1
|
Da Vitoria Lobo M, Hardowar L, Valentine T, Tomblin L, Guest C, Sharma D, Dickins B, Paul-Clark M, Hulse RP. Early-life cisplatin exposure induces neuroinflammation and chemotherapy-induced neuropathic pain. Dis Model Mech 2024; 17:dmm052062. [PMID: 39428813 PMCID: PMC11625889 DOI: 10.1242/dmm.052062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024] Open
Abstract
Chemotherapy-induced neuropathic pain (CINP) is a common adverse health-related comorbidity that manifests later in life in patients with paediatric cancer. Current analgesia is ineffective, aligning closely with our lack of understanding of CINP. The aim of this study was to investigate how cisplatin induces nerve growth factor (NGF)-mediated neuroinflammation and nociceptor sensitisation. In a rat model of cisplatin-induced survivorship pain, cisplatin induced a neuroinflammatory environment in the dorsal root ganglia (DRG), demonstrated by NGF-positive macrophages infiltrating into the DRG. Cisplatin-treated CD11b- and F4/80-positive macrophages expressed more NGF compared to those treated with vehicle control. Mouse primary DRG sensory neuronal cultures demonstrated enhanced NGF-dependent TRPV1-mediated nociceptor activity after cisplatin treatment. Increased nociceptor activity was also observed when cultured mouse DRG neurons were treated with conditioned medium from cisplatin-activated macrophages. Elevated nociceptor activity was inhibited in a dose-dependent manner by an NGF-neutralising antibody. Intraperitoneal administration of the NGF-neutralising antibody reduced cisplatin-induced mechanical hypersensitivity and aberrant nociceptor intraepidermal nerve fibre density. These findings identify that a monocyte- or macrophage-driven NGF-TrkA pathway is a novel analgesic target for adult survivors of childhood cancer.
Collapse
Affiliation(s)
- Marlene Da Vitoria Lobo
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Lydia Hardowar
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Tameille Valentine
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Lucy Tomblin
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Charlotte Guest
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Dhyana Sharma
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Benjamin Dickins
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Mark Paul-Clark
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Richard Philip Hulse
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| |
Collapse
|
2
|
Bork T, Hernando-Erhard C, Liang W, Tian Z, Yamahara K, Huber TB. Cisplatin Nephrotoxicity Is Critically Mediated by the Availability of BECLIN1. Int J Mol Sci 2024; 25:2560. [PMID: 38473806 DOI: 10.3390/ijms25052560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Cisplatin nephrotoxicity is a critical limitation of solid cancer treatment. Until now, the complex interplay of various pathophysiological mechanisms leading to proximal tubular cell apoptosis after cisplatin exposure has not been fully understood. In our study, we assessed the role of the autophagy-related protein BECLIN1 (ATG6) in cisplatin-induced acute renal injury (AKI)-a candidate protein involved in autophagy and with putative impact on apoptosis by harboring a B-cell lymphoma 2 (BCL2) interaction site of unknown significance. By using mice with heterozygous deletion of Becn1, we demonstrate that reduced intracellular content of BECLIN1 does not impact renal function or autophagy within 12 months. However, these mice were significantly sensitized towards cisplatin-induced AKI, and by using Becn1+/-;Sglt2-Cre;Tomato/EGFP mice with subsequent primary cell analysis, we confirmed that nephrotoxicity depends on proximal tubular BECLIN1 content. Mechanistically, BECLIN1 did not impact autophagy or primarily the apoptotic pathway. In fact, a lack of BECLIN1 sensitized mice towards cisplatin-induced ER stress. Accordingly, the ER stress inhibitor tauroursodeoxycholic acid (TUDCA) blunted cisplatin-induced cell death in Becn1 heterozygosity. In conclusion, our data first highlight a novel role of BECLIN1 in protecting against cellular ER stress independent from autophagy. These novel findings open new therapeutic avenues to intervene in this important intracellular stress response pathway with a promising impact on future AKI management.
Collapse
Affiliation(s)
- Tillmann Bork
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Camila Hernando-Erhard
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Wei Liang
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Zhejia Tian
- Department of Nephrology and Hypertension, Hannover Medical School, 30625 Hannover, Germany
| | - Kosuke Yamahara
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu 520-2192, Shiga, Japan
| | - Tobias B Huber
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
3
|
Gao J, Deng Q, Yu J, Wang C, Wei W. Role of renal tubular epithelial cells and macrophages in cisplatin-induced acute renal injury. Life Sci 2024; 339:122450. [PMID: 38262575 DOI: 10.1016/j.lfs.2024.122450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/30/2023] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Acute kidney injury (AKI) is a clinical syndrome characterized by a sudden and continuous decline in renal function. The drug cisplatin is commonly used as chemotherapy for solid tumors, and cisplatin-induced acute kidney injury (CI-AKI), which is characterized by acute tubular necrosis and inflammation, frequently occurs in tumor patients. Renal tubular epithelial cells (RTECs) are severely damaged early in this process and play an important role in renal tubular injury and the recruitment of immune cells. Macrophages are the most common infiltrating immune cells in the kidney and have a significant impact on CI-AKI and subsequent repair. This article reviews the latest research progress on the effects of RTECs and macrophages on CI-AKI and their interactions in AKI to provide a direction for identifying therapeutic targets for treating AKI.
Collapse
Affiliation(s)
- Jinzhang Gao
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China; Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China
| | - Qinxiang Deng
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Third Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Jun Yu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China; Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China
| | - Chun Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China; Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China; Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China.
| |
Collapse
|
4
|
Fawzy MA, Beshay ON, Bekhit AA, Abdel-Hafez SMN, Batiha GES, Bin Jardan YA, Fathy M. Nephroprotective effect of AT-MSCs against cisplatin-induced EMT is improved by azilsartan via attenuating oxidative stress and TGF-β/Smad signaling. Biomed Pharmacother 2023; 158:114097. [PMID: 36502757 DOI: 10.1016/j.biopha.2022.114097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The nephrotoxicity of cisplatin (CIS) is a significant complication that challenges its clinical applicability. The epithelial to mesenchymal transition (EMT) may be included in the pathogenesis of CIS-evoked nephrotoxicity. Therefore, the current study aimed to evaluate, for the first time, the possible protective effect of AZL and/or AT-MSCs against CIS-induced EMT in rats on molecular bases. Fifty-four healthy Wistar male albino rats were used in this study. Different biochemical markers of kidney function as well as oxidative stress parameters were investigated. Additionally, renal histopathological study was performed. The expression of EMT-related proteins and genes was evaluated by western blotting and qRT-PCR. CIS markedly increased SCr, BUN, uric acid and renal MDA levels, with concomitant decrease in serum total protein, renal GSH level and SOD activity. Furthermore, it suppressed the expression of Cdh1 gene, increased the α-SMA, Acta2, Cdh2 and Vim genes expression, down regulated the expression of E-cad protein and up-regulated the α-SMA, TGF-β1, p-Smad2/3 and Snail proteins expression. Kidney tissues showed severe histopathological alterations and extensive collagen accumulation. Conversely, the treatment with either AZL or AT-MSCs significantly attenuated these alterations caused by CIS. Interestingly, the combined therapy of AZL and AT-MSCs has a superior ameliorative effect than AT-MSCs alone. In conclusion, this study, for the first time, revealed that AZL and/ or AT-MSCs successfully ameliorated the CIS-induced EMT via the inhibition of oxidative stress and TGF-β/Smad signaling pathway. Intriguingly, AZL enhanced the effect of AT-MSCs making them promising agents for kidney protection against CIS-induced EMT.
Collapse
Affiliation(s)
- Michael A Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| | - Olivia N Beshay
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| | | | | | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt.
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan.
| |
Collapse
|
5
|
Alassaf N, Attia H. Autophagy and necroptosis in cisplatin-induced acute kidney injury: Recent advances regarding their role and therapeutic potential. Front Pharmacol 2023; 14:1103062. [PMID: 36794281 PMCID: PMC9922871 DOI: 10.3389/fphar.2023.1103062] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Cisplatin (CP) is a broad-spectrum antineoplastic agent, used to treat many different types of malignancies due to its high efficacy and low cost. However, its use is largely limited by acute kidney injury (AKI), which, if left untreated, may progress to cause irreversible chronic renal dysfunction. Despite substantial research, the exact mechanisms of CP-induced AKI are still so far unclear and effective therapies are lacking and desperately needed. In recent years, necroptosis, a novel subtype of regulated necrosis, and autophagy, a form of homeostatic housekeeping mechanism have witnessed a burgeoning interest owing to their potential to regulate and alleviate CP-induced AKI. In this review, we elucidate in detail the molecular mechanisms and potential roles of both autophagy and necroptosis in CP-induced AKI. We also explore the potential of targeting these pathways to overcome CP-induced AKI according to recent advances.
Collapse
Affiliation(s)
- Noha Alassaf
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia,*Correspondence: Noha Alassaf,
| | - Hala Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia,Department of Biochemistry, College of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
6
|
Kim DU, Kweon B, Oh JY, Seo CS, Kim DG, Kim HY, Lee HS, Park SJ, Bae GS. Ojeoksan Ameliorates Cisplatin-Induced Acute Kidney Injury in Mice by Downregulating MAPK and NF-κB Pathways. Int J Mol Sci 2022; 23:ijms232012254. [PMID: 36293111 PMCID: PMC9603434 DOI: 10.3390/ijms232012254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022] Open
Abstract
Acute kidney injury (AKI) is a major side effect of cisplatin, a crucial anticancer agent. Therefore, it is necessary to develop drugs to protect against cisplatin-induced nephrotoxicity. Ojeoksan (OJS), a traditional blended herbal prescription, is mostly used in Korea; however, there are no reports on the efficacy of OJS against cisplatin-induced AKI. To investigate the reno-protective effect of OJS on AKI, we orally administered 50, 100, and 200 mg/kg of OJS to mice 1 h before intraperitoneal injection with 20 mg/kg of cisplatin. OJS inhibited the increase of blood urea nitrogen (BUN) and serum creatinine (SCr) levels and reduced histological changes in the kidney, like loss of brush borders, renal tubular necrosis, and cast formation. Administration of OSJ reduced the levels of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. In addition, OJS inhibited the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) pathways in cisplatin-induced AKI. These results suggest that OJS attenuates cisplatin-induced AKI by downregulating the MAPK and NF-κB pathways.
Collapse
Affiliation(s)
- Dong-Uk Kim
- Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan 54538, Korea
| | - Bitna Kweon
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan 54538, Korea
| | - Jin-Young Oh
- Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan 54538, Korea
| | - Chang-Seob Seo
- KM Science Research Division, Korea Institute of Oriental Medicine, Yuseong-gu, Daejeon 34054, Korea
| | - Dong-Gu Kim
- Department of Oriental Medicine Resources, Jeonbuk National University, 79 Gobong-ro, Iksan 54596, Korea
| | - Hye-Yoom Kim
- Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan 54538, Korea
| | - Ho-Sub Lee
- Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan 54538, Korea
| | - Sung-Joo Park
- Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan 54538, Korea
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan 54538, Korea
| | - Gi-Sang Bae
- Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan 54538, Korea
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan 54538, Korea
- Research Center of Traditional Korean Medicine, Wonkwang University, Iksan 54538, Korea
- Correspondence: ; Tel.: +82-63-850-6842
| |
Collapse
|
7
|
Resveratrol Inhibited ADAM10 Mediated CXCL16-Cleavage and T-Cells Recruitment to Pancreatic β-Cells in Type 1 Diabetes Mellitus in Mice. Pharmaceutics 2022; 14:pharmaceutics14030594. [PMID: 35335970 PMCID: PMC8955623 DOI: 10.3390/pharmaceutics14030594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Background: CXCL16 attracts T-cells to the site of inflammation after cleaving by A Disintegrin and Metalloproteinase (ADAM10). Aim: The current study explored the role of ADAM10/CXCL16/T-cell/NF-κB in the initiation of type 1 diabetes (T1D) with special reference to the potential protecting role of resveratrol (RES). Methods: Four sets of Balb/c mice were created: a diabetes mellitus (DM) group (streptozotocin (STZ) 55 mg/kg, i.p.], a control group administered buffer, a RES group [RES, 50 mg/kg, i.p.), and a DM + RES group (RES (50 mg/kg, i.p.) and STZ (55 mg/kg, i.p.) administered daily for 12 days commencing from the fourth day of STZ injection). Histopathological changes, fasting blood insulin (FBI), glucose (FBG), serum and pancreatic ADAM10, CXCL16, NF-κB, T-cells pancreatic expression, inflammatory, and apoptotic markers were analyzed. Results: FBG, inflammatory and apoptotic markers, serum TNF-α, cellular CXCL16 and ADAM10 protein expression, pancreatic T-cell migration and NF-κB were significantly increased in diabetic mice compared to normal mice. RES significantly improved the biochemical and inflammatory parameters distorted in STZ-treated mice. Conclusions: ADAM10 promotes the cleaved form of CXCL16 driving T-cells into the islets of the pancreatic in T1D. RES successfully prevented the deleterious effect caused by STZ. ADAM10 and CXCL16 may serve as novel therapeutic targets for T1D.
Collapse
|
8
|
Phosphoinositide 3 Kinase γ Plays a Critical Role in Acute Kidney Injury. Cells 2022; 11:cells11050772. [PMID: 35269396 PMCID: PMC8909888 DOI: 10.3390/cells11050772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/05/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammatory cells contribute to the pathogenesis of renal ischemia-reperfusion injury (IRI). However, the signaling mechanisms underlying the infiltration of inflammatory cells into the kidney are not well understood. In this study, we examined the effects of phosphoinositide 3 kinase γ (PI3Kγ) on inflammatory cells infiltration into the kidney in response to ischemia-reperfusion injury. Compared with wild-type mice, PI3Kγ knockout mice displayed less IRI in the kidney with fewer tubular apoptotic cell. Furthermore, PI3Kγ deficiency decreased the number of infiltrated neutrophils, macrophages, and T cells in the kidney, which was accompanied by a decrease in the expression of pro-inflammatory cytokines in the kidney. Moreover, wild-type mice treated with AS-605240, a selective PI3Kγ inhibitor, displayed less tubular damage, accumulated fewer inflammatory cells, and expressed less proinflammatory molecules in the kidney following IRI. These results demonstrate that PI3Kγ has a critical role in the pathogenesis of kidney damage in IRI, indicating that PI3Kγ inhibition may serve as a potential therapeutic strategy for the prevention of ischemia-reperfusion-induced kidney injury.
Collapse
|
9
|
An C, Jiao B, Du H, Tran M, Zhou D, Wang Y. Myeloid PTEN deficiency aggravates renal inflammation and fibrosis in angiotensin II-induced hypertension. J Cell Physiol 2022; 237:983-991. [PMID: 34515350 PMCID: PMC8810675 DOI: 10.1002/jcp.30574] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 01/03/2023]
Abstract
Hypertension is a major cause of chronic kidney disease. However, the pathogenesis of hypertensive kidney disease is not fully understood. Recently, we have shown that CXCL16/phosphoinositide-3 kinase γ (PI3Kγ) plays an important role in the development of renal inflammation and fibrosis in angiotensin II (AngII) induced hypertensive nephropathy. In the present study, we examined the role of phosphatase and tensin homolog (PTEN), a major regulator of PI3K signaling, in the pathogenesis of renal inflammation and fibrosis in an experimental model of hypertension induced by AngII. We generated myeloid PTEN conditional knockout mice by crossing PTENflox/flox mice with LysM-driven Cre mice. Littermate LysM-Cre-/- PTENflox/flox mice were used as a control. Both myeloid PTEN knockout mice and their littermate control mice exhibited similar blood pressure at baseline. AngII treatment resulted in an increase in blood pressure that was comparable between myeloid PTEN knockout mice and littermate control mice. Compared with littermate control mice, myeloid PTEN knockout mice developed more severe kidney dysfunction, proteinuria, and fibrosis following AngII treatment. Furthermore, myeloid PTEN deficiency exacerbated total collagen deposition and extracellular matrix protein production and enhanced myeloid fibroblast accumulation and myofibroblast formation in the kidney following AngII treatment. Finally, myeloid PTEN deficiency markedly augmented infiltration of F4/80+ macrophages and CD3+ T cells into the kidneys of AngII-treated mice. Taken together, these results indicate that PTEN plays a crucial role in the pathogenesis of renal inflammation and fibrosis through the regulation of infiltration of myeloid fibroblasts, macrophages, and T lymphocytes into the kidney.
Collapse
Affiliation(s)
- Changlong An
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Baihai Jiao
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Hao Du
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Melanie Tran
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Dong Zhou
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Yanlin Wang
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA,Department of Cell Biology, University of Connecticut School of Medicine, Farmington, Connecticut, USA,Renal Section, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| |
Collapse
|
10
|
McSweeney KR, Gadanec LK, Qaradakhi T, Ali BA, Zulli A, Apostolopoulos V. Mechanisms of Cisplatin-Induced Acute Kidney Injury: Pathological Mechanisms, Pharmacological Interventions, and Genetic Mitigations. Cancers (Basel) 2021; 13:1572. [PMID: 33805488 PMCID: PMC8036620 DOI: 10.3390/cancers13071572] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
Administration of the chemotherapeutic agent cisplatin leads to acute kidney injury (AKI). Cisplatin-induced AKI (CIAKI) has a complex pathophysiological map, which has been linked to cellular uptake and efflux, apoptosis, vascular injury, oxidative and endoplasmic reticulum stress, and inflammation. Despite research efforts, pharmaceutical interventions, and clinical trials spanning over several decades, a consistent and stable pharmacological treatment option to reduce AKI in patients receiving cisplatin remains unavailable. This has been predominately linked to the incomplete understanding of CIAKI pathophysiology and molecular mechanisms involved. Herein, we detail the extensively known pathophysiology of cisplatin-induced nephrotoxicity that manifests and the variety of pharmacological and genetic alteration studies that target them.
Collapse
|
11
|
The Role of CXCL16 in the Pathogenesis of Cancer and Other Diseases. Int J Mol Sci 2021; 22:ijms22073490. [PMID: 33800554 PMCID: PMC8036711 DOI: 10.3390/ijms22073490] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/15/2022] Open
Abstract
CXCL16 is a chemotactic cytokine belonging to the α-chemokine subfamily. It plays a significant role in the progression of cancer, as well as the course of atherosclerosis, renal fibrosis, and non-alcoholic fatty liver disease (NAFLD). Since there has been no review paper discussing the importance of this chemokine in various diseases, we have collected all available knowledge about CXCL16 in this review. In the first part of the paper, we discuss background information about CXCL16 and its receptor, CXCR6. Next, we focus on the importance of CXCL16 in a variety of diseases, with an emphasis on cancer. We discuss the role of CXCL16 in tumor cell proliferation, migration, invasion, and metastasis. Next, we describe the role of CXCL16 in the tumor microenvironment, including involvement in angiogenesis, and its significance in tumor-associated cells (cancer associated fibroblasts (CAF), microglia, tumor-associated macrophages (TAM), tumor-associated neutrophils (TAN), mesenchymal stem cells (MSC), myeloid suppressor cells (MDSC), and regulatory T cells (Treg)). Finally, we focus on the antitumor properties of CXCL16, which are mainly caused by natural killer T (NKT) cells. At the end of the article, we summarize the importance of CXCL16 in cancer therapy.
Collapse
|
12
|
Sun Z, Xu Q, Ma Y, Yang S, Shi J. Circ_0000524/miR-500a-5p/CXCL16 axis promotes podocyte apoptosis in membranous nephropathy. Eur J Clin Invest 2021; 51:e13414. [PMID: 32974919 DOI: 10.1111/eci.13414] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Podocytes apoptosis is a hallmark of membranous nephropathy (MN). Circ_0000524 has been reported to be associated with patients with MN, whereas the effect of circ_0000524 on podocytes apoptosis and the underlying mechanisms in MN have not been elaborated. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were performed to detect the expressions of circ_0000524, microRNA-500a-5p (miR-500a-5p), and C-X-C chemokine ligand 16 (CXCL16) in MN tissues and podocytes. Podocyte injury was induced by angiotensin II (AngII). Cell apoptosis was detected by flow cytometry. Caspase-3 or caspase-9 activity was evaluated using a caspase-3 or caspase-9 activity assay kit, respectively. Dual-luciferase reporter assay, RNA immunoprecipitation (RIP) and pull-down assay were used to address the relationship among circ_0000524,miR-500a-5p and CXCL16. RESULTS Upregulation of circ_0000524 and CXCL16 and low expression of miR-500a-5p were observed in MN tissues. AngII treatment induced the overexpression of circ_0000524 and CXCL16, a decrease of miR-500a-5p, and induced cell apoptosis in podocytes. Circ_0000524 negatively modulated the expression of miR-500a-5p. Circ_0000524 depletion inhibited podocyte apoptosis, which was rescued by loss of miR-500a-5p. miR-500a-5p contained the binding sites with CXCL16. Circ_0000524 knockdown hampered CXCL16 expression by upregulating miR-500a-5p expression. Additionally, miR-500a-5p upregulation suppressed AngII-induced podocyte apoptosis, which was rescued by enhanced expression of CXCL16. CONCLUSION Circ_0000524/miR-500a-5p/CXCL16 pathway regulated podocyte apoptosis in MN.
Collapse
Affiliation(s)
- Zhiqiang Sun
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Qingqing Xu
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Yali Ma
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Suxia Yang
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Jun Shi
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
13
|
Enoxaparin prevents CXCL16/ADAM10-mediated cisplatin renal toxicity: Role of the coagulation system and the transcriptional factor NF-κB. Life Sci 2021; 270:119120. [PMID: 33545204 DOI: 10.1016/j.lfs.2021.119120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS C-X-C ligand 16 (CXCL16) is an exceptional chemokine that is expressed as transmembrane and soluble forms. Our aim is to shed lights on the role of CXCL16/ADAM10 (a disintegrin and metalloproteinase) in cisplatin (CP)-induced renal toxicity as well as possible protective effect of enoxaparin. MAIN METHODS Male albino mice were injected with CP (30 mg/kg, i.p.) in the presence or absence of enoxaparin (ENOX) (5 mg/kg, i.p.). Renal toxicity markers, serum level of cystatin-c, complete blood count (CBC), prothrombin time (Pt) and tissue expression of CXCL16, ADAM10, cluster of differentiation 3 (CD3), fibrinogen, tissue factor (TF), nuclear factor-κB (NF-κB) and tumour necrosis factor α (TNF-α) were measured. Besides, serum CXCL16 and histopathology were also analyzed. KEY FINDINGS CP increased renal toxicity markers, renal expression of CXCL16/ADAM10, fibrinogen, TF and CD3 tissue expression in a time-dependent manner, and elevated serum cystatin-c, CXCL16 and tissue TNF-α, NF-κB. Alternatively, ENOX restored the deteriorated parameters and reduced tissue level of NF-κB. SIGNIFICANCE This report, for the first time, showed that soluble CXCL16 resulting from ADAM10 cleavage may recruit T-cells to the renal glomeruli and tubules in CP toxicity. Furthermore, TF and fibrin, have similar expression and location pattern like CXCL16 and ADAM10 suggesting their possible interrelation. ENOX successfully restored the deteriorated parameters suggesting it may be an effective nephroprotective adjuvant therapy.
Collapse
|
14
|
Kim DU, Kim DG, Choi JW, Shin JY, Kweon B, Zhou Z, Lee HS, Song HJ, Bae GS, Park SJ. Loganin Attenuates the Severity of Acute Kidney Injury Induced by Cisplatin through the Inhibition of ERK Activation in Mice. Int J Mol Sci 2021; 22:ijms22031421. [PMID: 33572597 PMCID: PMC7866969 DOI: 10.3390/ijms22031421] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/02/2023] Open
Abstract
Cisplatin is the most widely used chemotherapeutic agent. However, it often causes nephrotoxicity, which results in acute kidney injury (AKI). Therefore, we urgently need a drug that can reduce the nephrotoxicity induced by cisplatin. Loganin is a major iridoid glycoside isolated from Corni fructus that has been used as an anti-inflammatory agent in various pathological models. However, the renal protective activity of loganin remains unclear. In this study, to examine the protective effect of loganin on cisplatin-induced AKI, male C57BL/6 mice were orally administered with loganin (1, 10, and 20 mg/kg) 1 h before intraperitoneal injection of cisplatin (10 mg/kg) and sacrificed at three days after the injection. The administration of loganin inhibited the elevation of blood urea nitrogen (BUN) and creatinine (CREA) in serum, which are used as biomarkers of AKI. Moreover, histological kidney injury, proximal tubule damages, and renal cell death, such as apoptosis and ferroptosis, were reduced by loganin treatment. Also, pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α, reduced by loganin treatment. Furthermore, loganin deactivated the extracellular signal-regulated kinases (ERK) 1 and 2 during AKI. Taken together, our results suggest that loganin may attenuate cisplatin-induced AKI through the inhibition of ERK1/2.
Collapse
Affiliation(s)
- Dong-Uk Kim
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Korea; (D.-U.K.); (D.-G.K.); (J.-W.C.); (H.-S.L.)
| | - Dong-Gu Kim
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Korea; (D.-U.K.); (D.-G.K.); (J.-W.C.); (H.-S.L.)
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea; (J.Y.S.); (B.K.); (Z.Z.); (H.-J.S.)
| | - Ji-Won Choi
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Korea; (D.-U.K.); (D.-G.K.); (J.-W.C.); (H.-S.L.)
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea; (J.Y.S.); (B.K.); (Z.Z.); (H.-J.S.)
| | - Joon Yeon Shin
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea; (J.Y.S.); (B.K.); (Z.Z.); (H.-J.S.)
| | - Bitna Kweon
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea; (J.Y.S.); (B.K.); (Z.Z.); (H.-J.S.)
| | - Ziqi Zhou
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea; (J.Y.S.); (B.K.); (Z.Z.); (H.-J.S.)
| | - Ho-Sub Lee
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Korea; (D.-U.K.); (D.-G.K.); (J.-W.C.); (H.-S.L.)
- Department of Herbal Resources, Professional Graduate School of Korean Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea
| | - Ho-Joon Song
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea; (J.Y.S.); (B.K.); (Z.Z.); (H.-J.S.)
| | - Gi-Sang Bae
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Korea; (D.-U.K.); (D.-G.K.); (J.-W.C.); (H.-S.L.)
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea
- Research Center of Traditional Korean Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea
- Correspondence: (G.-S.B.); (S.-J.P.); Tel.: +82-63-850-6842 (G.-S.B.); +82-63-850-6450 (S.-J.P.)
| | - Sung-Joo Park
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Korea; (D.-U.K.); (D.-G.K.); (J.-W.C.); (H.-S.L.)
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea; (J.Y.S.); (B.K.); (Z.Z.); (H.-J.S.)
- Correspondence: (G.-S.B.); (S.-J.P.); Tel.: +82-63-850-6842 (G.-S.B.); +82-63-850-6450 (S.-J.P.)
| |
Collapse
|
15
|
Jin X, An C, Jiao B, Safirstein RL, Wang Y. AMP-activated protein kinase contributes to cisplatin-induced renal epithelial cell apoptosis and acute kidney injury. Am J Physiol Renal Physiol 2020; 319:F1073-F1080. [PMID: 33103444 DOI: 10.1152/ajprenal.00354.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cisplatin, a commonly used anticancer drug, has been shown to induce acute kidney injury, which limits its clinical use in cancer treatment. Emerging evidence has suggested that AMP-activated protein kinase (AMPK), which functions as a cellular energy sensor, is activated by various cellular stresses that deplete cellular ATP. However, the potential role of AMPK in cisplatin-induced apoptosis of renal tubular epithelial cells has not been studied. In this study, we demonstrated that cisplatin activates AMPK (Thr172 phosphorylation) in cultured renal tubular epithelial cells in a time-dependent manner, which was associated with p53 phosphorylation. Compound C, a selective AMPK inhibitor, suppressed cisplatin-induced AMPK activation, p53 phosphorylation, Bax induction, and caspase 3 activation. Furthermore, silencing AMPK expression by siRNA attenuated cisplatin-induced p53 phosphorylation, Bax induction, and caspase 3 activation. In a mouse model of cisplatin-induced kidney injury, compound C inhibited p53 phosphorylation, Bax expression, caspase 3 activation, and apoptosis, protecting the kidney from injury and dysfunction. Taken together, these results suggest that the AMPK-p53-Bax signaling pathway plays a crucial role in cisplatin-induced tubular epithelial cell apoptosis.
Collapse
Affiliation(s)
- Xiaogao Jin
- Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Anesthesiology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Changlong An
- Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas.,Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Baihai Jiao
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Robert L Safirstein
- Renal Section, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Yanlin Wang
- Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas.,Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut.,Renal Section, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut.,Department of Cell Biology, University of Connecticut School of Medicine, Farmington, Connecticut.,Institute for Systems Genomics, University of Connecticut School of Medicine, Farmington, Connecticut
| |
Collapse
|
16
|
Disruption of CXCR6 Ameliorates Kidney Inflammation and Fibrosis in Deoxycorticosterone Acetate/Salt Hypertension. Sci Rep 2020; 10:133. [PMID: 31924817 PMCID: PMC6954216 DOI: 10.1038/s41598-019-56933-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 12/19/2019] [Indexed: 01/03/2023] Open
Abstract
Circulating cells have a pathogenic role in the development of hypertensive nephropathy. However, how these cells infiltrate into the kidney are not fully elucidated. In this study, we investigated the role of CXCR6 in deoxycorticosterone acetate (DOCA)/salt-induced inflammation and fibrosis of the kidney. Following uninephrectomy, wild-type and CXCR6 knockout mice were treated with DOCA/salt for 3 weeks. Blood pressure was similar between wild-type and CXCR6 knockout mice at baseline and after treatment with DOCA/salt. Wild-type mice develop significant kidney injury, proteinuria, and kidney fibrosis after three weeks of DOCA/salt treatment. CXCR6 deficiency ameliorated kidney injury, proteinuria, and kidney fibrosis following treatment with DOCA/salt. Moreover, CXCR6 deficiency inhibited accumulation of bone marrow–derived fibroblasts and myofibroblasts in the kidney following treatment with DOCA/salt. Furthermore, CXCR6 deficiency markedly reduced the number of macrophages and T cells in the kidney after DOCA/salt treatment. In summary, our results identify a critical role of CXCR6 in the development of inflammation and fibrosis of the kidney in salt-sensitive hypertension.
Collapse
|
17
|
Zhou J, An C, Jin X, Hu Z, Safirstein RL, Wang Y. TAK1 deficiency attenuates cisplatin-induced acute kidney injury. Am J Physiol Renal Physiol 2019; 318:F209-F215. [PMID: 31813254 DOI: 10.1152/ajprenal.00516.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cisplatin can cause acute kidney injury (AKI), but the molecular mechanisms are not well understood. The objective of the present study was to examine the role of transforming growth factor-β-activated kinase-1 (TAK1) in the pathogenesis of cisplatin-induced AKI. Wild-type mice and proximal tubule TAK1-deficient mice were treated with vehicle or cisplatin. Compared with wild-type control mice, proximal tubule TAK1-deficient mice had less severe kidney dysfunction, tubular damage, and apoptosis after cisplatin-induced AKI. Furthermore, conditional disruption of TAK1 in proximal tubular epithelial cells reduced caspase-3 activation, proinflammatory molecule expression, and JNK phosphorylation in the kidney in cisplatin-induced AKI. Taken together, cisplatin activates TAK1-JNK signaling pathway to promote tubular epithelial cell apoptosis and inflammation in cisplatin-induced AKI. Targeting TAK1 could be a novel therapeutic strategy against cisplatin-induced AKI.
Collapse
Affiliation(s)
- Jun Zhou
- Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Changlong An
- Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas.,Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Xiaogao Jin
- Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Anesthesiology, the Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Zhaoyong Hu
- Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Robert L Safirstein
- Renal Section, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Yanlin Wang
- Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas.,Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut.,Renal Section, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut.,Department of Cell Biology, University of Connecticut School of Medicine, Farmington, Connecticut.,Institute for Systems Genomics, University of Connecticut School of Medicine, Farmington, Connecticut
| |
Collapse
|
18
|
CXCL16 Induces the Progression of Pulmonary Fibrosis through Promoting the Phosphorylation of STAT3. Can Respir J 2019; 2019:2697376. [PMID: 31379980 PMCID: PMC6652085 DOI: 10.1155/2019/2697376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/18/2019] [Accepted: 03/26/2019] [Indexed: 01/21/2023] Open
Abstract
Aim The transmembrane chemokine (C-X-C motif) ligand 16 (CXCL16) plays a vital role in the pathogenesis of organ fibrosis, including the liver and kidney. However, the detailed biological function of CXCL16 is still not fully understood in the progression of pulmonary fibrosis (PF). The aim of present study is to examine the function of CXCL16 in PF. Materials and Methods In this study, we constructed the PF model on mouse by using bleomycin and analyzed the effect of the mouse recombinant protein CXCL16 on mouse lung fibroblast L929 (LF) as well. To further examine the connection between CXCL16 and STAT3 in mouse LF cells, the STAT3 inhibitor AG490 was utilized to inhibit the expression of STAT3. Meanwhile, lipopolysaccharide was used to enhance the phosphorylation of STAT3 (p-STAT3) in mouse LF cells. Results Our results indicated that the level of CXCL16/CXCR6 was significantly upregulated in the mouse PF model. Moreover, the level of p-STAT3 was also promoted. In addition, the mouse recombinant protein CXCL16 not only contributed to the proliferation of mouse LF cells but also induced the expression of p-STAT3 in LF cells. However, the effect of CXCL16 was deeply abolished by the STAT3 inhibitor AG490 in LF cells. Meanwhile, the antibody of CXCL16 deeply reduced the phosphorylation of STAT3 in lipopolysaccharide (LPS) cultured cells. Conclusions All these results demonstrated that CXCL16 promoted the phosphorylation of STAT3 and further demonstrated that STAT3 was a critical component in CXCL16/CXCR6 signaling pathway. This research not only enhanced the comprehension of CXCL16 but also indicated its potential value as a target in the treatment for human PF.
Collapse
|
19
|
Elemam NM, Al-Jaderi Z, Hachim MY, Maghazachi AA. HCT-116 colorectal cancer cells secrete chemokines which induce chemoattraction and intracellular calcium mobilization in NK92 cells. Cancer Immunol Immunother 2019; 68:883-895. [PMID: 30847498 PMCID: PMC11028293 DOI: 10.1007/s00262-019-02319-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 02/28/2019] [Indexed: 10/27/2022]
Abstract
We recently reported that pretreatment of IL-2 activated human natural killer (NK) cells with the drugs dimethyl fumarate (DMF) and monomethyl fumarate (MMF) upregulated the expression of surface chemokine receptor CCR10. Ligands for CCR10, namely CCL27 and CCL28, induced the chemotaxis of these cells. Here, we performed a bioinformatics analysis to see which chemokines might be expressed by the human HCT-116 colorectal cancer cells. We observed that, in addition to CCL27 and CCL28, HCT-116 colorectal cancer cells profoundly express CXCL16 which binds CXCR6. Consequently, NK92 cells were treated with DMF and MMF for 24 h to investigate in vitro chemotaxis towards CXCL16, CCL27, and CCL28. Furthermore, supernatants collected from HCT-116 cells after 24 or 48 h incubation induced the chemotaxis of NK92 cells. Similar to their effects on human IL-2-activated NK cells, MMF and DMF enhanced the expression of CCR10 and CXCR6 in NK92 cells. Neutralizing anti-CXCL16 or anti-CCL28 inhibited the chemotactic effects of 24 and 48 supernatants, whereas anti-CCL27 only inhibited the 48 h supernatant activity, suggesting that 24 h supernatant contains CXCL16 and CCL28, whereas HCT-116 secretes all three chemokines after 48 h in vitro cultures. CXCL16, CCL27, and CCL28, as well as the supernatants collected from HCT-116, induced the mobilization of (Ca)2+ in NK92 cells. Cross-desensitization experiments confirmed the results of the chemotaxis experiments. Finally, incubation of NK92 cells with HCT-116 induced the lysis of the tumor cells. In summary, these results might have important implications in directing the anti-tumor effectors NK cells towards tumor growth sites.
Collapse
Affiliation(s)
- Noha Mousaad Elemam
- Department of Clinical Sciences, College of Medicine and The Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Zaidoon Al-Jaderi
- Department of Clinical Sciences, College of Medicine and The Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Mahmood Yaseen Hachim
- Department of Clinical Sciences, College of Medicine and The Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Azzam A Maghazachi
- Department of Clinical Sciences, College of Medicine and The Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
20
|
Zhang W, Hua T, Li J, Zheng L, Wang Y, Xu M, Qi G. CXCL16 is activated by p-JNK and is involved in H 2O 2-induced HK-2 cell injury via p-ERK signaling. Am J Transl Res 2018; 10:3723-3732. [PMID: 30662622 PMCID: PMC6291717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/27/2018] [Indexed: 06/09/2023]
Abstract
Acute kidney injury (AKI) leads to an abrupt deterioration of renal function. CXC chemokine ligand 16 (CXCL16) is a CXC-soluble chemokine and a cell surface scavenger receptor that is involved in tissue injury and inflammation. It is induced in AKI patients, but the molecular mechanism remains unclear. In this study, we have worked to determine the function of CXCL16 and to investigate the involvement of ERK and JNK signaling in AKI. We used H2O2 and recombinant human CXCL16 protein (rh CXCL16) to treat the human renal tubular epithelial cell line, HK-2, in vitro. The present results indicate that H2O2 inhibits proliferation, induces apoptosis, and up-regulates expression of CXCL16 and the CXCL16 receptor, CXCR6, in HK-2 cells. Furthermore, H2O2-induced proliferation inhibition, apoptosis, and inflammation in HK-2 cells were ameliorated by NAC (N-acetyl cysteine, the ROS scavenger) and SP600125 (the JNK inhibitor). The expression levels of CXCL16 and CXCR6 were also positively correlated with the phosphorylation level of JNK (p-JNK). Additionally, rh CXCL16 treatment led to effects like those of H2O2 treatment in HK-2 cells, with symptoms being effectively improved by CXCR6 siRNA and the ERK inhibitor (PD98059). In addition, rh CXCL16-induced HK-2 cell apoptosis, inflammation, and collagen deposition were lessened by CXCR6 siRNA and PD98059 treatment. In summary, the present results have indicated that CXCL16 is involved in H2O2-induced HK-2 cell injury, that CXCL16 is activated by p-JNK, and that the regulatory function of CXCL16 is involved in the phosphorylation of ERK.
Collapse
Affiliation(s)
- Weitao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ TransplantationShanghai 200032, China
| | - Ting Hua
- Department of Nursing, Zhongshan Hospital, Fudan UniversityShanghai 200032, China
| | - Jiawei Li
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ TransplantationShanghai 200032, China
| | - Long Zheng
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ TransplantationShanghai 200032, China
| | - Yifan Wang
- Department of Pharmacy, The Affiliated East Hospital of Tongji UniversityShanghai 200123, China
| | - Ming Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ TransplantationShanghai 200032, China
| | - Guisheng Qi
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ TransplantationShanghai 200032, China
| |
Collapse
|
21
|
Zhou J, Zhong J, Huang Z, Liao M, Lin S, Chen J, Chen H. TAK1 mediates apoptosis via p38 involve in ischemia-induced renal fibrosis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:1016-1025. [PMID: 29661023 DOI: 10.1080/21691401.2018.1442841] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Renal fibrosis is a common and characteristic symptom of chronic kidney disease (CKD). However, the molecular mechanisms of renal fibrosis remain elusive. Ischemia injury, as a major cause of AKI, deserves more attention in order to improve the knowledge of AKI-induced fibrosis. Transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) interacts directly with TGF-β, which play a critical role in the progression of fibrosis. Therefore, the present study aimed to investigate the role of TAK1 in the pathogenesis of ischemia-induced renal fibrosis. Compared with mice in the vehicle group, mice intraperitoneally injected with TAK1 inhibitor were found to have lower serum creatinine, less tubular damage and more mild fibrosis following ischemia-induced AKI. Furthermore, inhibition of TAK1 reduced p38 phosphorylation, decreased expression of Bax and caspase 3 and apoptosis cells in kidneys of mice treated with IR-induced AKI. Compared with vehicle-treated renal tubular epithelial cells, TAK1 overexpression cells were found to have a higher apoptosis and fibrosis index level and p38 phosphorylation following hypoxia/reoxygenation (H/R) treatment. Furthermore, the p38 inhibitor combined with TAK1 overexpression verified the role of TAK1/p38 signaling pathway in apoptosis and fibrosis index level of renal tubular epithelial cells treated with H/R. Thus, our results show that TAK1 plays an important role in the pathogenesis of ischemia-induced renal fibrosis and may mediate p38-regulated cell apoptosis.
Collapse
Affiliation(s)
- Jun Zhou
- a Department of Anesthesiology , The First People's Hospital of Foshan , Foshan , Guangdong Province , China
| | - Jiying Zhong
- a Department of Anesthesiology , The First People's Hospital of Foshan , Foshan , Guangdong Province , China
| | - Zhenxing Huang
- a Department of Anesthesiology , The First People's Hospital of Foshan , Foshan , Guangdong Province , China
| | - Meijuan Liao
- a Department of Anesthesiology , The First People's Hospital of Foshan , Foshan , Guangdong Province , China
| | - Sen Lin
- a Department of Anesthesiology , The First People's Hospital of Foshan , Foshan , Guangdong Province , China
| | - Jia Chen
- a Department of Anesthesiology , The First People's Hospital of Foshan , Foshan , Guangdong Province , China
| | - Hongtao Chen
- b Department of Anesthesiology , The Eighth People's Hospital of Guangzhou , Guangzhou , Guangdong Province , China
| |
Collapse
|
22
|
Miyasato Y, Yoshizawa T, Sato Y, Nakagawa T, Miyasato Y, Kakizoe Y, Kuwabara T, Adachi M, Ianni A, Braun T, Komohara Y, Mukoyama M, Yamagata K. Sirtuin 7 Deficiency Ameliorates Cisplatin-induced Acute Kidney Injury Through Regulation of the Inflammatory Response. Sci Rep 2018; 8:5927. [PMID: 29651144 PMCID: PMC5897539 DOI: 10.1038/s41598-018-24257-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 03/29/2018] [Indexed: 12/31/2022] Open
Abstract
Cisplatin-induced acute kidney injury (AKI) has been recognized as one of cisplatin’s serious side effects, limiting its use in cancer therapy. Sirtuin 1 (SIRT1) and SIRT3 play protective roles against cisplatin-induced kidney injury. However, the role of SIRT7 in cisplatin-induced kidney injury is not yet known. In this study, we found that Sirt7 knockout (KO) mice were resistant to cisplatin-induced AKI. Furthermore, our studies identified that loss of SIRT7 decreases the expression of tumor necrosis factor-α (TNF-α) by regulating the nuclear expression of the transcription factor nuclear factor kappa B. It has been reported that cisplatin-induced nephrotoxicity is mediated by TNF-α. Our results indicate that SIRT7 plays an important role in cisplatin-induced AKI and suggest the possibility of SIRT7 as a novel therapeutic target for cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Yoshikazu Miyasato
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan.,Department of Nephrology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Tatsuya Yoshizawa
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Yoshifumi Sato
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Terumasa Nakagawa
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Yuko Miyasato
- Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Yutaka Kakizoe
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Takashige Kuwabara
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Masataka Adachi
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Alessandro Ianni
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Yoshihiro Komohara
- Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Kazuya Yamagata
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan.
| |
Collapse
|
23
|
Liang H, Liao M, Zhao W, Zheng X, Xu F, Wang H, Huang J. CXCL16/ROCK1 signaling pathway exacerbates acute kidney injury induced by ischemia-reperfusion. Biomed Pharmacother 2018; 98:347-356. [DOI: 10.1016/j.biopha.2017.12.063] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/04/2017] [Accepted: 12/14/2017] [Indexed: 01/21/2023] Open
|
24
|
Meng XM, Ren GL, Gao L, Yang Q, Li HD, Wu WF, Huang C, Zhang L, Lv XW, Li J. NADPH oxidase 4 promotes cisplatin-induced acute kidney injury via ROS-mediated programmed cell death and inflammation. J Transl Med 2018; 98:63-78. [PMID: 29106395 DOI: 10.1038/labinvest.2017.120] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/28/2017] [Accepted: 09/04/2017] [Indexed: 01/08/2023] Open
Abstract
The goal of this study was to elucidate the functional role of Nox4 during acute kidney injury (AKI). NADPH oxidases are a major source of reactive oxygen species (ROS) in the kidney in normal and pathological conditions. Among NADPH oxidase isoforms, NADPH oxidase4 (Nox4) is highly expressed in the kidney and has an important role in kidney diseases, such as diabetic nephropathy and renal carcinoma. We previously found that Nox4 expression significantly increased in the toxic AKI model. However, its functional role and mechanism of action in AKI are still unknown. We scavenged ROS with apocynin in vitro and in vivo and found it attenuated cisplatin-triggered renal function decline. It also alleviated programmed cell death and renal inflammation, indicating a critical role for ROS in mediating AKI. Nox4 protein and mRNA levels were substantially upregulated by cisplatin in vivo and in vitro. Nox4 knockdown alleviated cisplatin-induced cell death and inflammatory response, while Nox4 overexpression aggravated them. Moreover, N-acetyl-L-cysteine (NAC)-mediated inhibition of ROS suppressed cell injury led by Nox4 overexpression, indicating Nox4-mediated ROS generation may be the key mediator in cisplatin-induced nephrotoxicity. Mechanistically, excessive expression of Nox4 induced programmed cell death, especially RIP-mediated necroptosis. Finally, we tested whether Nox4 is a potential therapeutic target using an AKI mouse model by injecting a lentivirus-packaged Nox4 shRNA plasmid through tail vein. Disruption of Nox4 led to renal function recovery, kidney damage relief and reduced inflammation. We conclude that Nox4 aggravates cisplatin-induced nephrotoxicity by promoting ROS-mediated programmed cell death and inflammation. Thus Nox4 may serve as a potential therapeutic target in the treatment of AKI.
Collapse
Affiliation(s)
- Xiao-Ming Meng
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,Anhui Institute of Innovative Drugs, Hefei, Anhui, China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui, China
| | - Gui-Ling Ren
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,Anhui Institute of Innovative Drugs, Hefei, Anhui, China.,Huainan First People's Hospital and First Affiliated Hospital of Anhui University of Science & Technology, Huainan, Anhui, China
| | - Li Gao
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,Anhui Institute of Innovative Drugs, Hefei, Anhui, China
| | - Qin Yang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,Anhui Institute of Innovative Drugs, Hefei, Anhui, China
| | - Hai-Di Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,Anhui Institute of Innovative Drugs, Hefei, Anhui, China
| | - Wei-Feng Wu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,Anhui Institute of Innovative Drugs, Hefei, Anhui, China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,Anhui Institute of Innovative Drugs, Hefei, Anhui, China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui, China
| | - Lei Zhang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,Anhui Institute of Innovative Drugs, Hefei, Anhui, China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui, China
| | - Xiong-Wen Lv
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,Anhui Institute of Innovative Drugs, Hefei, Anhui, China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,Anhui Institute of Innovative Drugs, Hefei, Anhui, China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui, China
| |
Collapse
|
25
|
Zhou J, Chen H, Fan Y. Systematic analysis of the expression profile of non-coding RNAs involved in ischemia/reperfusion-induced acute kidney injury in mice using RNA sequencing. Oncotarget 2017; 8:100196-100215. [PMID: 29245971 PMCID: PMC5725013 DOI: 10.18632/oncotarget.22130] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/27/2017] [Indexed: 01/13/2023] Open
Abstract
Acute kidney injury (AKI) is a common and serious disease characterized by a rapid decline in renal function and has an unacceptably high mortality rate with no effective treatment beyond supportive care. AKI can be induced by many factors such as ischemia/reperfusion (IR), sepsis, and drug-induced nephrotoxicity. However, the molecular mechanisms of AKI are poorly understood. A non-coding RNA (ncRNA) is a RNA molecule that is not translated into a protein. NcRNAs play multiple roles in cellular processes, and mutations or imbalances of these molecules within the body can cause a variety of diseases. Although growing evidence has supported the key role of ncRNAs in AKI, the specific mechanism remains largely unknown. In this study, the second-generation gene sequencing was performed to investigate the expression patterns of ncRNAs, including microRNA (miRNA), long non-coding RNAs, and circular RNAs, in the kidneys of mice subjected to IR-induced AKI. This information will contribute to future research of the mechanism of ncRNAs in the pathogenesis of AKI and facilitate the identification of novel therapeutic targets of ncRNAs.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Anesthesiology, The First People’s Hospital of Foshan, Foshan, Guangdong Province 528000, China
| | - Hongtao Chen
- Department of Anesthesiology, Eighth People’s Hospital of Guangzhou, Guangzhou, Guangdong Province 510060, China
| | - Youling Fan
- Department of Anesthesiology, Panyu Central Hospital, Guangzhou, Guangdong Province 511400, China
| |
Collapse
|
26
|
Zhou J, Fan Y, Tang S, Wu H, Zhong J, Huang Z, Yang C, Chen H. Inhibition of PTEN activity aggravates cisplatin-induced acute kidney injury. Oncotarget 2017; 8:103154-103166. [PMID: 29262553 PMCID: PMC5732719 DOI: 10.18632/oncotarget.20790] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/18/2017] [Indexed: 12/16/2022] Open
Abstract
Cisplatin (cis-Diamminedichloroplatinum II) has been widely and effectively used in chemotherapy against tumors. Nephrotoxicity due to cisplatin is one of the most common clinical causes of acute kidney injury (AKI), which has a poor prognosis and high mortality. The signaling mechanisms underlying cisplatin-induced AKI are not completely understood. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor that negatively regulates the cell-survival pathway and is considered a double-edged sword in organ damage. In this study, we examined the effect that inhibiting PTEN activity in experimental models of cisplatin-induced AKI had on the degrees of AKI. Compared with vehicle mice, mice treated with bpV(pic) (specific inhibitor of PTEN) had exacerbated renal damage due to cisplatin-induced AKI. Furthermore, inhibition of PTEN activity increased cell apoptosis in the kidneys of mice induced by cisplatin. More inflammatory cytokines were activated after cisplatin treatment in mice of the bpV(pic)-treated group compared with vehicle mice, and these inflammatory cytokines may be partially derived from bone marrow cells. In addition, inhibiting PTEN activity decreased the phosphorylation of p53 in the pathogenesis of cisplatin-induced AKI. In summary, our study has demonstrated that inhibiting PTEN activity aggravates cisplatin-induced AKI via apoptosis, inflammatory reaction, and p53 signaling pathway. These results indicated that PTEN may serve as a novel therapeutic target for cisplatin-induced AKI.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong Province, 528000, China
| | - Youling Fan
- Department of Anesthesiology, Panyu Central Hospital, Guangzhou, Guangdong Province, 511400, China
| | - Simin Tang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong Province, 528000, China
| | - Huiping Wu
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong Province, 528000, China
| | - Jiying Zhong
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong Province, 528000, China
| | - Zhengxing Huang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong Province, 528000, China
| | - Chengxiang Yang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong Province, 528000, China
| | - Hongtao Chen
- Department of Anesthesiology, Eighth People's Hospital of Guangzhou, Guangzhou, Guangdong Province, 510060, China
| |
Collapse
|
27
|
Zhou J, Jia L, Hu Z, Wang Y. Pharmacological Inhibition of PTEN Aggravates Acute Kidney Injury. Sci Rep 2017; 7:9503. [PMID: 28842716 PMCID: PMC5572703 DOI: 10.1038/s41598-017-10336-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/08/2017] [Indexed: 12/13/2022] Open
Abstract
Renal ischemia/reperfusion is a major cause of acute kidney injury. However, the pathogenic mechanisms underlying renal ischemia/reperfusion injury (IRI) are not fully defined. Here, we investigated the role of PTEN, a dual protein/lipid phosphatase, in the development of ischemic AKI in mice. Pharmacological inhibition of PTEN with bpV(HOpic) exacerbated renal dysfunction and promoted tubular damage in mice with IRI compared with vehicle-treated mice with IRI. PTEN inhibition enhanced tubular cell apoptosis in kidneys with IRI, which was associated with excessive caspase-3 activation. Furthermore, PTEN inhibition expanded the infiltration of neutrophils and macrophages into kidneys with IRI, which was accompanied by increased expression of the proinflammatory molecules. These results have demonstrated that PTEN plays a crucial role in the pathogenesis of ischemic acute kidney injury through regulating tubular cell apoptosis and inflammation suggesting PTEN could be a potential therapeutic target for acute kidney injury.
Collapse
Affiliation(s)
- Jun Zhou
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA.,Department of Anesthesiology, Affiliated Foshan Hospital of Sun Yat-Sen University, Foshan, China
| | - Li Jia
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Zhaoyong Hu
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Yanlin Wang
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA. .,Center for Translational Research on Inflammatory Diseases (CTRID) and Renal Section, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA.
| |
Collapse
|
28
|
Liang H, Xu F, Wen XJ, Liu HZ, Wang HB, Zhong JY, Yang CX, Zhang B. Interleukin-33 signaling contributes to renal fibrosis following ischemia reperfusion. Eur J Pharmacol 2017; 812:18-27. [PMID: 28668506 DOI: 10.1016/j.ejphar.2017.06.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 12/30/2022]
Abstract
Acute kidney injury caused by ischemia-reperfusion injury (IRI) is a major risk factor for chronic kidney disease, which is characterized by renal interstitial fibrosis. However, the molecular mechanisms underlying renal fibrosis induced by IRI are not fully understood. Our results showed that interleukin (IL)-33 was induced markedly after IRI insult, and the kidneys of mice following IRI plus IL-33 treatment presented more severe renal fibrosis compared with mice treated with IRI alone. Therefore, we investigated whether inhibition of IL-33 protects against IRI-induced renal fibrosis. Mice were administrated with soluble ST2 (sST2), a decoy receptor that neutralizes IL-33 activity, or vehicle by intraperitoneal injection for 14 days after IRI challenge. We revealed that mice treated with sST2 exhibited less severe renal dysfunction and fibrosis in response to IRI compared with vehicle-treated mice. Inhibition of IL-33 suppressed bone marrow-derived fibroblast accumulation and myofibroblast formation in the kidneys after IRI stress, which was associated with less expression of extracellular matrix proteins. Furthermore, inhibition of IL-33 also showed a significant reduction of F4/80+ macrophages and CD3+ T cells in the kidneys of mice after IRI treatment. Finally, Treatment with IL-33 inhibitor reduced proinflammatory cytokine and chemokine levels in the kidneys of mice following IRI insult. Taken together, our findings indicate that IL-33 signaling plays a critical role in the pathogenesis of IRI-induced renal fibrosis through regulating myeloid fibroblast accumulation, inflammation cell infiltration, and the expression of proinflammatory cytokines and chemokines.
Collapse
Affiliation(s)
- Hua Liang
- Department of Anesthesiology, Affiliated Foshan Hospital of SUN YAT-SEN University, Foshan 528000, China
| | - Feng Xu
- Department of Anesthesiology, Affiliated Foshan Hospital of SUN YAT-SEN University, Foshan 528000, China
| | - Xian-Jie Wen
- Department of Anesthesiology, Affiliated Foshan Hospital of SUN YAT-SEN University, Foshan 528000, China
| | - Hong-Zhen Liu
- Department of Anesthesiology, Affiliated Foshan Hospital of SUN YAT-SEN University, Foshan 528000, China
| | - Han-Bing Wang
- Department of Anesthesiology, Affiliated Foshan Hospital of SUN YAT-SEN University, Foshan 528000, China.
| | - Ji-Ying Zhong
- Department of Anesthesiology, Affiliated Foshan Hospital of SUN YAT-SEN University, Foshan 528000, China
| | - Cheng-Xiang Yang
- Department of Anesthesiology, Affiliated Foshan Hospital of SUN YAT-SEN University, Foshan 528000, China
| | - Bin Zhang
- Department of Anesthesiology, Affiliated Foshan Hospital of SUN YAT-SEN University, Foshan 528000, China.
| |
Collapse
|
29
|
Grunz-Borgmann EA, Nichols LA, Wang X, Parrish AR. Twist2 Is Upregulated in Early Stages of Repair Following Acute Kidney Injury. Int J Mol Sci 2017; 18:ijms18020368. [PMID: 28208580 PMCID: PMC5343903 DOI: 10.3390/ijms18020368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 01/05/2017] [Accepted: 02/03/2017] [Indexed: 12/04/2022] Open
Abstract
The aging kidney is a marked by a number of structural and functional changes, including an increased susceptibility to acute kidney injury (AKI). Previous studies from our laboratory have shown that aging male Fischer 344 rats (24 month) are more susceptible to apoptosis-mediated injury than young counterparts. In the current studies, we examined the initial injury and early recovery phases of mercuric chloride-induced AKI. Interestingly, the aging kidney had decreased serum creatinine compared to young controls 1 day following mercuric chloride injury, but by day 4, serum creatinine was significantly elevated, suggesting that the aging kidney did not recover from injury. This conclusion is supported by the findings that serum creatinine and kidney injury molecule-1 (Kim-1) gene expression remain elevated compared to young controls at 10 days post-injury. To begin to elucidate mechanism(s) underlying dysrepair in the aging kidney, we examined the expression of Twist2, a helix-loop-helix transcription factor that may mediate renal fibrosis. Interestingly, Twist2 gene expression was elevated following injury in both young and aged rats, and Twist2 protein expression is elevated by mercuric chloride in vitro.
Collapse
Affiliation(s)
- Elizabeth A Grunz-Borgmann
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| | - LaNita A Nichols
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| | - Xinhui Wang
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| | - Alan R Parrish
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|