1
|
Wong KK. Integrated transcriptomics and proteomics data analysis identifies CDH17 as a key cell surface target in colorectal cancer. Comput Biol Chem 2023; 105:107897. [PMID: 37247573 DOI: 10.1016/j.compbiolchem.2023.107897] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/28/2023] [Accepted: 05/20/2023] [Indexed: 05/31/2023]
Abstract
Immunotherapy development against colorectal cancer (CRC) is hindered by the lack of cell surface target highly expressed in cancer cells but with restricted presence in normal tissues to minimize off-tumor toxicities. In this in silico analysis, a longlist of genes (n = 13,488) expressed in CRCs according to the Human Protein Atlas (HPA) database were evaluated to shortlist for potential surface targets based on the following prerequisites: (i) Absent from the brain and lung tissues to minimize the likelihood of neurologic and pulmonary toxicities; (ii) Restricted expression profile in other normal human tissues; (iii) Genes that potentially encode cell surface proteins and; (iv) At least moderately expressed in CRC cases. Fifteen potential targets were shortlisted and subsequently ranked according to the combination of their transcript and protein expression levels in CRCs derived from multiple datasets (i.e. DepMap, TCGA, CPTAC-2, and HPA CRCs). The top-ranked target with the highest and homogenous expression in CRCs was cadherin 17 (CDH17). Downstream analysis of CRC transcriptomics and proteomics datasets showed that CDH17 was significantly correlated with carcinoembryonic antigen expression. Moreover, CDH17 expression was significantly lower in CRC cases with high microsatellite instability, as well as negatively associated with immune response gene sets and the expression of MHC class I and II molecules. CDH17 represents an optimal target for therapeutic development against CRCs, and this study provides a novel framework to identify key cell surface targets for therapeutic development against other malignancies.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kelantan, Malaysia.
| |
Collapse
|
2
|
Jiang S, Huang Y, Li Y, Gu Q, Jiang C, Tao X, Sun J. Silencing FOXP2 reverses vemurafenib resistance in BRAF V600E mutant papillary thyroid cancer and melanoma cells. Endocrine 2023; 79:86-97. [PMID: 36331719 PMCID: PMC9813165 DOI: 10.1007/s12020-022-03180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Vemurafenib (VEM) is a commonly used inhibitor of papillary thyroid cancer (PTC) and melanoma with the BRAFV600E mutation; however, acquired resistance is unavoidable. The present study aimed to identify a potential target to reverse resistance. MATERIALS AND METHODS A VEM-resistant PTC cell line (B-CPAP/VR) was established by gradually increasing the drug concentration, and a VEM-resistant BRAFV600E melanoma cell line (A375/VR) was also established. RNA sequencing and bioinformatics analyses were conducted to identify dysregulated genes and construct a transcription factor (TF) network. The role of a potential TF, forkhead box P2 (FOXP2), verified by qRT-PCR, was selected for further confirmation. RESULTS The two resistant cell lines were tolerant of VEM and displayed higher migration and colony formation abilities (p < 0.05). RNA sequencing identified 9177 dysregulated genes in the resistant cell lines, and a TF network consisting of 13 TFs and 44 target genes was constructed. Alterations in FOXP2 expression were determined to be consistent between the two VEM-resistant cell lines. Finally, silencing FOXP2 resulted in an increase in drug sensitivity and significant suppression of the migration and colony formation abilities of the two resistant cell lines (p < 0.05). CONCLUSIONS The present study successfully established two VEM-resistant cell lines and identified a potential target for VEM-resistant PTC or melanoma.
Collapse
Affiliation(s)
- Suyuan Jiang
- Department of Endocrinology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Yuxin Huang
- Department of Endocrinology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Yuan Li
- Department of Endocrinology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Qin Gu
- Department of Endocrinology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Cuiping Jiang
- Department of Endocrinology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Xiaoming Tao
- Department of Endocrinology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Jiao Sun
- Department of Endocrinology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.
| |
Collapse
|
3
|
Yang F, Xiao Z, Zhang S. FOXP2 regulates thyroid cancer cell proliferation and apoptosis via transcriptional activation of RPS6KA6. Exp Ther Med 2022; 23:434. [PMID: 35607372 PMCID: PMC9121208 DOI: 10.3892/etm.2022.11361] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/04/2022] [Indexed: 11/06/2022] Open
Abstract
The transcription factor, forkhead box P2 (FOXP2) has tumor-suppressive effects in several types of cancer. However, the regulatory role and underlying mechanism of FOXP2 in thyroid cancer (THCA) is not completely understood. In the present study, the mRNA expression levels of FOXP2 and ribosomal protein S6 kinase A6 (RPS6KA6) were evaluated using the GEPIA database and THCA cell lines. The association between FOXP2 and RPS6KA6 was analyzed using the LinkedOmics, and GEPIA databases. Then, the binding sites of FOXP2 and the RPS6KA6 promotor was predicted using the JASPAR database, and verified using a dual-luciferase reporter assay and chromatin immunoprecipitation. In addition, functional assays investigating FOXP2 and RPS6KA6 were conducted in the TPC-1 cell line. The data showed that FOXP2 and RPS6KA6 mRNA expression levels were decreased in the THCA tissues, and cell lines. Overexpression of FOXP2 inhibited cell proliferation and promoted apoptosis in the THCA cell lines. Furthermore, RPS6KA6 mRNA expression levels were reduced in THCA and were correlated with FOXP2 expression level. Mechanistic studies revealed that FOXP2 binds directly to the promotor region of RPS6KA6 and modulated the expression level of RPS6KA6 transcriptionally. In addition, rescue experiments showed that knockdown of RPS6KA6 expression reversed the effects of FOXP2 overexpression on THCA cell proliferation and apoptosis, and the regulation of FOXP2/RPS6KA6 may be associated with the PI3K/AKT pathway. In summary, FOXP2 was associated with the proliferation and apoptosis of human THCA cells via the transcriptional activation of RPS6KA6. The FOXP2/RPS6KA6 axis could be a promising target for the treatment of THCA.
Collapse
Affiliation(s)
- Feibiao Yang
- Department of Thyroid and Breast Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Zhangsheng Xiao
- Department of Thyroid and Breast Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Songze Zhang
- Department of Thyroid and Breast Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| |
Collapse
|
4
|
Liu Y, Chen T, Guo M, Li Y, Zhang Q, Tan G, Yu L, Tan Y. FOXA2-Interacting FOXP2 Prevents Epithelial-Mesenchymal Transition of Breast Cancer Cells by Stimulating E-Cadherin and PHF2 Transcription. Front Oncol 2021; 11:605025. [PMID: 33718155 PMCID: PMC7947682 DOI: 10.3389/fonc.2021.605025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022] Open
Abstract
FOXP2, a member of forkhead box transcription factor family, was first identified as a language-related gene that played an important role in language learning and facial movement. In addition, FOXP2 was also suggested regulating the progression of cancer cells. In previous studies, we found that FOXA2 inhibited epithelial-mesenchymal transition (EMT) in breast cancer cells. In this study, by identifying FOXA2-interacting proteins from FOXA2-pull-down cell lysates with Mass Spectrometry Analysis, we found that FOXP2 interacted with FOXA2. After confirming the interaction between FOXP2 and FOXA2 through Co-IP and immunofluorescence assays, we showed a correlated expression of FOXP2 and FOXA2 existing in clinical breast cancer samples. The overexpression of FOXP2 attenuated the mesenchymal phenotype whereas the stable knockdown of FOXP2 promoted EMT in breast cancer cells. Even though FOXP2 was believed to act as a transcriptional repressor in most cases, we found that FOXP2 could activate the expression of tumor suppressor PHF2. Meanwhile, we also found that FOXP2 could endogenously bind to the promoter of E-cadherin and activate its transcription. This transcriptional activity of FOXP2 relied on its interaction with FOXA2. Furthermore, the stable knockdown of FOXP2 enhanced the metastatic capacity of breast cancer cells in vivo. Together, the results suggested that FOXP2 could inhibit EMT by activating the transcription of certain genes, such as E-cadherin and PHF2, in concert with FOXA2 in breast cancer cells.
Collapse
Affiliation(s)
- Yuxiang Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, China
| | - Taolin Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, China
| | - Mingyue Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, China
| | - Yu Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, China
| | - Qian Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, China
| | - Guixiang Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, China
| | - Li Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, China
| | - Yongjun Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, China
| |
Collapse
|
5
|
Wong KK, Hussain FA. TRPM4 is overexpressed in breast cancer associated with estrogen response and epithelial-mesenchymal transition gene sets. PLoS One 2020; 15:e0233884. [PMID: 32484822 PMCID: PMC7266295 DOI: 10.1371/journal.pone.0233884] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/14/2020] [Indexed: 12/24/2022] Open
Abstract
Ion channels form an important class of drug targets in malignancies. Transient receptor potential cation channel subfamily M member 4 (TRPM4) plays oncological roles in various solid tumors. Herein, we examined TRPM4 protein expression profile by immunohistochemistry (IHC) in breast cancer cases compared with normal breast ducts, its association with clinico-demographical parameters, and its potential function in breast cancers by Gene Set Enrichment Analysis (GSEA). Data-mining demonstrated that TRPM4 transcript levels were significantly higher in The Cancer Genome Atlas series of breast cancer cases (n = 1,085) compared with normal breast tissues (n = 112) (p = 1.03 x 10−11). Our IHC findings in tissue microarrays showed that TRPM4 protein was overexpressed in breast cancers (n = 83/99 TRPM4+; 83.8%) compared with normal breast ducts (n = 5/10 TRPM4+; 50%) (p = 0.022). Higher TRPM4 expression (median frequency cut-off) was significantly associated with higher lymph node status (N1-N2 vs N0; p = 0.024) and higher stage (IIb-IIIb vs I-IIa; p = 0.005). GSEA evaluation in three independent gene expression profiling (GEP) datasets of breast cancer cases (GSE54002, n = 417; GSE20685, n = 327; GSE23720, n = 197) demonstrated significant association of TRPM4 transcript expression with estrogen response and epithelial-mesenchymal transition (EMT) gene sets (p<0.01 and false discovery rate<0.05). These gene sets were not enriched in GEP datasets of normal breast epithelium cases (GSE10797, n = 5; GSE9574, n = 15; GSE20437, n = 18). In conclusion, TRPM4 protein expression is upregulated in breast cancers associated with worse clinico-demographical parameters, and TRPM4 potentially regulates estrogen receptor signaling and EMT progression in breast cancer.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- * E-mail:
| | - Faezahtul Arbaeyah Hussain
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
6
|
Zhang H, Li Y, Tan Y, Liu Q, Jiang S, Liu D, Chen Q, Zhang S. MiR-9-5p Inhibits Glioblastoma Cells Proliferation Through Directly Targeting FOXP2 (Forkhead Box P2). Front Oncol 2019; 9:1176. [PMID: 31824836 PMCID: PMC6882274 DOI: 10.3389/fonc.2019.01176] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/18/2019] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant tumor in the central nervous system and the treatment is still unsatisfactory because the mechanism of the disease remains unclear. The abnormal expression of miRNAs and its target proteins play a crucial role in the development of glioblastoma. In this study, we demonstrated that high expression of miR-9-5p and low expression of forkhead box P2 (FOXP2) were related with better outcome in patients with GBM, and down regulated FOXP2 expression was able to inhibit glioma cells proliferation by cell cycle arrest. Furthermore, we found that FOXP2 was the target protein of miR-9-5p in luciferase assay. The results of this study suggest a novel regulatory mechanism that miR-9-5p can inhibit glioma cells proliferation by downregulating FOXP2.
Collapse
Affiliation(s)
- Hongbo Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, The Neurosurgery Institute of Guangdong Province, Southern Medical University, Guangzhou, China
| | - Yuntao Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Neurosurgery, Huzhou Central Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Yinqiu Tan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qi Liu
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuting Jiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dongyuan Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shizhong Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, The Neurosurgery Institute of Guangdong Province, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Bach DH, Long NP, Luu TTT, Anh NH, Kwon SW, Lee SK. The Dominant Role of Forkhead Box Proteins in Cancer. Int J Mol Sci 2018; 19:E3279. [PMID: 30360388 PMCID: PMC6213973 DOI: 10.3390/ijms19103279] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/16/2022] Open
Abstract
Forkhead box (FOX) proteins are multifaceted transcription factors that are significantly implicated in cancer, with various critical roles in biological processes. Herein, we provide an overview of several key members of the FOXA, FOXC, FOXM1, FOXO and FOXP subfamilies. Important pathophysiological processes of FOX transcription factors at multiple levels in a context-dependent manner are discussed. We also specifically summarize some major aspects of FOX transcription factors in association with cancer research such as drug resistance, tumor growth, genomic alterations or drivers of initiation. Finally, we suggest that targeting FOX proteins may be a potential therapeutic strategy to combat cancer.
Collapse
Affiliation(s)
- Duc-Hiep Bach
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | | | | | - Nguyen Hoang Anh
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Sang Kook Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
8
|
Morris G, Stoychev S, Naicker P, Dirr HW, Fanucchi S. The forkhead domain hinge-loop plays a pivotal role in DNA binding and transcriptional activity of FOXP2. Biol Chem 2018; 399:881-893. [DOI: 10.1515/hsz-2018-0185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/26/2018] [Indexed: 01/01/2023]
Abstract
Abstract
Forkhead box (FOX) proteins are a ubiquitously expressed family of transcription factors that regulate the development and differentiation of a wide range of tissues in animals. The FOXP subfamily members are the only known FOX proteins capable of forming domain-swapped forkhead domain (FHD) dimers. This is proposed to be due to an evolutionary mutation (P539A) that lies in the FHD hinge loop, a key region thought to fine-tune DNA sequence specificity in the FOX transcription factors. Considering the importance of the hinge loop in both the dimerisation mechanism of the FOXP FHD and its role in tuning DNA binding, a detailed investigation into the implications of mutations within this region could provide important insight into the evolution of the FOX family. Isothermal titration calorimetry and hydrogen exchange mass spectroscopy were used to study the thermodynamic binding signature and changes in backbone dynamics of FOXP2 FHD DNA binding. Dual luciferase reporter assays were performed to study the effect that the hinge-loop mutation has on FOXP2 transcriptional activity in vivo. We demonstrate that the change in dynamics of the hinge-loop region of FOXP2 alters the energetics and mechanism of DNA binding highlighting the critical role of hinge loop mutations in regulating DNA binding characteristics of the FOX proteins.
Collapse
Affiliation(s)
- Gavin Morris
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology , University of the Witwatersrand, 1 Jan Smuts Ave, Braamfontein , 2050 Johannesburg, Gauteng , South Africa
| | - Stoyan Stoychev
- CSIR Biosciences, CSIR, Meiring Naude Road , Brummeria, 0001 Pretoria, Gauteng , South Africa
| | - Previn Naicker
- CSIR Biosciences, CSIR, Meiring Naude Road , Brummeria, 0001 Pretoria, Gauteng , South Africa
| | - Heini W. Dirr
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology , University of the Witwatersrand, 1 Jan Smuts Ave, Braamfontein , 2050 Johannesburg, Gauteng , South Africa
| | - Sylvia Fanucchi
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology , University of the Witwatersrand, 1 Jan Smuts Ave, Braamfontein , 2050 Johannesburg, Gauteng , South Africa
| |
Collapse
|
9
|
Herrero MJ, Gitton Y. The untold stories of the speech gene, the FOXP2 cancer gene. Genes Cancer 2018; 9:11-38. [PMID: 29725501 PMCID: PMC5931254 DOI: 10.18632/genesandcancer.169] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/02/2018] [Indexed: 12/11/2022] Open
Abstract
FOXP2 encodes a transcription factor involved in speech and language acquisition. Growing evidence now suggests that dysregulated FOXP2 activity may also be instrumental in human oncogenesis, along the lines of other cardinal developmental transcription factors such as DLX5 and DLX6 [1-4]. Several FOXP familymembers are directly involved during cancer initiation, maintenance and progression in the adult [5-8]. This may comprise either a pro-oncogenic activity or a deficient tumor-suppressor role, depending upon cell types and associated signaling pathways. While FOXP2 is expressed in numerous cell types, its expression has been found to be down-regulated in breast cancer [9], hepatocellular carcinoma [8] and gastric cancer biopsies [10]. Conversely, overexpressed FOXP2 has been reported in multiple myelomas, MGUS (Monoclonal Gammopathy of Undetermined Significance), several subtypes of lymphomas [5,11], as well as in neuroblastomas [12] and ERG fusion-negative prostate cancers [13]. According to functional evidences reported in breast cancer [9] and survey of recent transcriptomic and proteomic analyses of different tumor biopsies, we postulate that FOXP2 dysregulation may play a main role throughout cancer initiation and progression. In some cancer conditions, FOXP2 levels are now considered as a critical diagnostic marker of neoplastic cells, and in many situations, they even bear strong prognostic value [5]. Whether FOXP2 may further become a therapeutic target is an actively explored lead. Knowledge reviewed here may help improve our understanding of FOXP2 roles during oncogenesis and provide cues for diagnostic, prognostic and therapeutic analyses.
Collapse
Affiliation(s)
- Maria Jesus Herrero
- Center for Neuroscience Research, Children's National Medical Center, NW, Washington, DC, USA
| | - Yorick Gitton
- Sorbonne University, INSERM, CNRS, Vision Institute Research Center, Paris, France
| |
Collapse
|
10
|
Nataf S. Autoimmunity as a Driving Force of Cognitive Evolution. Front Neurosci 2017; 11:582. [PMID: 29123465 PMCID: PMC5662758 DOI: 10.3389/fnins.2017.00582] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022] Open
Abstract
In the last decades, increasingly robust experimental approaches have formally demonstrated that autoimmunity is a physiological process involved in a large range of functions including cognition. On this basis, the recently enunciated “brain superautoantigens” theory proposes that autoimmunity has been a driving force of cognitive evolution. It is notably suggested that the immune and nervous systems have somehow co-evolved and exerted a mutual selection pressure benefiting to both systems. In this two-way process, the evolutionary-determined emergence of neurons expressing specific immunogenic antigens (brain superautoantigens) has exerted a selection pressure on immune genes shaping the T-cell repertoire. Such a selection pressure on immune genes has translated into the emergence of a finely tuned autoimmune T-cell repertoire that promotes cognition. In another hand, the evolutionary-determined emergence of brain-autoreactive T-cells has exerted a selection pressure on neural genes coding for brain superautoantigens. Such a selection pressure has translated into the emergence of a neural repertoire (defined here as the whole of neurons, synapses and non-neuronal cells involved in cognitive functions) expressing brain superautoantigens. Overall, the brain superautoantigens theory suggests that cognitive evolution might have been primarily driven by internal cues rather than external environmental conditions. Importantly, while providing a unique molecular connection between neural and T-cell repertoires under physiological conditions, brain superautoantigens may also constitute an Achilles heel responsible for the particular susceptibility of Homo sapiens to “neuroimmune co-pathologies” i.e., disorders affecting both neural and T-cell repertoires. These may notably include paraneoplastic syndromes, multiple sclerosis as well as autism, schizophrenia and neurodegenerative diseases. In the context of this theoretical frame, a specific emphasis is given here to the potential evolutionary role exerted by two families of genes, namely the MHC class II genes, involved in antigen presentation to T-cells, and the Foxp genes, which play crucial roles in language (Foxp2) and the regulation of autoimmunity (Foxp3).
Collapse
Affiliation(s)
- Serge Nataf
- CarMeN Laboratory, Bank of Tissues and Cells, Institut National de la Santé et de la Recherche Médicale 1060, INRA 1397, INSA Lyon, Lyon University Hospital (Hospices Civils de Lyon), Université Claude Bernard Lyon-1, Lyon, France
| |
Collapse
|
11
|
Loo SK, Ch'ng ES, Lawrie CH, Muruzabal MA, Gaafar A, Pomposo MP, Husin A, Md Salleh MS, Banham AH, Pedersen LM, Møller MB, Green TM, Wong KK. DNMT1 is predictive of survival and associated with Ki-67 expression in R-CHOP-treated diffuse large B-cell lymphomas. Pathology 2017; 49:731-739. [PMID: 29074044 DOI: 10.1016/j.pathol.2017.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 08/16/2017] [Accepted: 08/20/2017] [Indexed: 11/26/2022]
Abstract
DNMT1 is a target of approved anti-cancer drugs including decitabine. However, the prognostic value of DNMT1 protein expression in R-CHOP-treated diffuse large B-cell lymphomas (DLBCLs) remains unexplored. Here we showed that DNMT1 was expressed in the majority of DLBCL cases (n = 209/230, 90.9%) with higher expression in germinal centre B-cell-like (GCB)-DLBCL subtype. Low and negative DNMT1 expression (20% cut-off, n = 33/230, 14.3%) was predictive of worse overall survival (OS; p < 0.001) and progression-free survival (PFS; p < 0.001). Nonetheless, of the 209 DNMT1 positive patients, 33% and 42% did not achieve 5-year OS and PFS, respectively, indicating that DNMT1 positive patients showed considerably heterogeneous outcomes. Moreover, DNMT1 was frequently expressed in mitotic cells and significantly correlated with Ki-67 or BCL6 expression (r = 0.60 or 0.44, respectively; p < 0.001). We demonstrate that DNMT1 is predictive of DLBCL patients' survival, and suggest that DNMT1 could be a DLBCL therapeutic target due to its significant association with Ki-67.
Collapse
Affiliation(s)
- Suet Kee Loo
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Ewe Seng Ch'ng
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Pulau Pinang, Malaysia
| | - Charles H Lawrie
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; Oncology Department, Biodonostia Research Institute, San Sebastian, Spain
| | | | - Ayman Gaafar
- Department of Pathology, Hospital Universitario Cruces, Barakaldo, Spain
| | | | - Azlan Husin
- Department of Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Md Salzihan Md Salleh
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Alison H Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Lars M Pedersen
- Department of Haematology, Herlev University Hospital, Copenhagen, Denmark
| | - Michael B Møller
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Tina M Green
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.
| |
Collapse
|
12
|
Loo SK, Ch'ng ES, Md Salleh MS, Banham AH, Pedersen LM, Møller MB, Green TM, Wong KK. TRPM4 expression is associated with activated B cell subtype and poor survival in diffuse large B cell lymphoma. Histopathology 2017; 71:98-111. [DOI: 10.1111/his.13204] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/23/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Suet K Loo
- Department of Immunology; School of Medical Sciences; Universiti Sains Malaysia; Kelantan Malaysia
| | - Ewe S Ch'ng
- Advanced Medical and Dental Institute; Universiti Sains Malaysia; Bertam Malaysia
| | - Md Salzihan Md Salleh
- Department of Pathology; School of Medical Sciences; Universiti Sains Malaysia; Kelantan Malaysia
| | - Alison H Banham
- Nuffield Division of Clinical Laboratory Sciences; Radcliffe Department of Medicine; University of Oxford; John Radcliffe Hospital; Oxford UK
| | - Lars M Pedersen
- Department of Haematology; Herlev University Hospital; Copenhagen Denmark
| | - Michael B Møller
- Department of Pathology; Odense University Hospital; Odense Denmark
| | - Tina M Green
- Department of Pathology; Odense University Hospital; Odense Denmark
| | - Kah K Wong
- Department of Immunology; School of Medical Sciences; Universiti Sains Malaysia; Kelantan Malaysia
| |
Collapse
|
13
|
Juskevicius D, Jucker D, Klingbiel D, Mamot C, Dirnhofer S, Tzankov A. Mutations of CREBBP and SOCS1 are independent prognostic factors in diffuse large B cell lymphoma: mutational analysis of the SAKK 38/07 prospective clinical trial cohort. J Hematol Oncol 2017; 10:70. [PMID: 28302137 PMCID: PMC5356266 DOI: 10.1186/s13045-017-0438-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 03/06/2017] [Indexed: 12/19/2022] Open
Abstract
Background/purpose Recently, the mutational background of diffuse large B cell lymphoma (DLBCL) has been revealed, identifying specific genetic events that drive lymphomagenesis. However, the prognostic value of these mutations remains to be determined. Prognostic biomarkers in DLBCL are urgently needed, since the current clinical parameter-based factors (e.g., International Prognostic Index (IPI)) are insufficient, particularly in identifying patients with poor prognosis who might benefit from alternative treatments. Methods We investigated the prognostic value of somatic mutations in DLBCL in a clinical trial (NCT00544219) patient cohort homogenously treated with six cycles of rituximab, cyclophosphamide, hydroxydaunorubicin, vincristine, and prednisone (R-CHOP), followed by two cycles of R (R-CHOP-14). The primary endpoint was event-free survival (EFS) at 2 years. Secondary endpoints included progression-free survival (PFS) and overall survival (OS). Targeted high-throughput sequencing (HTS) of tumor genomic DNA was performed on all exons or hotspots of 68 genes frequently mutated in B cell lymphomas. Mutational data was correlated with the endpoints to identify prognostic associations. Results Targeted HTS detected somatic mutations in 71/76 (93%) of investigated cases. The most frequently mutated genes were KMT2D, SOCS1, GNA13, and B2M. Survival analysis revealed that CREBBP- and EP300-mutated cases had significantly worse OS, PFS, and EFS. In addition, ATM mutations predicted worse outcomes for all three clinical endpoints in germinal center B cell-like DLBCL. In contrast, SOCS1 mutations were associated with better PFS. On multivariable analysis taken into account IPI and failure to achieve complete remission, CREBBP and EP300 mutations remained significant to predict worse OS, PFS, and EFS. Conclusion Targeted mutation analysis of a uniformly treated prospective clinical trial DLBCL cohort identifies tumor-based genetic prognostic markers that could be useful in the clinical management of such patients. Trial registration ClinicalTrials.gov NCT00544219 Electronic supplementary material The online version of this article (doi:10.1186/s13045-017-0438-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Darius Juskevicius
- Institute of Pathology, University of Basel and University Hospital Basel, Schoenbeinstrasse 40, CH-4031, Basel, Switzerland
| | - David Jucker
- Institute of Pathology, University of Basel and University Hospital Basel, Schoenbeinstrasse 40, CH-4031, Basel, Switzerland
| | - Dirk Klingbiel
- Swiss Group for Clinical Cancer Research (SAKK), Effingerstrasse 40, CH-3008, Bern, Switzerland
| | - Christoph Mamot
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, CH-4031, Basel, Switzerland.,Center of Oncology, Hematology and Transfusion Medicine, Cantonal Hospital Aarau, Tellstrasse 25, CH-5000, Aarau, Switzerland
| | - Stephan Dirnhofer
- Institute of Pathology, University of Basel and University Hospital Basel, Schoenbeinstrasse 40, CH-4031, Basel, Switzerland
| | - Alexandar Tzankov
- Institute of Pathology, University of Basel and University Hospital Basel, Schoenbeinstrasse 40, CH-4031, Basel, Switzerland.
| |
Collapse
|
14
|
New developments in the pathology of malignant lymphoma: a review of the literature published from June-August 2016. J Hematop 2016; 9:129-134. [PMID: 27766120 PMCID: PMC5047927 DOI: 10.1007/s12308-016-0284-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
15
|
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of mature B-cell lymphoma. While the majority of patients are cured with immunochemotherapy incorporating the anti-CD20 monoclonal antibody rituximab (R-CHOP), relapsed and refractory patients still have a dismal prognosis. DLBCL subtypes including an aggressive activated B-cell-like (ABC) and a more favorable prognosis germinal center-like (GCB) DLBCL have been identified by gene expression profiling and are characterized by distinct genetic abnormalities and oncogenic pathways. This identification of novel molecular targets is now enabling clinical trials to evaluate more effective personalized approaches to DLBCL therapy. The forkhead transcription factor FOXP1 is highly expressed in the ABC-DLBCL gene signature and has been extensively studied within the context of DLBCL for more than a decade. Here, we review the significance of FOXP1 in the pathogenesis of DLBCL, summarizing data supporting its utility as a prognostic and subtyping marker, its targeting by genetic aberrations, the importance of specific isoforms, and emerging data demonstrating a functional role in lymphoma biology. FOXP1 is one of the critical transcription factors whose deregulated expression makes important contributions to DLBCL pathogenesis. Thus, FOXP1 warrants further study as a potential theranostic in ABC-DLBCL.
Collapse
Affiliation(s)
- Duncan M Gascoyne
- a Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine , University of Oxford , Oxford , UK
| | - Alison H Banham
- a Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine , University of Oxford , Oxford , UK
| |
Collapse
|