of CD8+CD44+CD62L- T effector cells, contributing to a tumor-promoting status. Specifically, TIM3+/LAG3+ Tregs prompted Kras-related immunosuppressive chemoresistance and were associated with T cell dysfunction. This Treg-dependent immunosuppression correlated with CD8 T cell exhaustion phenotype and ILC2 augmentation in mice. Moreover, enhanced Treg expression promoted activation-induced cell death (AICD) of T lymphocytes and guided lymph node metastasis in vivo. Overall, these findings demonstrate the multifaceted roles of Tregs in sustaining lung immunosuppressive neoplasia through tumor microenvironment remodeling and provide new opportunities for effective metastasis inhibition, especially in chemoresistant tumors.
Collapse
Affiliation(s)
- Kalliopi Domvri
- Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece
| | - Savvas Petanidis
- Department of Medicine, Laboratory of Medical Biology and Genetics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; Department of Pulmonology, I.M. Sechenov First Moscow State Medical University, Moscow 119992, Russian Federation.
| | - Paul Zarogoulidis
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece
| | - Doxakis Anestakis
- Department of Medicine, Laboratory of Forensic Medicine and Toxicology, Aristotle University of Thessaloniki, 54124, Greece
| | - Drosos Tsavlis
- Department of Medicine, Laboratory of Experimental Physiology, Aristotle University of Thessaloniki, 54124, Greece
| | - Chong Bai
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Haidong Huang
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Lutz Freitag
- Department of Pulmonology, University Hospital Zurich, 8091 Zurich, Switzerland
| | | | - Konstantinos Porpodis
- Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece
| | - Theodora Katopodi
- Department of Medicine, Laboratory of Medical Biology and Genetics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
20
|
Lung Microbiome Differentially Impacts Survival of Patients with Non-Small Cell Lung Cancer Depending on Tumor Stroma Phenotype. Biomedicines 2020; 8:biomedicines8090349. [PMID: 32933105 PMCID: PMC7554830 DOI: 10.3390/biomedicines8090349] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 01/01/2023] Open
Abstract
The link between a lung tumor and the lung microbiome is a largely unexplored issue. To investigate the relationship between a lung microbiome and the phenotype of an inflammatory stromal infiltrate, we studied a cohort of 89 patients with non-small cell lung cancer. The microbiome was analyzed in tumor and adjacent normal tissue by 16S rRNA amplicon sequencing. Characterization of the tumor stroma was done using immunohistochemistry. We demonstrated that the bacterial load was higher in adjacent normal tissue than in a tumor (p = 0.0325) with similar patterns of taxonomic structure and alpha diversity. Lung adenocarcinomas did not differ in their alpha diversity from squamous cell carcinomas, although the content of Gram-positive bacteria increased significantly in the adenocarcinoma group (p = 0.0419). An analysis of an inflammatory infiltrate of tumor stroma showed a correlation of CD68, iNOS and FOXP3 with a histological type of tumor. For the first time we showed that high bacterial load in the tumor combined with increased iNOS expression is a favorable prognostic factor (HR = 0.1824; p = 0.0123), while high bacterial load combined with the increased number of FOXP3+ cells is a marker of poor prognosis (HR = 4.651; p = 0.0116). Thus, we established that bacterial load of the tumor has an opposite prognostic value depending on the status of local antitumor immunity.
Collapse
|
21
|
FoxP3 + T regulatory cells in cancer: Prognostic biomarkers and therapeutic targets. Cancer Lett 2020; 490:174-185. [PMID: 32721551 DOI: 10.1016/j.canlet.2020.07.022] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/28/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022]
Abstract
T Regulatory cells (Tregs) can have both protective and pathological roles. They maintain immune homeostasis and inhibit immune responses in various diseases, including cancer. Proportions of Tregs in the peripheral blood of some cancer patients increase by approximately two-fold, compared to those in healthy individuals. Tregs contribute to cancer development and progression by suppressing T effector cell functions, thereby compromising tumor killing and promoting tumor growth. Highly immunosuppressive Tregs express upregulated levels of the transcription factor, Forkhead box protein P3 (FoxP3). Elevated levels of FoxP3+ Tregs within the tumor microenvironment (TME) showed a positive correlation with poor prognosis in various cancer patients. Despite the success of immunotherapy, including the use of immune checkpoint inhibitors, a significant proportion of patients show low response rates as a result of primary or acquired resistance against therapy. Some of the mechanisms which underlie the development of therapy resistance are associated with Treg suppressive function. In this review, we describe Treg contribution to cancer development/progression, and the mechanisms of Treg-mediated immunosuppression. We discuss the prognostic significance of FoxP3+ Tregs in different cancers and their potential use as prognostic biomarkers. We also describe potential therapeutic strategies to target Tregs in combination with other types of immunotherapies aiming to overcome tumor resistance and improve clinical outcomes in cancer patients. Overall, understanding the prognostic significance of FoxP3+ Tregs in various cancers and their contribution to therapy resistance could help in the development of more effective targeted therapeutic strategies to enhance the clinical outcomes in cancer patients.
Collapse
|
22
|
Boulle G, Velut Y, Mansuet-Lupo A, Gibault L, Blons H, Fournel L, Boni A, Cremer I, Wislez M, Duchatelle V, Trédaniel J, Hammond SA, Herbst R, Alifano M, Giraud P, Damotte D. Chemoradiotherapy efficacy is predicted by intra-tumour CD8+/FoxP3+ double positive T cell density in locally advanced N2 non-small-cell lung carcinoma. Eur J Cancer 2020; 135:221-229. [PMID: 32610210 DOI: 10.1016/j.ejca.2020.04.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/18/2020] [Accepted: 04/27/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Radiotherapy is a standard of care for locally advanced stage III N2 non-small-cell lung carcinoma (NSCLC) combined with surgery/chemotherapy. Radiotherapy is hypothesised to induce tumour immunogenic cell death, to release neoantigen resulting in intra-tumoural immune infiltration and abscopal effect. Conversely, it has not been demonstrated if immune cells are necessary to drive radiotherapy efficacy and predict patient's survival. PATIENTS AND METHODS We retrospectively analysed tumour samples and clinical data from 113 patients, 89 resected (PORT) and 24 non-resected (DRC) N2-NSCLC treated with chemotherapy and radiotherapy (same radiotherapy department from 2002 to 2015). The immune environment was characterised with in situ multiplex staining (CD8, FoxP3, PD-L1 and cytokeratin) and correlated with clinical data and survival. RESULTS High density of CD8+ T cells was associated with OS (p = 0.04, HR = 1.93 [0.99-3.78]) and DFS (p = 0.003, HR = 2.42 [1.31-4.47]) in the PORT. High density of CD8+/FoxP3+ double positive cells was associated with OS (p = 0.01, HR = 1.97 [1.11-3.48]) in the whole population, with OS (p = 0.05, HR = 1.92 [0.98-3.74]) and PFS (p = 0.03, HR = 1.83 [1.03-3.23]) in the PORT without reaching significance for the DRC. Intermediate PD-L1 expression in tumour cells (TPS = 1-49%) was associated with a higher survival in the PORT. CONCLUSIONS Intra-tumoural CD8+ T cell and particularly CD8+/FoxP3+ double positive T cell densities predict survival in stage III N2-NSCLC suggesting the need for a pre-existing intra-tumour immunity to mediate the action of radiotherapy. Density of CD8+/FoxP3+ cells was the best predictor of patient's survival in multivariate analysis and could represent a biomarker of radiotherapy efficacy.
Collapse
Affiliation(s)
- G Boulle
- Institut National de La Santé et de La Recherche Médicale (INSERM), UMRS 1138, Cordeliers Research Center, Team Cancer, inflammation and complement, Paris, France; University Paris Descartes, Paris, France; University Pierre et Marie Curie-Paris, Paris, France
| | - Y Velut
- Institut National de La Santé et de La Recherche Médicale (INSERM), UMRS 1138, Cordeliers Research Center, Team Cancer, inflammation and complement, Paris, France; University Paris Descartes, Paris, France; University Pierre et Marie Curie-Paris, Paris, France
| | - A Mansuet-Lupo
- Institut National de La Santé et de La Recherche Médicale (INSERM), UMRS 1138, Cordeliers Research Center, Team Cancer, inflammation and complement, Paris, France; University Paris Descartes, Paris, France; University Pierre et Marie Curie-Paris, Paris, France; Department of Pathology, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Cochin, Paris, France
| | - L Gibault
- Department of Pathology, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, Paris, France
| | - H Blons
- University Paris Descartes, Paris, France; INSERM UMRS 1147, Paris, France; Department of Biochemistry, APHP, Hôpital Européen Georges Pompidou, Paris, France
| | - L Fournel
- University Paris Descartes, Paris, France; Department of Thoracic Surgery, APHP, Hôpital Cochin, Paris, France; INSERM U1124, Paris, France
| | - A Boni
- Institut National de La Santé et de La Recherche Médicale (INSERM), UMRS 1138, Cordeliers Research Center, Team Cancer, inflammation and complement, Paris, France; University Paris Descartes, Paris, France; University Pierre et Marie Curie-Paris, Paris, France
| | - I Cremer
- Institut National de La Santé et de La Recherche Médicale (INSERM), UMRS 1138, Cordeliers Research Center, Team Cancer, inflammation and complement, Paris, France; University Paris Descartes, Paris, France; University Pierre et Marie Curie-Paris, Paris, France
| | - M Wislez
- Institut National de La Santé et de La Recherche Médicale (INSERM), UMRS 1138, Cordeliers Research Center, Team Cancer, inflammation and complement, Paris, France; University Paris Descartes, Paris, France; Department of Respiratory Medicine, APHP, Hôpital Cochin, Paris, France
| | - V Duchatelle
- Department of Pathology, St Joseph Hospital, Paris, France
| | - J Trédaniel
- University Paris Descartes, Paris, France; INSERM U1124, Paris, France; Department of Oncology, St Joseph Hospital, Paris, France
| | - S A Hammond
- Research and Early Discovery, Oncology Research and Development, AstraZeneca, Gaithersburg, MD, USA
| | - R Herbst
- Research and Early Discovery, Oncology Research and Development, AstraZeneca, Gaithersburg, MD, USA
| | - M Alifano
- Institut National de La Santé et de La Recherche Médicale (INSERM), UMRS 1138, Cordeliers Research Center, Team Cancer, inflammation and complement, Paris, France; University Paris Descartes, Paris, France; University Pierre et Marie Curie-Paris, Paris, France; Department of Thoracic Surgery, APHP, Hôpital Cochin, Paris, France
| | - P Giraud
- University Paris Descartes, Paris, France; APHP, Hôpital Européen Georges Pompidou, Department of Radiotherapy, Paris, France
| | - D Damotte
- Institut National de La Santé et de La Recherche Médicale (INSERM), UMRS 1138, Cordeliers Research Center, Team Cancer, inflammation and complement, Paris, France; University Paris Descartes, Paris, France; University Pierre et Marie Curie-Paris, Paris, France; Department of Pathology, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Cochin, Paris, France.
| |
Collapse
|
23
|
Tamminga M, Hiltermann TJN, Schuuring E, Timens W, Fehrmann RS, Groen HJ. Immune microenvironment composition in non-small cell lung cancer and its association with survival. Clin Transl Immunology 2020; 9:e1142. [PMID: 32547744 PMCID: PMC7291326 DOI: 10.1002/cti2.1142] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/25/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022] Open
Abstract
Objectives In non-small cell lung cancer (NSCLC), the immune system and possibly its composition affect survival. In this in silico study, the immune infiltrate composition in NSCLC patients was evaluated. Methods Gene expression data of tumors from early NSCLC patients were obtained from Gene Expression Omnibus (GEO). With CIBERSORT, 22 immune cell fractions were estimated. Results The immune infiltrate of 1430 pretreatment NSCLC patients contained mostly plasma cells, macrophages and CD8 T cells. Higher fractions of resting mast and CD4 T-helper cells were associated with longer overall survival (OS) (HR = 0.95, P < 0.01; HR = 0.98, = 0.04, respectively) and higher fractions of M2 macrophages and active dendritic cells with shorter survival (HR = 1.02, P = 0.03; HR = 1.03, P = 0.05, respectively). Adenocarcinoma patients with survival data (n = 587) showed higher fractions of resting mast and resting CD4 T cells, and lower M0 macrophages than squamous cell carcinoma (n = 254), which were associated with OS (HR = 0.95, P = 0.04; HR = 0.97, P = 0.01; HR = 1.03, P = 0.01, respectively). Fractions of memory B cells, naïve CD4 T cells and neutrophils had different associations with survival depending on the subtype. Smokers had had higher fractions of regulatory T cell, follicular helper T cell, neutrophil and M2 macrophage, which were associated with shorter survival (HR = 1.3, P < 0.01; HR = 1.13, P = 0.02; HR = 1.09, P = 0.03; HR = 1.04, P = 0.02, respectively). Conclusion Pretreatment differences in immune cell composition in NSCLC are associated with survival and depend on smoking status and histological subtype. Smokers' immune composition is associated with lower survival.
Collapse
Affiliation(s)
- Menno Tamminga
- Department of Pulmonary Diseases University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Thijo Jeroen N Hiltermann
- Department of Pulmonary Diseases University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Ed Schuuring
- Department of Pathology and Medical Biology University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Wim Timens
- Department of Pathology and Medical Biology University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Rudolf Sn Fehrmann
- Department of Medical Oncology University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Harry Jm Groen
- Department of Pulmonary Diseases University Medical Center Groningen University of Groningen Groningen The Netherlands
| |
Collapse
|
24
|
Hao J, Wang H, Song L, Li S, Che N, Zhang S, Zhang H, Wang J. Infiltration of CD8 + FOXP3 + T cells, CD8 + T cells, and FOXP3 + T cells in non-small cell lung cancer microenvironment. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:880-888. [PMID: 32509058 PMCID: PMC7270696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Studies about CD8+ FOXP3+ T cells as a subtype of regulatory T cells (Treg cells) in non-small cell lung cancer (NSCLC) are few. Associations among the clinicopathologic factors of NSCLC and tumor-infiltrating lymphocytes (TILs) such as CD8+ FOXP3+ T cells, CD8+ T cells, FOXP3+ T cells and tumor PD-L1 expression are unclear. METHODS We retrospectively enrolled 192 patients who underwent resections for NSCLC. We used tissue microarrays (TMA) with multiplex immunofluorescence and immunohistochemistry staining to evaluate the expression of CD8, FOXP3, cytokeratin, DAPI and PD-L1. We then used Wilcoxon test, Kaplan-Meier method, and Cox hazard proportion model to analyze their relationships with clinicopathologic factors and prognosis. RESULTS Density of tumor CD8+ FOXP3+ T cells was significant by univariate analysis, and positively associated with tumor CD8+ T cells and FOXP3+ T cells. Density of tumor CD8+ T cells was higher in lung adenocarcinoma (LUAD) than squamous cell carcinoma (LUSC), and was an independent prognostic factor for NSCLC. The density of tumor FOXP3+ T cells decreased with tumor size. Tumor PD-L1 expression was higher in LUSC than LUAD. Cox hazard proportion model analysis correlated being younger than 65 years, early TNM stage, early T stage, high tumor CD8+ T cell density, and adjuvant chemotherapy with longer overall survival. CONCLUSION Infiltration of CD8+ FOXP3+ T cells, CD8+ T cells, and FOXP3+ T cells is important in non-small cell lung cancer microenvironment, and needs to be investigated more.
Collapse
Affiliation(s)
- Jianqing Hao
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijing, China
| | - Helin Wang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijing, China
- Department of Oncology, First Affiliated Hospital of Xinxiang Medical UniversityXinxiang, Henan, China
| | - Lai Song
- Beijing DCTY Bioinformation Technology Co.Beijing, China
| | - Shuping Li
- Department of Central Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijing, China
| | - Nanying Che
- Department of Pathology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijing, China
| | - Shucai Zhang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijing, China
| | - Hongtao Zhang
- Department of Central Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijing, China
| | - Jinghui Wang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijing, China
| |
Collapse
|
25
|
Yoshimura K, Suzuki Y, Inoue Y, Tsuchiya K, Karayama M, Iwashita Y, Kahyo T, Kawase A, Tanahashi M, Ogawa H, Inui N, Funai K, Shinmura K, Niwa H, Sugimura H, Suda T. CD200 and CD200R1 are differentially expressed and have differential prognostic roles in non-small cell lung cancer. Oncoimmunology 2020; 9:1746554. [PMID: 32395395 PMCID: PMC7204521 DOI: 10.1080/2162402x.2020.1746554] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/09/2020] [Accepted: 02/09/2020] [Indexed: 12/20/2022] Open
Abstract
CD200, a member of the immunoglobulin superfamily, interacts with its receptor CD200R1 to modulate cancer immune microenvironments. Here, we explored the clinicopathological and prognostic implications of the CD200/CD200R1 axis in non-small-cell lung cancer (NSCLC) patients. We evaluated CD200/CD200R1 expression in the tumors and stroma of 632 NSCLC patients using immunohistochemistry. Associations between CD200/CD200R1 expression levels and clinicopathological data were analyzed. We also examined their expression in lung cancer cell lines. Changes in endogenous immune-related factors and cell proliferation were evaluated by CD200 and CD200R1 knockdown and CD200Fc fusion protein administration. CD200 expression was observed mainly in the tumor, and also in the stroma among a few cases, whereas CD200R1 expression was observed in both the tumor and stroma. High tumoral CD200 expression was significantly associated with female sex, never-smoking status, adenocarcinoma histology, EGFR mutation, and a low density of tumor-infiltrating lymphocytes. Meanwhile, high CD200R1 expression in the tumor and stroma was associated with ever smoking, non-adenocarcinoma histology, and increased tumor-infiltrating lymphocytes. High CD200R1 expression was associated with worse survival (log-rank, P <.001 for both tumor and stroma), whereas high CD200 expression was associated with better survival outcomes (log-rank, P <.001). The transient knockdown of CD200R1 in lung cancer cell lines impaired cell proliferation, and the in vitro modulation of CD200 and CD200R1 altered endogenous oncogenic and inflammation-related gene expression. CD200R1 expression was associated with poor prognosis, whereas CD200 expression was an independent favorable prognostic factor. Our results suggest the importance of CD200 and CD200R1 in lung cancer biology.
Collapse
Affiliation(s)
- Katsuhiro Yoshimura
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuzo Suzuki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yusuke Inoue
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuo Tsuchiya
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masato Karayama
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuji Iwashita
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoaki Kahyo
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Akikazu Kawase
- First Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masayuki Tanahashi
- Division of Thoracic Surgery, Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Hiroshi Ogawa
- Department of Pathology, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Naoki Inui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuhito Funai
- First Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroshi Niwa
- Division of Thoracic Surgery, Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
26
|
Anestakis D, Petanidis S, Domvri K, Tsavlis D, Zarogoulidis P, Katopodi T. Carboplatin chemoresistance is associated with CD11b +/Ly6C + myeloid release and upregulation of TIGIT and LAG3/CD160 exhausted T cells. Mol Immunol 2019; 118:99-109. [PMID: 31862674 DOI: 10.1016/j.molimm.2019.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/29/2019] [Accepted: 11/25/2019] [Indexed: 12/21/2022]
Abstract
Immunosuppressive chemoresistance is a major barrier in lung cancer treatment. Tumor immunosuppressive environments mediated by myeloid-derived suppressor cells (MDSCs) play a key role in chemotherapy induced MDSC development and differentiation but their mechanistic role has not been elucidated. Here, we define a role for carboplatin based chemotherapy in potentiating an MDSC-dependent pathway that triggers the chemoresistance mechanism. Findings reveal MDSC differentiation and activation of IL-13/IL-33-mediated pathway through VCAM/RANTES following carboplatin treatment. Furthemore, secretion of T regulatory IL-10-producing CD4+Foxp3+ cells was increased followed by expression of co-inhibitory receptor TIGIT on T cells, leading to a dysfunctional T cell phenotype. These cells were characterized by an immunosuppressive phenotype with impaired activation, proliferation and cytokine production. Lung cancer tissues expressed CD155, which bound TIGIT receptors and inactivated CD8 T cells. This TIGIT expression on tumor-infiltrating T cells was found to be associated with tumor progression and was linked to functional exhaustion of T cells. In addition, the presence of plasmacytoid dendritic cells (pDCs) exposed to tumor-derived factors further enhanced tumor progression through IL-10 production and up-regulation of the inducible co-stimulatory ligand (ICOS-L). Deciphering these deranged immune mechanisms and how they are impacted by chemotherapy induction is essential for incorporation of novel immune-based strategies in order to restore immunity and inhibit the immunosuppressive phenotype of metastatic lung cancer.
Collapse
Affiliation(s)
- Doxakis Anestakis
- Department of Medicine, Laboratory of Forensic Medicine and Toxicology, Aristotle University of Thessaloniki, 54124, Greece
| | - Savvas Petanidis
- Department of Medicine, Laboratory of Medical Biology and Genetics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece; Department of Pulmonology, I.M. Sechenov First Moscow State Medical University, Moscow, 119992, Russian Federation.
| | - Kalliopi Domvri
- Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, 57010, Greece
| | - Drosos Tsavlis
- Department of Medicine, Laboratory of Experimental Physiology, Aristotle University of Thessaloniki, 54124, Greece
| | - Paul Zarogoulidis
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, 55236, Thessaloniki, Greece
| | - Theodora Katopodi
- Department of Medicine, Laboratory of Medical Biology and Genetics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| |
Collapse
|
27
|
High Aldehyde Dehydrogenase Levels Are Detectable in the Serum of Patients with Lung Cancer and May Be Exploited as Screening Biomarkers. JOURNAL OF ONCOLOGY 2019; 2019:8970645. [PMID: 31534455 PMCID: PMC6724438 DOI: 10.1155/2019/8970645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/20/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022]
Abstract
Objectives Since early detection improves overall survival in lung cancer, identification of screening biomarkers for patients at risk represents an area of intense investigation. Tumor liberated protein (TLP) has been previously described as a tumor-associated antigen (complex) present in the sera from lung cancer patients. Here, we set out to identify the nature of TLP to develop this as a potential biomarker for lung cancer screening. Materials and Methods Beginning from the peptide epitope RTNKEASI previously identified from the TLP complex, we produced a rabbit anti-RTNKEASI serum and evaluated it in the lung cancer cell line A549 by means of immunoblot and peptide completion assay (PCA). The TLP sequence identification was conducted by mass spectrometry. The detected protein was, then, analyzed in patients with non-small cell lung cancer (NSCLC) and benign lung pathologies and healthy donors, by ELISA. Results The anti-RTNKEASI antiserum detected and immunoprecipitated a 55 kDa protein band in the lysate of A549 cells identified as aldehyde dehydrogenase isoform 1A1, revealing the molecular nature of at least one component of the previously described TLP complex. Next, we screened blood samples from a non-tumor cohort of 26 patients and 45 NSCLC patients with different disease stages for the presence of ALDH1A1 and global ALDH. This analysis indicated that serum positivity was highly restricted to patients with NSCLC (ALDH p < 0.001; ALDH1A1 p=0.028). Interestingly, the global ALDH test resulted positive in more NSCLC samples compared to the ALDH1A1 test, suggesting that other ALDH isoforms might add to the sensitivity of the assay. Conclusion Our data indicate that ALDH levels are elevated in the sera of NSCLC patients, even with early stage disease, and may thus be evaluated as part of a marker panel for non-invasive detection of NSCLC.
Collapse
|
28
|
Asai N, Kubo A, Suzuki S, Murotani K, Numanami H, Yoshikawa K, Ueda R, Yamaguchi E. CCR4 Expression in Tumor-Infiltrating Regulatory T Cells in Patients with Squamous Cell Carcinoma of the Lung: A Prognostic Factor for Relapse and Survival. Cancer Invest 2019; 37:163-173. [PMID: 30907146 DOI: 10.1080/07357907.2019.1582848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To clarify the prognostic impact of tumor-infiltrating effector regulatory T cells (eTregs) in non-small cell lung cancer (NSCLC), eTregs were evaluated by immunohistochemical detection of CCR4 and Foxp3 in 108 consecutive surgical NSCLC tumors. Multivariate analysis showed that a high ratio of CCR4+ eTregs to total Tregs (≥40%) was the only independent risk factor for relapse-free survival (odds ratio [OR]: 6.54, 95% confidence interval: 1.67-25.7, p = .007) and overall survival (OR: 3.76, p = .037) in lung squamous cell carcinoma (SqCC). These results highlight the prognostic importance of the balance of tumor-infiltrating Tregs in resected lung SqCC.
Collapse
Affiliation(s)
- Nobuhiro Asai
- a Division of Respiratory Medicine and Allergology, Department of Internal Medicine , Aichi Medical University School of Medicine , Nagakute , Japan
| | - Akihito Kubo
- a Division of Respiratory Medicine and Allergology, Department of Internal Medicine , Aichi Medical University School of Medicine , Nagakute , Japan
| | - Susumu Suzuki
- b Department of Tumor Immunology , Aichi Medical University School of Medicine , Nagakute , Japan
| | - Kenta Murotani
- c Division of Biostatistics, Clinical Research Center , Aichi Medical University School of Medicine , Nagakute , Japan
| | - Hiroki Numanami
- d Division of Chest Surgery, Department of Surgery , Aichi Medical University School of Medicine , Nagakute , Japan
| | - Kazuhiro Yoshikawa
- e Promoting Center for Clinical Research , Aichi Medical University School of Medicine , Nagakute , Japan
| | - Ryuzo Ueda
- b Department of Tumor Immunology , Aichi Medical University School of Medicine , Nagakute , Japan
| | - Etsuro Yamaguchi
- a Division of Respiratory Medicine and Allergology, Department of Internal Medicine , Aichi Medical University School of Medicine , Nagakute , Japan
| |
Collapse
|
29
|
Bevacizumab-Based Chemotherapy Triggers Immunological Effects in Responding Multi-Treated Recurrent Ovarian Cancer Patients by Favoring the Recruitment of Effector T Cell Subsets. J Clin Med 2019; 8:jcm8030380. [PMID: 30889935 PMCID: PMC6462947 DOI: 10.3390/jcm8030380] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 12/09/2022] Open
Abstract
Increasing evidence strongly suggests that bevacizumab compound impacts the immunological signature of cancer patients and normalizes tumor vasculature. This study aims to investigate the correlation between the clinical response to bevacizumab-based chemotherapy and the improvement of immune fitness of multi-treated ovarian cancer patients. Peripheral blood mononuclear cells (PBMCs) of 20 consecutive recurrent ovarian cancer patients retrospectively selected to have received bevacizumab or non-bevacizumab-based chemotherapy (Bev group and Ctrl group, respectively) were analyzed. CD4, CD8, and regulatory T cell (Treg) subsets were monitored at the beginning (T0) and after three and six cycles of treatment, together with IL10 production. A lower activated and resting Treg subset was found in the Bev group compared with the Ctrl group until the third therapy cycle, suggesting a reduced immunosuppressive signature. Indeed, clinically responding patients in the Bev group showed a high percentage of non-suppressive Treg and a significant lower IL10 production compared with non-responding patients in the Bev group after three cycles. Furthermore, clinically responding patients showed a discrete population of effector T cell at T0 independent of the therapeutic regimen. This subset was maintained throughout the therapy in only the Bev group. This study evidences that bevacizumab could affect the clinical response of cancer patients, reducing the percentage of Treg and sustaining the circulation of the effector T cells. Results also provide a first rationale regarding the positive immunologic synergism of combining bevacizumab with immunotherapy in multi-treated ovarian cancer patients.
Collapse
|
30
|
Napoletano C, Ruscito I, Bellati F, Zizzari IG, Rahimi H, Gasparri ML, Antonilli M, Panici PB, Rughetti A, Nuti M. Bevacizumab-Based Chemotherapy Triggers Immunological Effects in Responding Multi-Treated Recurrent Ovarian Cancer Patients by Favoring the Recruitment of Effector T Cell Subsets. J Clin Med 2019. [PMID: 30889935 DOI: 10.3390/jcm8030380] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Increasing evidence strongly suggests that bevacizumab compound impacts the immunological signature of cancer patients and normalizes tumor vasculature. This study aims to investigate the correlation between the clinical response to bevacizumab-based chemotherapy and the improvement of immune fitness of multi-treated ovarian cancer patients. Peripheral blood mononuclear cells (PBMCs) of 20 consecutive recurrent ovarian cancer patients retrospectively selected to have received bevacizumab or non-bevacizumab-based chemotherapy (Bev group and Ctrl group, respectively) were analyzed. CD4, CD8, and regulatory T cell (Treg) subsets were monitored at the beginning (T0) and after three and six cycles of treatment, together with IL10 production. A lower activated and resting Treg subset was found in the Bev group compared with the Ctrl group until the third therapy cycle, suggesting a reduced immunosuppressive signature. Indeed, clinically responding patients in the Bev group showed a high percentage of non-suppressive Treg and a significant lower IL10 production compared with non-responding patients in the Bev group after three cycles. Furthermore, clinically responding patients showed a discrete population of effector T cell at T0 independent of the therapeutic regimen. This subset was maintained throughout the therapy in only the Bev group. This study evidences that bevacizumab could affect the clinical response of cancer patients, reducing the percentage of Treg and sustaining the circulation of the effector T cells. Results also provide a first rationale regarding the positive immunologic synergism of combining bevacizumab with immunotherapy in multi-treated ovarian cancer patients.
Collapse
Affiliation(s)
- Chiara Napoletano
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy.
| | - Ilary Ruscito
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy.
- Tumor Bank Ovarian Cancer Network (TOC), Department of Gynecology, European Competence Center for Ovarian Cancer, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, D-13353 Berlin, Germany.
| | - Filippo Bellati
- Department of Medical and Surgical Sciences and Translational Medicine, Sant'Andrea University Hospital, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy.
| | - Ilaria Grazia Zizzari
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy.
| | - Hassan Rahimi
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy.
| | - Maria Luisa Gasparri
- Department of Maternal and Child and Urological Sciences, Policlinico Umberto I "Sapienza" University of Rome, Viale del Policlinico 155, 00161 Rome, Italy.
| | - Morena Antonilli
- Department of Maternal and Child and Urological Sciences, Policlinico Umberto I "Sapienza" University of Rome, Viale del Policlinico 155, 00161 Rome, Italy.
| | - Pierluigi Benedetti Panici
- Department of Maternal and Child and Urological Sciences, Policlinico Umberto I "Sapienza" University of Rome, Viale del Policlinico 155, 00161 Rome, Italy.
| | - Aurelia Rughetti
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy.
| | - Marianna Nuti
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy.
| |
Collapse
|
31
|
FUT4 is involved in PD-1-related immunosuppression and leads to worse survival in patients with operable lung adenocarcinoma. J Cancer Res Clin Oncol 2018; 145:65-76. [PMID: 30357521 DOI: 10.1007/s00432-018-2761-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/26/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE As an important glycosyltransferase, fucosyltransferase IV (FUT4) is abnormally upregulated in different types of cancers, but its clinical role remains inexplicit. This work aimed to determine the predictive ability of FUT4 in lung adenocarcinoma (LUAD) after curative resection, as well as to explore the role of a possible FUT4 molecular mechanism on LUAD malignant behavior. METHODS A total of 273 LUAD patients after curative resection with complete clinicopathological and RNAseq data from The Cancer Genome Atlas (TCGA) cohort were collected. Correlation of FUT4 with overall survival (OS) was analyzed based on TCGA and further validated by online "Kaplan-Meier Plotter" database and IHC in 70 LUAD patients recruited in the First Hospital of China Medical University cohort. Multivariate Cox regression analysis and 1000 bootstrapping were performed to verify the predictive value of FUT4. Gene set enrichment assay (GSEA) was performed to investigate the biological characteristics. Correlation between PD-1 and FUT4 was analyzed based on TCGA cohort and validated by IHC on cohort from our hospital. RESULTS Increased FUT4 expression led to reduced overall survival (OS) of LUAD patients based on TCGA (p = 0.006 and 0.001 for dichotomous and trichotomous modeling, respectively) and externally validated in KMPLOTTER (p = 0.01) and by IHC based on cohort from our hospital (p = 0.005 and p = 0.019 for dichotomous and trichotomous modeling, respectively). FUT4 overexpression was an independent high risk factor for OS along with advanced pT stage and pTNM stage (p = 0.001, p = 0.037, and p < 0.001, respectively). GSEA revealed that FUT4 overexpression might correlate with shortened survival of LUAD patients by promoting cell proliferation via ERBB signaling, and suppressing immune response-related pathways. FUT4 expression positively correlated with PD-1 in TCGA (p = 0.026) and validated by IHC on cohort from our hospital (p = 0.029). CONCLUSIONS Increased FUT4 expression led to reduced OS in operable LUAD. FUT4 showed significant correlation with immune response and PD-1 expression.
Collapse
|
32
|
Gao J, Li L, Liu X, Guo R, Zhao B. Contrast-enhanced magnetic resonance imaging with a novel nano-size contrast agent for the clinical diagnosis of patients with lung cancer. Exp Ther Med 2018; 15:5415-5421. [PMID: 29904421 DOI: 10.3892/etm.2018.6112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 01/08/2018] [Indexed: 01/01/2023] Open
Abstract
Recent studies have indicated that magnetic resonance imaging (MRI) efficiently diagnoses lung cancer. However, the efficacy of MRI in diagnosing lung cancer requires improving for patients in the early stage of the disease. In the present study, a novel nano-sized contrast agent of chistosan/Fe3O4-enclosed bispecific antibodies (BsAbCENS) was introduced, which targeted carcino-embryonic antigen (CEA) and neuron-specific enolase (NSE) in lung cancer cells. The diagnostic efficacy of contrast-enhanced MRI with BsAbCENS (CEMRI-BsAbCENS) was investigated in a total of 182 patients with suspected lung cancer who had high serum levels of CEA and NSE. BsAbCENS was administered by pulmonary inhalation prior to the MRI scan. The results revealed that CEA and NSE were overexpressed in human lung cancer cell lines. BsAbCENS bound with CEA and NSE on the surface of human lung cancer cells and produced a higher signal intensity than MRI alone for the diagnosis of patients with lung cancer. The diagnostic data revealed that CEMRI-BsAbCENS diagnosed 124/182 lung cancer cases, whereas CEMRI only diagnosed 98/182, which was significantly less (P<0.01). In addition, the survival rate of patients with lung cancer diagnosed by CEMRI-BsAbCENS was significantly higher than the mean 5-year survival rate (P<0.01). Furthermore, the pharmacodynamics demonstrated that BsAbCENS was metabolized within 24 h. The results of the present study indicate that the efficacy and accuracy of lung cancer diagnosis are improved by CEMRI-BsAbCENS. In conclusion, these results provide a potential novel protocol for the diagnosis of tumors in patients with suspected early stage lung cancer.
Collapse
Affiliation(s)
- Jianwei Gao
- Department of MRI, Shandong Medical Imaging Research Institute, Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Radiology, Tai'an First People's Hospital, Tai'an, Shandong 271000, P.R. China
| | - Lei Li
- Department of Interventional Radiology, The Second Affiliated Hospital of Qingdao University Medical College (Municipal Central Hospital of Qingdao), Qingdao, Shandong 266042, P.R. China
| | - Xia Liu
- Department of Radiology, Tai'an First People's Hospital, Tai'an, Shandong 271000, P.R. China
| | - Rui Guo
- Department of Gynecology and Obstetrics, Zhangqiu People's Hospital, Zhangqiu, Shandong 250200, P.R. China
| | - Bin Zhao
- Department of MRI, Shandong Medical Imaging Research Institute, Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
33
|
Ottenhof SR, Djajadiningrat RS, Thygesen HH, Jakobs PJ, Jóźwiak K, Heeren AM, de Jong J, Sanders J, Horenblas S, Jordanova ES. The Prognostic Value of Immune Factors in the Tumor Microenvironment of Penile Squamous Cell Carcinoma. Front Immunol 2018; 9:1253. [PMID: 29942303 PMCID: PMC6004546 DOI: 10.3389/fimmu.2018.01253] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/18/2018] [Indexed: 12/26/2022] Open
Abstract
The host's immune system plays a pivotal role in many tumor types, including squamous cell carcinomas (SCCs). We aim to identify immunological prognosticators for lymph node metastases (LNM) and disease-specific survival (DSS) in penile SCC. For this retrospective observational cohort study, penile SCC patients (n = 213) treated in the Netherlands Cancer Institute, were selected if sufficient formalin-fixed, paraffin-embedded tumor material was available. Analysis included previously described high-risk human papilloma virus (hrHPV) status, immunohistochemical scores for classical and non-classical human leukocyte antigen (HLA) class I, programmed death ligand-1 (PD-L1) expression, and novel data on tumor-infiltrating macrophages and cytotoxic an regulatory T-cells. Clinicopathological characteristics and extended follow-up were also included. Regression analyses investigated relationships of the immune parameters with LNM and DSS. In the total cohort, diffuse PD-L1 tumor-cell expression, CD163+ macrophage infiltration, non-classical HLA class I upregulation, and low stromal CD8+ T-cell infiltration were all associated with LNM. In the multivariable model, only tumor PD-L1 expression remained a significant predictor for LNM (odds ratio (OR) 2.8, p = 0.05). hrHPV negativity and diffuse PD-L1 tumor-cell expression were significantly associated with poor DSS and remained so upon correction for clinical parameters [hazard ratio (HR) 9.7, p < 0.01 and HR 2.8, p = 0.03]. The only immune factor with different expression in HPV+ and HPV- tumors was PD-L1, with higher PD-L1 expression in the latter (p = 0.03). In the HPV- cohort (n = 158), LNM were associated with diffuse PD-L1 tumor-cell expression, high intratumoral CD163+ macrophage infiltration, and low number of stromal CD8+ T-cells. The first two parameters were also linked to DSS. In the multivariable regression model, diffuse PD-L1 expression remained significantly unfavorable for DSS (HR 5.0, p < 0.01). These results emphasize the complexity of the tumor microenvironment in penile cancer and point toward several possible immunotherapy targets. Here described immune factors can aid risk-stratification and should be evaluated in clinical immunotherapy studies to ultimately lead to patient tailored treatment.
Collapse
Affiliation(s)
| | - Rosa Sanne Djajadiningrat
- Department of Urology, Netherlands Cancer Institute, Amsterdam, Netherlands
- Department of Urology, HagaZiekenhuis, Hague, Netherlands
| | - Helene Hoegsbro Thygesen
- Department of Biometrics, Netherlands Cancer Institute, Amsterdam, Netherlands
- Statistics, Department of Conservation, Hamilton, New Zealand
| | | | - Katarzyna Jóźwiak
- Department of Epidemiology and Biostatistics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Anne Marijne Heeren
- Center for Gynecologic Oncology Amsterdam (CGOA), VU University Medical Center, Amsterdam, Netherlands
| | - Jeroen de Jong
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Joyce Sanders
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Simon Horenblas
- Department of Urology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | |
Collapse
|
34
|
Anichini A, Tassi E, Grazia G, Mortarini R. The non-small cell lung cancer immune landscape: emerging complexity, prognostic relevance and prospective significance in the context of immunotherapy. Cancer Immunol Immunother 2018; 67:1011-1022. [PMID: 29516154 PMCID: PMC11028304 DOI: 10.1007/s00262-018-2147-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 03/05/2018] [Indexed: 10/17/2022]
Abstract
Immunotherapy of non-small cell lung cancer (NSCLC), by immune checkpoint inhibitors, has profoundly improved the clinical management of advanced disease. However, only a fraction of patients respond and no effective predictive factors have been defined. Here, we discuss the prospects for identification of such predictors of response to immunotherapy, by fostering an in-depth analysis of the immune landscape of NSCLC. The emerging picture, from several recent studies, is that the immune contexture of NSCLC lesions is a complex and heterogeneous feature, as documented by analysis for frequency, phenotype and spatial distribution of innate and adaptive immune cells, and by characterization of functional status of inhibitory receptor+ T cells. The complexity of the immune landscape of NSCLC stems from the interaction of several factors, including tumor histology, molecular subtype, main oncogenic drivers, nonsynonymous mutational load, tumor aneuploidy, clonal heterogeneity and tumor evolution, as well as the process of epithelial-mesenchymal transition. All these factors contribute to shape NSCLC immune profiles that have clear prognostic significance. An integrated analysis of the immune and molecular profile of the neoplastic lesions may allow to define the potential predictive role of the immune landscape for response to immunotherapy.
Collapse
Affiliation(s)
- Andrea Anichini
- Department of Research, Human Tumors Immunobiology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy.
| | - Elena Tassi
- Department of Research, Human Tumors Immunobiology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Giulia Grazia
- Department of Research, Human Tumors Immunobiology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Roberta Mortarini
- Department of Research, Human Tumors Immunobiology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| |
Collapse
|
35
|
Xu P, Fan W, Zhang Z, Wang J, Wang P, Li Y, Yu M. The Clinicopathological and Prognostic Implications of FoxP3 + Regulatory T Cells in Patients with Colorectal Cancer: A Meta-Analysis. Front Physiol 2017; 8:950. [PMID: 29209232 PMCID: PMC5702298 DOI: 10.3389/fphys.2017.00950] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/08/2017] [Indexed: 12/11/2022] Open
Abstract
Background and Objective: Forkhead box P3 (FoxP3) is known as the specific marker for regulatory T lymphocytes (Tregs), which are responsible for self-tolerance and disturb the antitumor immunity. However, the prognostic implication of tumor-infiltrating FoxP3+ Tregs in patients with colorectal cancer (CRC) still remains controversial. The aim of this present study was to investigate the prognostic role of FoxP3+ Tregs in CRC through meta-analysis. Methods: PubMed, Embase and Web of Science were searched for relevant articles up to December 12, 2016. Pooled hazard ratio (HR) and 95% confidence interval (CI) were calculated to explore the prognostic value of FoxP3+ Tregs in CRC. Odds ratio (OR) was calculated to investigate the correlation between FoxP3+ Tregs and pathological parameters. Results: A total of 18 studies comprising 3,627 patients with CRC were enrolled in our meta-analysis. The combined HR for FoxP3+ Tregs on cancer-specific survival was 0.70 (95% CI = 0.62-0.80, P < 0.001). High FoxP3+ Tregs level was also associated with favorable prognosis on overall survival (HR = 0.76, 95% CI = 0.58-1.01, P = 0.058), with P-value very close to the statistical threshold. Yet, there was no correlation between FoxP3+ Tregs infiltration and disease-free survival (HR = 0.83, 95% CI = 0.63-1.09, P = 0.182). Moreover, FoxP3+ Tregs infiltration was significantly correlated with pT stage (OR = 0.50, 95% CI = 0.39-0.65, P < 0.001), tumor grade (OR = 0.77, 95% CI = 0.61-0.98, P = 0.032), lymphatic invasion (OR = 0.25, 95% CI = 0.07-0.89, P = 0.033) and vascular invasion (OR = 0.67, 95% CI = 0.52-0.86, P = 0.001). Conclusion: The present meta-analysis suggests that high FoxP3+ Tregs infiltration is inclined to indicate favorable prognosis and is associated with the pathogenesis of CRC. Immunotherapy targeting Tregs in patients with CRC should be further investigated.
Collapse
Affiliation(s)
- Peipei Xu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Fan
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zheng Zhang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - June Wang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Wang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yirong Li
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingxia Yu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
36
|
Li C, Sun L, Jiang R, Wang P, Xue H, Zhan Y, Gai X. Downregulation of FOXP3 inhibits cell proliferation and enhances chemosensitivity to cisplatin in human lung adenocarcinoma. Pathol Res Pract 2017; 213:1251-1256. [PMID: 28935177 DOI: 10.1016/j.prp.2017.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/12/2017] [Accepted: 09/05/2017] [Indexed: 01/09/2023]
Abstract
Our study aimed to investigate the biological role of FOXP3 expression in human lung adenocarcinoma (LAD) tissues and evaluate its involvement in cell proliferation and chemosensitivity to cisplatin in LAD cells. Paraffin-embedded tissues from 50 LAD patients were collected to detect FOXP3 and Ki-67 expression using immunohistochemistry (IHC). Downregulation of FOXP3 in A549 cells was performed using siRNA transfection. Real-time PCR or western blot assay was performed to analyze FOXP3 expression in A549 cells. Cell proliferation and cisplatin cytotoxicity test were assessed by CCK-8 assay. The expression of FOXP3 was significantly associated with lymph node metastasis and TNM stage of LAD patients. The FOXP3 expression was positively correlated with Ki-67 labelling index(LI)in LAD tissues. The downregulated expression of FOXP3 by siRNA transfection significantly inhibited cell proliferation and enhanced chemosensitivity to cisplatin in A549 cells. The expression of FOXP3 was significantly upregulated following cisplatin treatment in A549 cells. Our study indicates that FOXP3 may potentially be a novel molecular target in combating drug resistance in the chemotherapy of LAD.
Collapse
Affiliation(s)
- Chun Li
- Department of Immunology, School of Basic Medical Sciences, Beihua University, Jilin, Jilin 132013, People's Republic of China
| | - Liwei Sun
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology, College of Biology and Chemistry, Beihua University, Jilin, Jilin 132013, People's Republic of China
| | - Rui Jiang
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology, College of Biology and Chemistry, Beihua University, Jilin, Jilin 132013, People's Republic of China
| | - Peng Wang
- Department of Immunology, School of Basic Medical Sciences, Beihua University, Jilin, Jilin 132013, People's Republic of China
| | - Haogang Xue
- Department of Surgery, Affiliated Hospital of Beihua University, Jilin, Jilin 132013, People's Republic of China
| | - Yudong Zhan
- Department of Immunology, School of Basic Medical Sciences, Beihua University, Jilin, Jilin 132013, People's Republic of China
| | - Xiaodong Gai
- Department of Immunology, School of Basic Medical Sciences, Beihua University, Jilin, Jilin 132013, People's Republic of China.
| |
Collapse
|
37
|
Bruno TC, Ebner PJ, Moore BL, Squalls OG, Waugh KA, Eruslanov EB, Singhal S, Mitchell JD, Franklin WA, Merrick DT, McCarter MD, Palmer BE, Kern JA, Slansky JE. Antigen-Presenting Intratumoral B Cells Affect CD4 + TIL Phenotypes in Non-Small Cell Lung Cancer Patients. Cancer Immunol Res 2017; 5:898-907. [PMID: 28848053 DOI: 10.1158/2326-6066.cir-17-0075] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/10/2017] [Accepted: 08/21/2017] [Indexed: 12/25/2022]
Abstract
Effective immunotherapy options for patients with non-small cell lung cancer (NSCLC) are becoming increasingly available. The immunotherapy focus has been on tumor-infiltrating T cells (TILs); however, tumor-infiltrating B cells (TIL-Bs) have also been reported to correlate with NSCLC patient survival. The function of TIL-Bs in human cancer has been understudied, with little focus on their role as antigen-presenting cells and their influence on CD4+ TILs. Compared with other immune subsets detected in freshly isolated primary tumors from NSCLC patients, we observed increased numbers of intratumoral B cells relative to B cells from tumor-adjacent tissues. Furthermore, we demonstrated that TIL-Bs can efficiently present antigen to CD4+ TILs and alter the CD4+ TIL phenotype using an in vitro antigen-presentation assay. Specifically, we identified three CD4+ TIL responses to TIL-Bs, which we categorized as activated, antigen-associated, and nonresponsive. Within the activated and antigen-associated CD4+ TIL population, activated TIL-Bs (CD19+CD20+CD69+CD27+CD21+) were associated with an effector T-cell response (IFNγ+ CD4+ TILs). Alternatively, exhausted TIL-Bs (CD19+CD20+CD69+CD27-CD21-) were associated with a regulatory T-cell phenotype (FoxP3+ CD4+ TILs). Our results demonstrate a new role for TIL-Bs in NSCLC tumors in their interplay with CD4+ TILs in the tumor microenvironment, establishing them as a potential therapeutic target in NSCLC immunotherapy. Cancer Immunol Res; 5(10); 898-907. ©2017 AACR.
Collapse
Affiliation(s)
- Tullia C Bruno
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Peggy J Ebner
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Brandon L Moore
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Olivia G Squalls
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Katherine A Waugh
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Evgeniy B Eruslanov
- Division of Thoracic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sunil Singhal
- Division of Thoracic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John D Mitchell
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Wilbur A Franklin
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado
| | - Daniel T Merrick
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado
| | - Martin D McCarter
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Brent E Palmer
- Division of Allergy and Clinical Immunology, University of Colorado School of Medicine, Aurora, Colorado
| | - Jeffrey A Kern
- Division of Oncology, National Jewish Health, Denver, Colorado
| | - Jill E Slansky
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado.
| |
Collapse
|
38
|
Pereira LMS, Gomes STM, Ishak R, Vallinoto ACR. Regulatory T Cell and Forkhead Box Protein 3 as Modulators of Immune Homeostasis. Front Immunol 2017; 8:605. [PMID: 28603524 PMCID: PMC5445144 DOI: 10.3389/fimmu.2017.00605] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/08/2017] [Indexed: 12/15/2022] Open
Abstract
The transcription factor forkhead box protein 3 (FOXP3) is an essential molecular marker of regulatory T cell (Treg) development in different microenvironments. Tregs are cells specialized in the suppression of inadequate immune responses and the maintenance of homeostatic tolerance. Studies have addressed and elucidated the role played by FOXP3 and Treg in countless autoimmune and infectious diseases as well as in more specific cases, such as cancer. Within this context, the present article reviews aspects of the immunoregulatory profile of FOXP3 and Treg in the management of immune homeostasis, including issues relating to pathology as well as immune tolerance.
Collapse
Affiliation(s)
- Leonn Mendes Soares Pereira
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil.,Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Samara Tatielle Monteiro Gomes
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil.,Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Ricardo Ishak
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | | |
Collapse
|
39
|
Shen M, Ren X. Highlights on immune checkpoint inhibitors in non-small cell lung cancer. Tumour Biol 2017; 39:1010428317695013. [PMID: 28349816 DOI: 10.1177/1010428317695013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The treatment of advanced or refractory non-small cell lung cancer has been historically difficult owing to the lack of studies on effective systemic cure. The progress in lung cancer treatment has plateaued, necessitating new options for additional benefits. Immune checkpoint proteins are co-inhibitory factors that can diminish the antigen-specific immune responses by attenuating the regulatory role of cytotoxic T-lymphocyte-associated protein 4, programmed cell death-1, lymphocyte-activation gene 3, and T-cell immunoglobulin mucin-3. The therapeutic strategies targeting immune checkpoints mainly focus on the monoclonal antibody of these regulatory factors, which may facilitate clinical decision making. An enhanced understanding of the drug-resistance mechanisms and the therapeutic efficacy regulation will provide opportunities to improve the clinical outcomes of non-small cell lung cancer patients. Preclinical and clinical trials on these key immune-regulatory agents, which has heralded a new era in immuno-oncology in non-small cell lung cancer treatment, are currently in development.
Collapse
Affiliation(s)
- Meng Shen
- 1 Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,2 National Clinical Research Center of Cancer, Tianjin, China.,3 Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xiubao Ren
- 2 National Clinical Research Center of Cancer, Tianjin, China.,3 Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,4 Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
40
|
Tang Z, Li J, Shen Q, Feng J, Liu H, Wang W, Xu L, Shi G, Ye X, Ge M, Zhou X, Ni S. Contribution of upregulated dipeptidyl peptidase 9 (DPP9) in promoting tumoregenicity, metastasis and the prediction of poor prognosis in non-small cell lung cancer (NSCLC). Int J Cancer 2017; 140:1620-1632. [PMID: 27943262 PMCID: PMC5324565 DOI: 10.1002/ijc.30571] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/08/2016] [Accepted: 11/30/2016] [Indexed: 12/12/2022]
Abstract
Dipeptidyl peptidase 9 (DPP9) is encoded by DPP9, which belongs to the DPP4 gene family. Proteins encoded by these genes have unique peptidase and extra‐enzymatic functions that have been linked to various diseases including cancers. Here, we describe the expression pattern and biological function of DPP9 in non‐small‐cell lung cancer (NSCLC). The repression of DPP9 expression by small interfering RNA inhibited cell proliferation, migration, and invasion. Moreover, we explored the role of DPP9 in regulating epithelial‐mesenchymal transition (EMT). The epithelial markers E‐cadherin and MUC1 were significantly increased, while mesenchymal markers vimentin and S100A4 were markedly decreased in DPP9 knockdown cells. The downregulation of DPP9 in the NSCLC cells induced the expression of apoptosis‐associated proteins both in vitro and in vivo. We investigated the protein expression levels of DPP9 by tissue microarray immunohistochemical assay (TMA‐IHC) (n = 217). Further we found mRNA expression levels of DPP9 in 30 pairs of clinical NSCLC tissues were significantly lower than in the adjacent non‐cancerous tissues. Survival analysis showed that the overexpression of DPP9 was a significant independent factor for poor 5‐year overall survival in patients with NSCLC (p = 0.003). Taken together, DPP9 expression correlates with poor overall survival in NSCLC. What's new? Non‐small‐cell lung cancer (NSCLC) is associated with multiple genetic and epigenetic changes. Nonetheless, mechanisms underlying its initiation and progression are not well understood. The present study identifies a role for dipeptidyl peptidase 9 (DPP9), a DPP4 family member with suspected influence on tumor initiation and metastasis. In lung cancer cells in vitro, DPP9 repression inhibited cell proliferation, migration, and invasion, while its repression in vivo dramatically slowed tumor growth, greatly reducing tumor volume in DPP9 knockdown mice. In clinical NSCLC specimens, DPP9 upregulation was significantly associated with advanced TNM stage and was negatively prognostic for overall survival.
Collapse
Affiliation(s)
- Zhiyuan Tang
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Jun Li
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Qin Shen
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Jian Feng
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Hua Liu
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Wei Wang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Liqin Xu
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Guanglin Shi
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xumei Ye
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Min Ge
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xiaoyu Zhou
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Songshi Ni
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| |
Collapse
|