1
|
Liang YY, Liao XY, Jia JJ, Yin YZ, Zhang YH, Gao FG. K33 only mutant ubiquitin augments bone marrow-derived dendritic cell-mediated CTL priming via PI3K-Akt pathway. Immunology 2024; 172:486-499. [PMID: 38547355 DOI: 10.1111/imm.13787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/18/2024] [Indexed: 06/15/2024] Open
Abstract
To explore the effect of K33 only mutant ubiquitin (K33O) on bone marrow-derived dendritic cells' (BMDCs') maturity, antigen uptake capability, surface molecule expressions and BMDC-mediated CTL priming, and further investigate the role of PI3K-Akt engaged in K33O-increased BMDC maturation, antigen uptake and presentation, surface molecule expressions and BMDC-based CTL priming. BMDCs were conferred K33O and other ubiquitin mutants (K33R, K48R, K63R-mutant ubiquitin) incubation or LY294002 and wortmannin pretreatment. PI3K-Akt phosphorylation, antigen uptake, antigenic presentation and CD86/MHC class I expression in BMDC were determined by western blot or flow cytometry. BMDC-based CTL proliferation and priming were determined by in vitro mixed lymphocyte reaction (MLR), ex vivo enzyme-linked immunospot assay (Elispot) and flow cytometry with intracellular staining, respectively. The treatment with K33O effectively augmented PI3K-Akt phosphorylation, BMDCs' antigen uptake, antigenic presentation, CD86/MHC class I and CD11c expressions. MLR, Elispot and flow cytometry revealed that K33O treatment obviously enhanced CTL proliferation, CTL priming and perforin/granzyme B expression. The pretreatment with PI3K-Akt inhibitors efficiently abrogated K33O's effects on BMDC. The replenishment of K33 only mutant ubiquitin augments BMDC-mediated CTL priming in bone marrow-derived dendritic cells via PI3K-Akt signalling.
Collapse
Affiliation(s)
- Yi Yun Liang
- Department of Basic Medicine Science, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Xiao Yan Liao
- Department of Basic Medicine Science, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Jun Jun Jia
- Department of Basic Medicine Science, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Yi Zhen Yin
- Department of Basic Medicine Science, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Yue Hua Zhang
- Laboratory Animal Center, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Feng Guang Gao
- Department of Basic Medicine Science, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| |
Collapse
|
2
|
Díaz-Dinamarca DA, Salazar ML, Escobar DF, Castillo BN, Valdebenito B, Díaz P, Manubens A, Salazar F, Troncoso MF, Lavandero S, Díaz J, Becker MI, Vásquez AE. Surface immunogenic protein from Streptococcus agalactiae and Fissurella latimarginata hemocyanin are TLR4 ligands and activate MyD88- and TRIF dependent signaling pathways. Front Immunol 2023; 14:1186188. [PMID: 37790926 PMCID: PMC10544979 DOI: 10.3389/fimmu.2023.1186188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/29/2023] [Indexed: 10/05/2023] Open
Abstract
The development of vaccine adjuvants is of interest for the management of chronic diseases, cancer, and future pandemics. Therefore, the role of Toll-like receptors (TLRs) in the effects of vaccine adjuvants has been investigated. TLR4 ligand-based adjuvants are the most frequently used adjuvants for human vaccines. Among TLR family members, TLR4 has unique dual signaling capabilities due to the recruitment of two adapter proteins, myeloid differentiation marker 88 (MyD88) and interferon-β adapter inducer containing the toll-interleukin-1 receptor (TIR) domain (TRIF). MyD88-mediated signaling triggers a proinflammatory innate immune response, while TRIF-mediated signaling leads to an adaptive immune response. Most studies have used lipopolysaccharide-based ligands as TLR4 ligand-based adjuvants; however, although protein-based ligands have been proven advantageous as adjuvants, their mechanisms of action, including their ability to undergo structural modifications to achieve optimal immunogenicity, have been explored less thoroughly. In this work, we characterized the effects of two protein-based adjuvants (PBAs) on TLR4 signaling via the recruitment of MyD88 and TRIF. As models of TLR4-PBAs, we used hemocyanin from Fissurella latimarginata (FLH) and a recombinant surface immunogenic protein (rSIP) from Streptococcus agalactiae. We determined that rSIP and FLH are partial TLR4 agonists, and depending on the protein agonist used, TLR4 has a unique bias toward the TRIF or MyD88 pathway. Furthermore, when characterizing gene products with MyD88 and TRIF pathway-dependent expression, differences in TLR4-associated signaling were observed. rSIP and FLH require MyD88 and TRIF to activate nuclear factor kappa beta (NF-κB) and interferon regulatory factor (IRF). However, rSIP and FLH have a specific pattern of interleukin 6 (IL-6) and interferon gamma-induced protein 10 (IP-10) secretion associated with MyD88 and TRIF recruitment. Functionally, rSIP and FLH promote antigen cross-presentation in a manner dependent on TLR4, MyD88 and TRIF signaling. However, FLH activates a specific TRIF-dependent signaling pathway associated with cytokine expression and a pathway dependent on MyD88 and TRIF recruitment for antigen cross-presentation. Finally, this work supports the use of these TLR4-PBAs as clinically useful vaccine adjuvants that selectively activate TRIF- and MyD88-dependent signaling to drive safe innate immune responses and vigorous Th1 adaptive immune responses.
Collapse
Affiliation(s)
- Diego A. Díaz-Dinamarca
- Sección de Biotecnología, Subdepartamento, Innovación, Desarrollo, Transferencia Tecnológica (I+D+T) y Evaluación de Tecnologías Sanitarias (ETESA), Instituto de Salud Pública, Santiago, Chile
- Laboratorio de Inmunología, Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Michelle L. Salazar
- Laboratorio de Inmunología, Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
| | - Daniel F. Escobar
- Sección de Biotecnología, Subdepartamento, Innovación, Desarrollo, Transferencia Tecnológica (I+D+T) y Evaluación de Tecnologías Sanitarias (ETESA), Instituto de Salud Pública, Santiago, Chile
| | - Byron N. Castillo
- Laboratorio de Inmunología, Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
| | - Bastián Valdebenito
- Sección de Biotecnología, Subdepartamento, Innovación, Desarrollo, Transferencia Tecnológica (I+D+T) y Evaluación de Tecnologías Sanitarias (ETESA), Instituto de Salud Pública, Santiago, Chile
| | - Pablo Díaz
- Sección de Biotecnología, Subdepartamento, Innovación, Desarrollo, Transferencia Tecnológica (I+D+T) y Evaluación de Tecnologías Sanitarias (ETESA), Instituto de Salud Pública, Santiago, Chile
| | | | - Fabián Salazar
- Laboratorio de Inmunología, Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
- Investigación y Desarrollo, BIOSONDA S.A., Santiago, Chile
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Mayarling F. Troncoso
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Janepsy Díaz
- Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago, Chile
| | - María Inés Becker
- Laboratorio de Inmunología, Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
- Investigación y Desarrollo, BIOSONDA S.A., Santiago, Chile
| | - Abel E. Vásquez
- Sección de Biotecnología, Subdepartamento, Innovación, Desarrollo, Transferencia Tecnológica (I+D+T) y Evaluación de Tecnologías Sanitarias (ETESA), Instituto de Salud Pública, Santiago, Chile
- Facultad de Ciencias de la Salud, Escuela de Medicina, Universidad del Alba, Santiago, Chile
| |
Collapse
|
3
|
Jia JJ, Liao XY, Liang YY, Chen RL, Gao FG. K48- and K27-mutant ubiquitin regulates adaptive immune response by affecting cross-presentation in bone marrow precursor cells. J Leukoc Biol 2022; 112:157-172. [PMID: 35352390 DOI: 10.1002/jlb.4ma0222-419rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/28/2022] [Indexed: 11/06/2022] Open
Abstract
K48-linked ubiquitination determines antigen degradation and plays vital roles in the process of cross-presentation of bone marrow precursor cell (BMPC)-derived dendritic cells (DCs). Although previous studies revealed that K48 and K27-linked ubiquitination regulates innate immunity, the exact roles of K48 and K27-linked ubiquitination in cross-presentation and BMPC-based adaptive immunity are still uncertain. In this study, we investigated the effects of K48- and K27-mutant ubiquitin (Ub) on BMPC-based adaptive immune response by observing the effects of MG132, Ub deficiency, and K48/K27-mutant Ub on cross-presentation, T cell proliferation, IFN-γ secretion, BMPC-based CTL priming, and thereby the efficiency of cytolytic capacity of BMPC-activate T cells. We demonstrated that MG132, Ub deficiency, and K48-mutant Ub impair cross-presentation, T cell proliferation, IFN-γ secretion, BMPC-based CTL priming, and the cytolytic capacity of BMPC-activated T cells. Moreover, although K27-only Ub decreases cross-presentation, the replenishment of K27-mutant Ub restores Ub deficiency impaireds the abilities of T cell proliferation, IFN-γ secretion, CTL priming, and the cytolytic capacity of BMPC-activated T cells. Thus, these data suggest that K48- and K27-linked ubiquitination contributes to BMPC-mediated adaptive immune response by affecting BMPC cross-presentation and the cytolytic capacity by up-regulating both perforin and granzyme B in BMPC-activated T cells. K48- and K27-mutant Ub might have potential clinical therapeutic function in adaptive immune response-associated diseases.
Collapse
Affiliation(s)
- Jun Jun Jia
- Department of Basic Medicine Science, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiao Yan Liao
- Department of Basic Medicine Science, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yi Yun Liang
- Department of Basic Medicine Science, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Rui Ling Chen
- Department of Basic Medicine Science, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Feng Guang Gao
- Department of Basic Medicine Science, School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
4
|
Hu CF, Liao XY, Xu DD, Ruan YB, Gao FG. K48-Linked Ubiquitination Contributes to Nicotine-Augmented Bone Marrow-Derived Dendritic-Cell-Mediated Adaptive Immunity. Vaccines (Basel) 2021; 9:vaccines9030278. [PMID: 33808531 PMCID: PMC8003133 DOI: 10.3390/vaccines9030278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 01/23/2023] Open
Abstract
K48-linked ubiquitination determining antigen degradation and the endosomal recruitments of p97 and Sec61 plays vital roles in dendritic cell (DC) cross-presentation. Our previous studies revealed that nicotine treatment increases bone marrow-derived dendritic cell (BM-DC) cross-presentation and promotes BM-DC-based cytotoxic T lymphocyte (CTL) priming. But the effect of nicotine on K48-linked ubiquitination and the mechanism of nicotine-increased BM-DC cross-presentation are still uncertain. In this study, we first demonstrated that ex vivo nicotine administration obviously increased K48-linked ubiquitination in BM-DC. Then, we found that K48-linked ubiquitination was essential for nicotine-augmented cross-presentation, BM-DC-based CTL priming, and thereby the superior cytolytic capacity of DC-activated CTL. Importantly, K48-linked ubiquitination was verified to be necessary for nicotine-augmented endosomal recruitments of p97 and Sec61. Importantly, mannose receptor (MR), which is an important antigenic receptor for cross-presentation, was exactly catalyzed with K48-linked ubiquitination by the treatment with nicotine. Thus, these data suggested that K48-linked ubiquitination contributes to the superior adaptive immunity of nicotine-administrated BM-DC. Regulating K48-linked ubiquitination might have therapeutic potential for DC-mediated immune therapy.
Collapse
Affiliation(s)
- Chun Fang Hu
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China; (C.F.H.); (X.Y.L.); (D.D.X.)
| | - Xiao Yan Liao
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China; (C.F.H.); (X.Y.L.); (D.D.X.)
| | - Dan Dan Xu
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China; (C.F.H.); (X.Y.L.); (D.D.X.)
| | - Yi Bin Ruan
- Technology Center, China Tobacco Guizhou Industrial Co., Ltd., Guiyang 550003, China
- Correspondence: (Y.B.R.); (F.G.G.)
| | - Feng Guang Gao
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China; (C.F.H.); (X.Y.L.); (D.D.X.)
- Correspondence: (Y.B.R.); (F.G.G.)
| |
Collapse
|
5
|
Akt+ IKKα/β+ Rab5+ Signalosome Mediate the Endosomal Recruitment of Sec61 and Contribute to Cross-Presentation in Bone Marrow Precursor Cells. Vaccines (Basel) 2020; 8:vaccines8030539. [PMID: 32957586 PMCID: PMC7563657 DOI: 10.3390/vaccines8030539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/25/2022] Open
Abstract
Cross-presentation in dendritic cells (DC) requires the endosomal relocations of internalized antigens and the endoplasmic reticulum protein Sec61. Despite the fact that endotoxin-containing pathogen and endotoxin-free antigen have different effects on protein kinase B (Akt) and I-kappa B Kinase α/β (IKKα/β) activation, the exact roles of Akt phosphorylation, IKKα or IKKβ activation in endotoxin-containing pathogen-derived cross-presentation are poorly understood. In this study, endotoxin-free ovalbumin supplemented with endotoxin was used as a model pathogen. We investigated the effects of endotoxin-containing pathogen and endotoxin-free antigen on Akt phosphorylation, IKKα/β activation, and explored the mechanisms that the endotoxin-containing pathogen orchestrating the endosomal recruitment of Sec61 of the cross-presentation in bone marrow precursor cells (BMPC). We demonstrated that endotoxin-containing pathogen and endotoxin-free antigen efficiently induced the phosphorylation of Akt-IKKα/β and Akt-IKKα, respectively. Endotoxin-containing pathogen derived Akt+ IKKα/β+ Rab5+ signalosome, together with augmented the recruitment of Sec61 toward endosome, lead to the increased cross-presentation in BMPC. Importantly, the endosomal recruitment of Sec61 was partly mediated by the formation of Akt+ IKKα/β+ signalosome. Thus, these data suggest that Akt+ IKKα/β+ Rab5+ signalosome contribute to endotoxin-containing pathogen-induced the endosomal recruitment of Sec61 and the superior efficacy of cross-presentation in BMPC.
Collapse
|
6
|
Zhang LX, Chen RL, Liao XY, You X, Gao FG. Ex vivo IL-15 replenishment augments bone marrow precursor cell-mediated adaptive immunity via PI3K-Akt pathway. J Leukoc Biol 2020; 108:177-188. [PMID: 32293057 DOI: 10.1002/jlb.1ma0220-337rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/11/2020] [Accepted: 03/18/2020] [Indexed: 01/10/2023] Open
Abstract
This study tested the hypothesis that PI3K-Akt activity contributes to the superior immune function of IL-15-administrated bone marrow precursor cells (BMPC). Our previous studies revealed that PI3K-Akt play vital role in dendritic cells (DCs) cross-presentation and DC-based CTL priming. Despite the fact that IL-15 serves multiple functions in its therapeutic potential for the induction and maintenance of T cell response, the exact role of PI3K-Akt in IL-15 increased adaptive immunity is still poorly understood. In this study, we demonstrated that ex vivo IL-15 administration increased BMPC capability of antigen uptake and the expression of costimulatory molecules (such as CD80 and 4-1BB(CD137) ligand [4-1BBL]) and MHC class I molecule via PI3K-Akt pathway. Importantly, PI3K-Akt activity was not only necessary for IL-15 augmented BMPC cross-presentation and CTL priming, but also facilitated IL-15 increased therapeutic potential of the cytolytic capacity and maintenance of BMPC-activated T cells. Thus, these data suggested that PI3K-Akt activity contribute to the superior immune function of IL-15-administrated BMPC and thereby might be therapeutic potential for adaptive immunity.
Collapse
Affiliation(s)
- Li Xiao Zhang
- Department of Basic Medicine Science, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Rui Ling Chen
- Department of Basic Medicine Science, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Xiao Yan Liao
- Department of Basic Medicine Science, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Xiang You
- Department of Basic Medicine Science, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Feng Guang Gao
- Department of Basic Medicine Science, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China.,State Key Laboratory of Oncogenes and Related Genes, Shang Hai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
7
|
PYR-41 and Thalidomide Impair Dendritic Cell Cross-Presentation by Inhibiting Myddosome Formation and Attenuating the Endosomal Recruitments of p97 and Sec61 via NF- κB Inactivation. J Immunol Res 2018; 2018:5070573. [PMID: 30069488 PMCID: PMC6057288 DOI: 10.1155/2018/5070573] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/01/2018] [Accepted: 04/29/2018] [Indexed: 12/22/2022] Open
Abstract
PYR-41 and thalidomide have therapeutic effects on inflammation-associated diseases with side effects such as tumorigenesis. Cross-presentation allows dendritic cells (DC) to present endogenous antigen and induce protective immunity against microbe infection and tumors. But, up to now, the effects of PYR-41 and thalidomide on cross-presentation are still uncertain. In this study, we investigated the effect and mechanism of PYR-41 and thalidomide on DC cross-presentation by observing Myddosome formation, endosomal recruitment of p97 and Sec61, NF-κB activation, and cross-priming ability. We demonstrated that the inhibition of endosomal recruitment of p97 and Sec61, together with attenuated NF-κB activation and Myddosome formation, contributes to PYR-41- and thalidomide-impaired cross-presentation and thereby reverses cross-activation of T cells. These observations suggest that NF-κB signaling and p97 and Sec61 molecules are candidates for dealing with the side effects of PYR-41 and thalidomide.
Collapse
|
8
|
Shao BZ, Ke P, Xu ZQ, Wei W, Cheng MH, Han BZ, Chen XW, Su DF, Liu C. Autophagy Plays an Important Role in Anti-inflammatory Mechanisms Stimulated by Alpha7 Nicotinic Acetylcholine Receptor. Front Immunol 2017; 8:553. [PMID: 28559895 PMCID: PMC5432615 DOI: 10.3389/fimmu.2017.00553] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/25/2017] [Indexed: 12/14/2022] Open
Abstract
Alpha7 nicotinic acetylcholine receptor (α7nAChR) has been reported to alleviate neuroinflammation. Here, we aimed to determine the role of autophagy in α7nAChR-mediated inhibition of neuroinflammation and its underlying mechanism. Experimental autoimmune encephalomyelitis (EAE) mice and lipopolysaccharide-stimulated BV2 microglia were used as in vivo and in vitro models of neuroinflammation, respectively. The severity of EAE was evaluated with neurological scoring. Autophagy-related proteins (Beclin 1, LC3-II/I, p62/SQSTM1) were detected by immunoblot. Autophagosomes were observed using transmission electron microscopy and tandem fluorescent mRFP-GFP-LC3 plasmid was applied to test autophagy flux. The mRNA levels of interleukin-6 (IL-6), IL-1β, IL-18, and tumor necrosis factor-α (TNF-α) were detected by real-time PCR. We used 3-methyladenine (3-MA) and autophagy-related gene 5 small interfering RNA (Atg5 siRNA) to block autophagy in vivo and in vitro, respectively. Activating α7nAChR with PNU282987 ameliorates EAE severity and spinal inflammatory infiltration in EAE mice. PNU282987 treatment also enhanced monocyte/microglia autophagy (Beclin 1, LC3-II/I ratio, p62/SQSTM1, colocalization of CD45- or CD68-positive cells with LC3) both in spinal cord and spleen from EAE mice. The beneficial effects of PNU282987 on EAE mice were partly abolished by 3-MA, an autophagy inhibitor. In vitro, PNU282987 treatment increased autophagy and promoted autophagy flux. Blockade of autophagy by Atg5 siRNA or bafilomycin A1 attenuated the inhibitory effect of PNU282987 on IL-6, IL-1β, IL-18, and TNF-α mRNA. Our results demonstrate for the first time that activating α7nAChR enhances monocyte/microglia autophagy, which suppresses neuroinflammation and thus plays an alleviative role in EAE.
Collapse
Affiliation(s)
- Bo-Zong Shao
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Ping Ke
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Zhe-Qi Xu
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Wei Wei
- Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ming-He Cheng
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Bin-Ze Han
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Xiong-Wen Chen
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Ding-Feng Su
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Chong Liu
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| |
Collapse
|
9
|
Hypaphorine Attenuates Lipopolysaccharide-Induced Endothelial Inflammation via Regulation of TLR4 and PPAR-γ Dependent on PI3K/Akt/mTOR Signal Pathway. Int J Mol Sci 2017; 18:ijms18040844. [PMID: 28420166 PMCID: PMC5412428 DOI: 10.3390/ijms18040844] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 12/31/2022] Open
Abstract
Endothelial lesion response to injurious stimuli is a necessary step for initiating inflammatory cascades in blood vessels. Hypaphorine (Hy) from different marine sources is shown to exhibit anti-inflammatory properties. However, the potential roles and possible molecular mechanisms of Hy in endothelial inflammation have yet to be fully clarified. We showed that Hy significantly inhibited the positive effects of lipopolysaccharide (LPS) on pro-inflammatory cytokines expressions, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), monocyte chemoattractant protein 1 (MCP-1) and vascular cellular adhesion molecule-1 (VCAM-1), as well as induction of the phosphorylation of Akt and mTOR in HMEC-1 cells. The downregulated peroxisome proliferator-activated receptor γ (PPAR-γ) and upregulated toll-like receptor 4 (TLR4) expressions in LPS-challenged endothelial cells were prevented by Hy. Inhibition of both PI3K and mTOR reversed LPS-stimulated increases in TLR4 expressions and decreases in PPAR-γ levels. Genetic silencing of TLR4 or PPAR-γ agonist pioglitazone obviously abrogated the levels of pro-inflammatory cytokines in LPS-treated HMEC-1 cells. These results suggest that Hy may exert anti-inflammatory actions through the regulation of TLR4 and PPAR-γ dependent on PI3K/Akt/mTOR signal pathways. Hy may be considered as a therapeutic agent that can potentially relieve or ameliorate endothelial inflammation-associated diseases.
Collapse
|