1
|
Tian L, Huang Y, Liu Y, Liu J, Liu Y. Parecoxib inhibits tumorigenesis and angiogenesis in hepatocellular carcinoma through ERK-VEGF/MMPs signaling pathway. IUBMB Life 2024; 76:972-986. [PMID: 38873890 DOI: 10.1002/iub.2861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/05/2024] [Indexed: 06/15/2024]
Abstract
Parecoxib, a well-recognized nonsteroidal anti-inflammatory drug, has been reported to possess anticancer properties in various tumor types. In this work, we aimed to investigate the potential anticancer effects of parecoxib on hepatocellular carcinoma (HCC) cells. To assess the impact of parecoxib on HCC cell proliferation, we employed Cell Counting Kit-8, colony formation, and 5-ethynyl-2'-deoxyuridine assays. Hoechst/propidium iodide (PI) double staining and flow cytometry were performed to evaluate apoptosis and cell cycle analysis. Wound healing and transwell assays were utilized to assess cell migration and invasion. Tube formation assay was employed to analyze angiogenesis. Protein levels were determined using western blotting, and mRNA expression levels were assessed using quantitative real-time polymerase chain reaction (PCR). A xenograft mouse model was used to confirm the antitumor effects of parecoxib on HCC tumors in vivo. Our data demonstrated that parecoxib effectively inhibited the proliferation of HCC cells in a dose- and time-dependent manner. In addition, parecoxib induced cell cycle arrest in the G2 phase and promoted apoptosis. Moreover, parecoxib hindered tumor migration and invasion by impeding the epithelial-mesenchymal transition process. Further investigation showed that parecoxib could significantly suppress angiogenesis through the inhibition of extracellular signal-regulated kinase (ERK)-vascular endothelial growth factor (VEGF) axis. Notably, treatment with the ERK activator phorbol myristate acetate upregulated the expression of matrix metalloproteinase (MMP)-2, MMP-9, and VEGF and reversed the function of parecoxib in HCC cells. Besides, parecoxib displayed its antitumor efficacy in vivo. Collectively, our results suggest that parecoxib ameliorates HCC progression by regulating proliferation, cell cycle, apoptosis, migration, invasion, and angiogenesis through the ERK-VEGF/MMPs signaling pathway.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/genetics
- Animals
- Isoxazoles/pharmacology
- Mice
- Cell Proliferation/drug effects
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/metabolism
- Vascular Endothelial Growth Factor A/metabolism
- Vascular Endothelial Growth Factor A/genetics
- Apoptosis/drug effects
- Cell Movement/drug effects
- Xenograft Model Antitumor Assays
- Mice, Nude
- Signal Transduction/drug effects
- Mice, Inbred BALB C
- Gene Expression Regulation, Neoplastic/drug effects
- Carcinogenesis/drug effects
- MAP Kinase Signaling System/drug effects
- Matrix Metalloproteinase 9/metabolism
- Matrix Metalloproteinase 9/genetics
- Male
- Cell Line, Tumor
- Angiogenesis
Collapse
Affiliation(s)
- Li Tian
- Department of Hepatobiliary Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - YuQi Huang
- Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Yan Liu
- Department of Hepatobiliary Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - JiangWei Liu
- Department of Hepatobiliary Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Yan Liu
- Department of Hepatobiliary Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| |
Collapse
|
2
|
Wasik A, Podhorska-Okolow M, Dziegiel P, Piotrowska A, Kulus MJ, Kmiecik A, Ratajczak-Wielgomas K. Correlation between Periostin Expression and Pro-Angiogenic Factors in Non-Small-Cell Lung Carcinoma. Cells 2024; 13:1406. [PMID: 39272978 PMCID: PMC11394527 DOI: 10.3390/cells13171406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
The role of periostin (POSTN) in remodeling the microenvironment surrounding solid tumors and its effect on the tumor cells in non-small-cell lung carcinoma (NSCLC) have not yet been fully understood. The aim of this study was to determine the relationship between POSTN expression (in tumor cells [NSCLC cells] and the tumor stroma) and pro-angiogenic factors (CD31, CD34, CD105, and VEGF-A) and microvascular density (MVD) in NSCLC. In addition, these associations were analyzed in individual histological subtypes of NSCLC (SCC, AC, and LCC) and their correlations with clinicopathological factors and prognosis were examined. Immunohistochemistry using tissue microarrays (TMAs) was used to assess the expression of POSTN (in tumor cells and cancer-associated fibroblasts [CAFs]) and the pro-angiogenic factors. A significant positive correlation was found between the expression of POSTN (in cancer cells/CAFs) and the expression of the analyzed pro-angiogenic factors (CD31, CD34, CD105, and VEGF-A) and MVD in the entire population of patients with NSCLC and individual histological subtypes (AC, SCC). In addition, this study found that POSTN expression (in tumor cells/CAFs) increased with tumor size (pT), histopathological grade (G), and lymph-node involvement (pN). In addition, a high expression of POSTN (in tumor cells and CAFs) was associated with shorter survival among patients with NSCLC. In conclusion, a high expression of POSTN (in cancer cells and CAFs) may be crucial for angiogenesis and NSCLC progression and can constitute an independent prognostic factor for NSCLC.
Collapse
Affiliation(s)
- Adrian Wasik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.W.); (P.D.); (A.P.); (A.K.)
| | - Marzenna Podhorska-Okolow
- Department of Ultrastructural Research, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.P.-O.); (M.J.K.)
| | - Piotr Dziegiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.W.); (P.D.); (A.P.); (A.K.)
- Department of Human Biology, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.W.); (P.D.); (A.P.); (A.K.)
| | - Michal Jerzy Kulus
- Department of Ultrastructural Research, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.P.-O.); (M.J.K.)
| | - Alicja Kmiecik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.W.); (P.D.); (A.P.); (A.K.)
| | - Katarzyna Ratajczak-Wielgomas
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.W.); (P.D.); (A.P.); (A.K.)
| |
Collapse
|
3
|
Liu Y, Deng Y, Constanthin PE, Li F. Ultrasound-targeted microbubble destruction improves the suppression and magnetic resonance imaging of pancreatic cancer with polyethyleneimine nanogels. J Cancer 2024; 15:2880-2890. [PMID: 38706910 PMCID: PMC11064254 DOI: 10.7150/jca.93802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/22/2024] [Indexed: 05/07/2024] Open
Abstract
The chemoresistance of pancreatic cancer tumors urgently needs to be addressed. Pancreatic cancer is characterized by an abundant stroma, with significant fibrous connective tissue formation that encapsulates the tumor parenchyma and forms an interstitial microenvironment. Pancreatic stellate cells (PSCs) play a crucial role in this microenvironment and specially secrete periosteal protein (periostin), which can promote tumor growth, metastasis, and chemoresistance. Therefore, periostin has become a specific target of chemotherapy resistance intervention methods. The proposed polyethyleneimine (PEI) nanogels have multiple modification and efficient drug-loading properties. Additionally, ultrasound-targeted microbubble destruction (UTMD) supports the breakdown of the tough interstitial barrier of pancreatic cancer. A small interfering RNA (siRNA) can be used to downregulated the periostin gene, while sustained release of gemcitabine can promote killing of tumor cells. This method achieves a combination of gene silencing and chemotherapy. The imaging effect can be evaluated using magnetic resonance imaging (MRI). The ultimate goal of this work is to support individualized and effective therapeutic methods and help develop new strategies for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Yang Liu
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuanqiong Deng
- Department of Ultrasound, Maternal and Child Health Hospital of Shanghai Jiading District, Shanghai, China
| | - Paul E Constanthin
- CHU Pellegrin, Service de Neurochirurgie B, Hôpital Pellegrin-Tripode, Place Amélie Raba-Léon, 33 076, Bordeaux Cedex, France
| | - Fan Li
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Li R, Wang W, Qiu X, He M, Tang X, Zhong M. Periostin promotes extensive neovascularization in placenta accreta spectrum disorders via Notch signaling. J Matern Fetal Neonatal Med 2023; 36:2264447. [PMID: 37806775 DOI: 10.1080/14767058.2023.2264447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVE Extensive neovascularization, closely linked to massive intraoperative blood loss, is a pathological hallmark of placenta accreta spectrum (PAS) cases. This study aims to explore proteins related to neovascularization and elucidate their regulatory roles in PAS, enhancing our understanding of this condition. METHODS The isobaric tags for relative and absolute quantitation technique were used to identify and quantify the differentially expressed proteins in placentas from PAS and healthy pregnant women. Immunofluorescence staining and western blot analysis were conducted to determine the protein expression and localization. Gain-of-function experiments were used to conduct cell proliferation and migration assays. In addition, the tube formation assay was performed to evaluate angiogenesis in vitro. The Notch inhibitor DAPT was used to determine the involvement of Notch signaling in angiogenesis in PAS. RESULTS Periostin (POSTN) exhibited higher expression in PAS placentas than in normal placentas. Moreover, the overexpression of POSTN in endothelial cells promoted cell proliferation, mobility, and endothelial angiogenesis via the Notch signaling pathway in vitro. CONCLUSION Elevated POSTN expression in PAS is associated with increased angiogenesis, indicating its potential as a molecular marker for significant intraoperative blood loss.
Collapse
Affiliation(s)
- Rui Li
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Wan Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xia Qiu
- Department of Obstetrics and Gynecology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Mei He
- Department of Obstetrics and Gynecology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiaoqin Tang
- Department of Obstetrics and Gynecology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Heggli I, Laux CJ, Mengis T, Karol A, Cornaz F, Herger N, Aradi‐Vegh B, Widmer J, Burkhard MD, Farshad‐Amacker NA, Pfammatter S, Wolski WE, Brunner F, Distler O, Farshad M, Dudli S. Modic type 2 changes are fibroinflammatory changes with complement system involvement adjacent to degenerated vertebral endplates. JOR Spine 2023; 6:e1237. [PMID: 36994463 PMCID: PMC10041382 DOI: 10.1002/jsp2.1237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/04/2022] [Accepted: 12/02/2022] [Indexed: 12/25/2022] Open
Abstract
Background Vertebral endplate signal intensity changes visualized by magnetic resonance imaging termed Modic changes (MC) are highly prevalent in low back pain patients. Interconvertibility between the three MC subtypes (MC1, MC2, MC3) suggests different pathological stages. Histologically, granulation tissue, fibrosis, and bone marrow edema are signs of inflammation in MC1 and MC2. However, different inflammatory infiltrates and amount of fatty marrow suggest distinct inflammatory processes in MC2. Aims The aims of this study were to investigate (i) the degree of bony (BEP) and cartilage endplate (CEP) degeneration in MC2, (ii) to identify inflammatory MC2 pathomechanisms, and (iii) to show that these marrow changes correlate with severity of endplate degeneration. Methods Pairs of axial biopsies (n = 58) spanning the entire vertebral body including both CEPs were collected from human cadaveric vertebrae with MC2. From one biopsy, the bone marrow directly adjacent to the CEP was analyzed with mass spectrometry. Differentially expressed proteins (DEPs) between MC2 and control were identified and bioinformatic enrichment analysis was performed. The other biopsy was processed for paraffin histology and BEP/CEP degenerations were scored. Endplate scores were correlated with DEPs. Results Endplates from MC2 were significantly more degenerated. Proteomic analysis revealed an activated complement system, increased expression of extracellular matrix proteins, angiogenic, and neurogenic factors in MC2 marrow. Endplate scores correlated with upregulated complement and neurogenic proteins. Discussion The inflammatory pathomechanisms in MC2 comprises activation of the complement system. Concurrent inflammation, fibrosis, angiogenesis, and neurogenesis indicate that MC2 is a chronic inflammation. Correlation of endplate damage with complement and neurogenic proteins suggest that complement system activation and neoinnervation may be linked to endplate damage. The endplate-near marrow is the pathomechanistic site, because MC2 occur at locations with more endplate degeneration. Conclusion MC2 are fibroinflammatory changes with complement system involvement which occur adjacent to damaged endplates.
Collapse
Affiliation(s)
- Irina Heggli
- Center of Experimental Rheumatology, Balgrist Campus, University Hospital Zurich and Balgrist University Hospital, University of ZurichZurichSwitzerland
| | - Christoph J. Laux
- Department of Orthopedics, Balgrist University HospitalUniversity of ZurichZurichSwitzerland
| | - Tamara Mengis
- Center of Experimental Rheumatology, Balgrist Campus, University Hospital Zurich and Balgrist University Hospital, University of ZurichZurichSwitzerland
| | - Agnieszka Karol
- Department of Molecular Mechanisms of DiseaseUniversity of ZurichZurichSwitzerland
| | - Frédéric Cornaz
- Department of Orthopedics, Balgrist University HospitalUniversity of ZurichZurichSwitzerland
| | - Nick Herger
- Center of Experimental Rheumatology, Balgrist Campus, University Hospital Zurich and Balgrist University Hospital, University of ZurichZurichSwitzerland
| | - Borbala Aradi‐Vegh
- Center of Experimental Rheumatology, Balgrist Campus, University Hospital Zurich and Balgrist University Hospital, University of ZurichZurichSwitzerland
| | - Jonas Widmer
- Department of Orthopedics, Balgrist University HospitalUniversity of ZurichZurichSwitzerland
| | - Marco D. Burkhard
- Department of Orthopedics, Balgrist University HospitalUniversity of ZurichZurichSwitzerland
| | | | - Sibylle Pfammatter
- Functional Genomics Center Zurich, University and ETH ZurichZurichSwitzerland
| | - Witold E. Wolski
- Functional Genomics Center Zurich, University and ETH ZurichZurichSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Florian Brunner
- Department of Physical Medicine and RheumatologyBalgrist University Hospital, University of ZurichZurichSwitzerland
| | - Oliver Distler
- Center of Experimental Rheumatology, Balgrist Campus, University Hospital Zurich and Balgrist University Hospital, University of ZurichZurichSwitzerland
| | - Mazda Farshad
- Department of Orthopedics, Balgrist University HospitalUniversity of ZurichZurichSwitzerland
| | - Stefan Dudli
- Center of Experimental Rheumatology, Balgrist Campus, University Hospital Zurich and Balgrist University Hospital, University of ZurichZurichSwitzerland
| |
Collapse
|
6
|
Pang L, Dunterman M, Xuan W, Gonzalez A, Lin Y, Hsu WH, Khan F, Hagan RS, Muller WA, Heimberger AB, Chen P. Circadian regulator CLOCK promotes tumor angiogenesis in glioblastoma. Cell Rep 2023; 42:112127. [PMID: 36795563 PMCID: PMC10423747 DOI: 10.1016/j.celrep.2023.112127] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/11/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive tumors in the adult central nervous system. We previously revealed that circadian regulation of glioma stem cells (GSCs) affects GBM hallmarks of immunosuppression and GSC maintenance in a paracrine and autocrine manner. Here, we expand the mechanism involved in angiogenesis, another critical GBM hallmark, as a potential basis underlying CLOCK's pro-tumor effect in GBM. Mechanistically, CLOCK-directed olfactomedin like 3 (OLFML3) expression results in hypoxia-inducible factor 1-alpha (HIF1α)-mediated transcriptional upregulation of periostin (POSTN). As a result, secreted POSTN promotes tumor angiogenesis via activation of the TANK-binding kinase 1 (TBK1) signaling in endothelial cells. In GBM mouse and patient-derived xenograft models, blockade of the CLOCK-directed POSTN-TBK1 axis inhibits tumor progression and angiogenesis. Thus, the CLOCK-POSTN-TBK1 circuit coordinates a key tumor-endothelial cell interaction and represents an actionable therapeutic target for GBM.
Collapse
Affiliation(s)
- Lizhi Pang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Madeline Dunterman
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Wenjing Xuan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Annette Gonzalez
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yiyun Lin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wen-Hao Hsu
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Fatima Khan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Robert S Hagan
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William A Muller
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Amy B Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Peiwen Chen
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
7
|
Wasik A, Ratajczak-Wielgomas K, Badzinski A, Dziegiel P, Podhorska-Okolow M. The Role of Periostin in Angiogenesis and Lymphangiogenesis in Tumors. Cancers (Basel) 2022; 14:cancers14174225. [PMID: 36077762 PMCID: PMC9454705 DOI: 10.3390/cancers14174225] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Cancers are common diseases that affect people of all ages worldwide. For this reason, continuous attempts are being made to improve current therapeutic options. The formation of metastases significantly decreases patient survival. Therefore, understanding the mechanisms that are involved in this process seems to be crucial for effective cancer therapy. Cancer dissemination occurs mainly through blood and lymphatic vessels. As a result, many scientists have conducted a number of studies on the formation of new vessels. Many studies have shown that proangiogenic factors and the extracellular matrix protein, i.e., periostin, may be important in tumor angio- and lymphangiogenesis, thus contributing to metastasis formation and worsening of the prognosis. Abstract Periostin (POSTN) is a protein that is part of the extracellular matrix (ECM) and which significantly affects the control of intracellular signaling pathways (PI3K-AKT, FAK) through binding integrin receptors (αvβ3, αvβ5, α6β4). In addition, increased POSTN expression enhances the expression of VEGF family growth factors and promotes Erk phosphorylation. As a result, this glycoprotein controls the Erk/VEGF pathway. Therefore, it plays a crucial role in the formation of new blood and lymphatic vessels, which may be significant in the process of metastasis. Moreover, POSTN is involved in the proliferation, progression, migration and epithelial-mesenchymal transition (EMT) of tumor cells. Its increased expression has been detected in many cancers, including breast cancer, ovarian cancer, non-small cell lung carcinoma and glioblastoma. Many studies have shown that this protein may be an independent prognostic and predictive factor in many cancers, which may influence the choice of optimal therapy.
Collapse
Affiliation(s)
- Adrian Wasik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Katarzyna Ratajczak-Wielgomas
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Correspondence:
| | - Arkadiusz Badzinski
- Silesian Nanomicroscopy Center, Silesia LabMed: Research and Implementation Center, Medical University of Silesia, 41-800 Zabrze, Poland
| | - Piotr Dziegiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Human Biology, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
| | - Marzenna Podhorska-Okolow
- Department of Human Biology, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
- Department of Ultrastructural Research, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
8
|
Sun D, Gai Z, Wu J, Chen Q. Prognostic Impact of the Angiogenic Gene POSTN and Its Related Genes on Lung Adenocarcinoma. Front Oncol 2022; 12:699824. [PMID: 35832544 PMCID: PMC9271775 DOI: 10.3389/fonc.2022.699824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 05/13/2022] [Indexed: 11/25/2022] Open
Abstract
Background The function of angiogenesis-related genes (ARGs) in lung adenocarcinoma (LUAD) remains poorly documented. This study was designed to reveal ARGs in LUAD and related networks. Methods We worked with sequencing data and clinical information pertaining to LUAD from public databases. ARGs were retrieved from the HALLMARK_ANGIOGENESIS gene set. Differential analysis and Kaplan–Meier (K–M) analysis were performed to authenticate the ARGs associated with LUAD. Weighted gene correlation network analysis was performed on the mining hub genes linked to the abovementioned genes, and functional enrichment analysis was done. Subsequently, Cox regression analyses were used to construct the prognostic gene. POSTN and microvessel density were detected using immunohistochemistry. Results POSTN, an ARG that was highly expressed in patients with LUAD and was closely associated with their weak overall survival was identified. Differentially expressed genes associated with POSTN were mainly enriched in entries related to the tubulointerstitial system, immune response, and epithelial cells. A positive correlation was demonstrated between POSTN expression and tumor microvessel density in LUAD. Subsequently, a prognostic gene signature was constructed and revealed that 4 genes may predict the survival of LUAD patients. Furthermore, the ESTIMATE and CIBERSORT analyses suggested that our risk scoring system may be implicated in altering the immune microenvironment of patients with LUAD. Finally, a ceRNA network was constructed based on the prognostic genes, and the regulatory networks were examined. Conclusion POSTN, a novel prognostic gene signature associated with ARGs, was constructed for the prognosis of patients with LUAD. This signature may alter the immune microenvironment by modulating the activation of the tubulointerstitial system, epithelial cells, and immune cells, ultimately affecting patient survival.
Collapse
Affiliation(s)
- Dongfeng Sun
- Department of Thoracic Surgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Emergency Medicine, Shandong Lung Cancer Institute, Shandong Institute of Respiratory Diseases, Jinan, China
- *Correspondence: Dongfeng Sun, ;Qingfa Chen,
| | - Zhibo Gai
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jie Wu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qingfa Chen
- Institute of Tissue Engineering and Regenerative Medicine, Liaocheng People’s Hospital, Liaocheng, China
- *Correspondence: Dongfeng Sun, ;Qingfa Chen,
| |
Collapse
|
9
|
Sawada J, Hiraoka N, Qi R, Jiang L, Fournier-Goss AE, Yoshida M, Kawashima H, Komatsu M. Molecular Signature of Tumor-Associated High Endothelial Venules That Can Predict Breast Cancer Survival. Cancer Immunol Res 2022; 10:468-481. [PMID: 35201289 DOI: 10.1158/2326-6066.cir-21-0369] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/11/2021] [Accepted: 02/18/2022] [Indexed: 11/16/2022]
Abstract
High endothelial venules (HEV) are specialized post-capillary venules that recruit naïve lymphocytes to lymph nodes. HEVs are essential for the development of adaptive immunity. HEVs can also develop in tumors where they are thought to be important for recruiting naïve T cells and B cells into the tumors and locally enhancing antitumor immunity by supporting the formation of tertiary lymphoid structures. Herein, we used comparative transcriptome analysis of human breast cancer to investigate genes differentially expressed between tumor-associated HEVs and the rest of the tumor vasculature. Tumor vessels highly expressing HEV-upregulated genes, such as the homeobox gene MEOX2 and the tetraspanin gene TSPAN7, were associated with extensive infiltration of T and B cells and the occurrence of tertiary lymphoid structures, which is known to predict therapeutic responses to immune-checkpoint inhibitors. Moreover, high transcript counts of these genes in clinical tumor specimens were associated with a significant survival benefit in advanced breast cancer. The molecular signature of HEVs identified herein may be useful for guiding immunotherapies and provides a new direction for investigating tumor-associated HEVs and their clinical significance. See related Spotlight by Gallimore, p. 371.
Collapse
Affiliation(s)
- Junko Sawada
- Cancer and Blood Disorders Institute and Department of Surgery, Johns Hopkins All Children's Hospital, St. Petersburg, Florida.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nobuyoshi Hiraoka
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital/Division of Molecular Pathology, Analytical Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Rongsu Qi
- Department of Health Informatics, Johns Hopkins All Children's Hospital, St. Petersburg, Florida
| | - Lu Jiang
- Cancer and Blood Disorders Institute and Department of Surgery, Johns Hopkins All Children's Hospital, St. Petersburg, Florida.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ashley E Fournier-Goss
- Cancer and Blood Disorders Institute and Department of Surgery, Johns Hopkins All Children's Hospital, St. Petersburg, Florida.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Masayuki Yoshida
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital/Division of Molecular Pathology, Analytical Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroto Kawashima
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Masanobu Komatsu
- Cancer and Blood Disorders Institute and Department of Surgery, Johns Hopkins All Children's Hospital, St. Petersburg, Florida.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
10
|
Floriano JF, Emanueli C, Vega S, Barbosa AMP, Oliveira RGD, Floriano EAF, Graeff CFDO, Abbade JF, Herculano RD, Sobrevia L, Rudge MVC. Pro-angiogenic approach for skeletal muscle regeneration. Biochim Biophys Acta Gen Subj 2022; 1866:130059. [PMID: 34793875 DOI: 10.1016/j.bbagen.2021.130059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022]
Abstract
The angiogenesis process is a phenomenon in which numerous molecules participate in the stimulation of the new vessels' formation from pre-existing vessels. Angiogenesis is a crucial step in tissue regeneration and recovery of organ and tissue function. Muscle diseases affect millions of people worldwide overcome the ability of skeletal muscle to self-repair. Pro-angiogenic therapies are key in skeletal muscle regeneration where both myogenesis and angiogenesis occur. These therapies have been based on mesenchymal stem cells (MSCs), exosomes, microRNAs (miRs) and delivery of biological factors. The use of different calls of biomaterials is another approach, including ceramics, composites, and polymers. Natural polymers are use due its bioactivity and biocompatibility in addition to its use as scaffolds and in drug delivery systems. One of these polymers is the natural rubber latex (NRL) which is biocompatible, bioactive, versatile, low-costing, and capable of promoting tissue regeneration and angiogenesis. In this review, the advances in the field of pro-angiogenic therapies are discussed.
Collapse
Affiliation(s)
- Juliana Ferreira Floriano
- São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo 18.618-687, Brazil; National Heart and Lung Institute, Imperial College London, London, UK.
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Sofia Vega
- São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo 18.618-687, Brazil; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | | | | | | | | | - Joelcio Francisco Abbade
- São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo 18.618-687, Brazil
| | | | - Luis Sobrevia
- São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo 18.618-687, Brazil; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland, Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD, 4029, Queensland, Australia; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, the Netherlands.
| | | |
Collapse
|
11
|
Negative Modulation of the Angiogenic Cascade Induced by Allosteric Kinesin Eg5 Inhibitors in a Gastric Adenocarcinoma In Vitro Model. Molecules 2022; 27:molecules27030957. [PMID: 35164221 PMCID: PMC8840372 DOI: 10.3390/molecules27030957] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 12/24/2022] Open
Abstract
Eg5 is a kinesin essential in bipolar spindle formation, overexpressed in tumours, thus representing a new target in cancer therapy. We aimed at evaluating the anti-cancer activity of Eg5 thiadiazoline inhibitors 2 and 41 on gastric adenocarcinoma cells (AGS), focusing on the modulation of angiogenic signalling. Docking studies confirmed a similar interaction with Eg5 to that of the parent compound K858. Thiadiazolines were also tested in combination with Hesperidin (HSD). Cell cycle analysis reveals a reduction of G1 and S phase percentages when 41 is administered as well as HSD in combination with K858. Western blot reveals Eg5 inhibitors capability to reduce PI3K, p-AKT/Akt and p-Erk/Erk expressions; p-Akt/Akt ratio is even more decreased in HSD+2 sample than the p-Erk/Erk ratio in HSD+41 or K858. VEGF expression is reduced when HSD+2 and HSD+41 are administered with respect to compounds alone, after 72 h. ANGPT2 gene expression increases in cells treated with 41 and HSD+2 compared to K858. The wound-healing assay highlights a reduction in the cut in HSD+2 sample compared to 2 and HSD. Thus, Eg5 inhibitors appear to modulate angiogenic signalling by controlling VEGF activity even better if combined with HSD. Overall, Eg5 inhibitors can represent a promising starting point to develop innovative anti-cancer strategies.
Collapse
|
12
|
Kula A, Dawidowicz M, Mielcarska S, Kiczmer P, Chrabańska M, Rynkiewicz M, Świętochowska E, Waniczek D. Periostin in Angiogenesis and Inflammation in CRC-A Preliminary Observational Study. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58010096. [PMID: 35056404 PMCID: PMC8779348 DOI: 10.3390/medicina58010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/18/2022]
Abstract
Background and Objectives: To assess the periostin level and the concentrations of pro-inflammatory cytokines: TNFα, IFN-γ, IL-1β and IL-17 in tumor and marginal tissues of CRC and to investigate the influence of periostin on angiogenesis by MVD (microvessel density) and concentration of VEGF-A in relation to clinicopathological parameters of patients. Materials and Methods: The study used 47 samples of tumor and margin tissues derived from CRC patients. To determinate the concentration of periostin, VEGF-A, TNFα, IFNγ, IL-1β and IL-17, we used the commercially available enzyme- linked immunosorbent assay kit. MVD was assessed on CD34-stained specimens. The MVD and budding were assessed using a light microscope Results: We found significantly higher concentrations of periostin, VEGF-A, IFN-γ, IL-1 β, IL-17 and TNFα in the tumor samples compared with surgical tissue margins. The tumor concentrations of periostin were correlated with tumor levels of VEGF-A, IFN-γ, IL-1β and TNFα. We observed significant correlation between margin periostin and VEGF-A, IFN-γ, IL-17 and TNFα in tumor and margin specimens. Additionally, we found a significantly negative correlation between periostin tumor concentration and microvessel density at the invasive front. Tumor periostin levels were also correlated positively with tumor budding. Conclusions: Periostin activity may be associated with pro-inflammatory cytokine levels: TNFα, IFN-γ, IL-1β and IL-17. Our results also suggest the role of periostin in angiogenesis in CRC and its upregulation in poorly vascularized tumors. Further research on the regulations between periostin and cytokines are necessary to understand the interactions between tumor and immune tumor microenvironment, which could be helpful in the development of new targeted therapy.
Collapse
Affiliation(s)
- Agnieszka Kula
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, University of Silesia, 35 Ceglana, 40-514 Katowice, Poland; (M.D.); (D.W.)
- Correspondence:
| | - Miriam Dawidowicz
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, University of Silesia, 35 Ceglana, 40-514 Katowice, Poland; (M.D.); (D.W.)
| | - Sylwia Mielcarska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland; (S.M.); (E.Ś.)
| | - Paweł Kiczmer
- Department and Chair of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 13-15 3 Maja, 41-800 Zabrze, Poland; (P.K.); (M.C.); (M.R.)
| | - Magdalena Chrabańska
- Department and Chair of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 13-15 3 Maja, 41-800 Zabrze, Poland; (P.K.); (M.C.); (M.R.)
| | - Magdalena Rynkiewicz
- Department and Chair of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 13-15 3 Maja, 41-800 Zabrze, Poland; (P.K.); (M.C.); (M.R.)
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland; (S.M.); (E.Ś.)
| | - Dariusz Waniczek
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, University of Silesia, 35 Ceglana, 40-514 Katowice, Poland; (M.D.); (D.W.)
| |
Collapse
|
13
|
Kumar D, Patel SA, Khan R, Chawla S, Mohapatra N, Dixit M. IQ Motif-Containing GTPase-Activating Protein 2 Inhibits Breast Cancer Angiogenesis By Suppressing VEGFR2-AKT Signaling. Mol Cancer Res 2021; 20:77-91. [PMID: 34615693 DOI: 10.1158/1541-7786.mcr-20-1044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/17/2021] [Accepted: 10/01/2021] [Indexed: 12/24/2022]
Abstract
Antiangiogenesis cancer therapies are facing setbacks due to side effects and resistance. Parallel targeting of multiple pathways can help in the development of more effective therapies. This requires the discovery of new molecules that can regulate multiple cellular processes. Our study has recently established the association of reduced IQGAP2 expression in breast cancer with EMT and poor prognosis of the patient. Existing literature indirectly suggests the role of IQGAP2 in angiogenesis that is still unexplored. In this study, we searched the role of IQGAP2 in tumor angiogenesis in a comprehensive manner using cell culture, patients, and animal models. Depletion of IQGAP2 in breast cancer cells increased proliferation, migration, and tubulogenesis of HUVECs. Findings were validated in ex ovo CAM, Matrigel plug and skin wound-healing assays in mouse model, showing that the reduction of IQGAP2 significantly increased angiogenesis. As a confirmation, IHC analysis of the patient's tissues showed a negative correlation of IQGAP2 expression with the microvessel density. Mechanistically, loss of IQGAP2 appeared to activate VEGF-A via ERK activation in tumor cells, which activated the VEGFR2-AKT axis in HUVECs. IMPLICATIONS: The findings of this study suggest the antiangiogenic properties of IQGAP2 in breast cancer. The Dual effect of IQGAP2 on EMT and angiogenesis makes it a potential target for anticancer therapy.
Collapse
Affiliation(s)
- Dinesh Kumar
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, HBNI, Khurda, Odisha, India
| | - Saket Awadhesbhai Patel
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, HBNI, Khurda, Odisha, India
| | - Rehan Khan
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, HBNI, Khurda, Odisha, India
| | - Saurabh Chawla
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, HBNI, Khurda, Odisha, India
| | | | - Manjusha Dixit
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, HBNI, Khurda, Odisha, India.
| |
Collapse
|
14
|
Sonnenberg-Riethmacher E, Miehe M, Riethmacher D. Periostin in Allergy and Inflammation. Front Immunol 2021; 12:722170. [PMID: 34512647 PMCID: PMC8429843 DOI: 10.3389/fimmu.2021.722170] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
Matricellular proteins are involved in the crosstalk between cells and their environment and thus play an important role in allergic and inflammatory reactions. Periostin, a matricellular protein, has several documented and multi-faceted roles in health and disease. It is differentially expressed, usually upregulated, in allergic conditions, a variety of inflammatory diseases as well as in cancer and contributes to the development and progression of these diseases. Periostin has also been shown to influence tissue remodelling, fibrosis, regeneration and repair. In allergic reactions periostin is involved in type 2 immunity and can be induced by IL-4 and IL-13 in bronchial cells. A variety of different allergic diseases, among them bronchial asthma and atopic dermatitis (AD), have been shown to be connected to periostin expression. Periostin is commonly expressed in fibroblasts and acts on epithelial cells as well as fibroblasts involving integrin and NF-κB signalling. Also direct signalling between periostin and immune cells has been reported. The deposition of periostin in inflamed, often fibrotic, tissues is further fuelling the inflammatory process. There is increasing evidence that periostin is also expressed by epithelial cells in several of the above-mentioned conditions as well as in cancer. Augmented periostin expression has also been associated with chronic inflammation such as in inflammatory bowel disease (IBD). Periostin can be expressed in a variety of different isoforms, whose functions have not been elucidated yet. This review will discuss potential functions of periostin and its different isoforms in allergy and inflammation.
Collapse
Affiliation(s)
- Eva Sonnenberg-Riethmacher
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
- Department of Human Development and Health, School of Medicine, University of Southampton, Southampton, United Kingdom
| | - Michaela Miehe
- Department of Biological and Chemical Engineering – Immunological Biotechnology, Aarhus University, Aarhus, Denmark
| | - Dieter Riethmacher
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
- Department of Human Development and Health, School of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
15
|
Novák Š, Kolář M, Szabó A, Vernerová Z, Lacina L, Strnad H, Šáchová J, Hradilová M, Havránek J, Španko M, Čoma M, Urban L, Kaňuchová M, Melegová N, Gürlich R, Dvořák J, Smetana K, Gál P, Szabo P. Desmoplastic Crosstalk in Pancreatic Ductal Adenocarcinoma Is Reflected by Different Responses of Panc-1, MIAPaCa-2, PaTu-8902, and CAPAN-2 Cell Lines to Cancer-associated/Normal Fibroblasts. Cancer Genomics Proteomics 2021; 18:221-243. [PMID: 33893076 DOI: 10.21873/cgp.20254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND/AIM Pancreatic ductal adenocarcinoma (PDAC) still represents one of the most aggressive cancers. Understanding of the epithelial-mesenchymal crosstalk as a crucial part of the tumor microenvironment should pave the way for therapies to improve patient survival rates. Well-established cell lines present a useful and reproducible model to study PDAC biology. However, the tumor-stromal interactions between cancer cells and cancer-associated fibroblasts (CAFs) are still poorly understood. MATERIALS AND METHODS We studied interactions between four PDAC cell lines (Panc-1, CAPAN-2, MIAPaCa-2, and PaTu-8902) and conditioned media derived from primary cultures of normal fibroblasts/PDAC-derived CAFs (PANFs). RESULTS When the tested PDAC cell lines were stimulated by PANF-derived conditioned media, the most aggressive behavior was acquired by the Panc-1 cell line (increased number and size of colonies, remaining expression of vimentin and keratin 8 as well as increase of epithelial-to-mesenchymal polarization markers), whereas PaTu-8902 cells were rather inhibited. Of note, administration of the conditioned media to MIAPaCa-2 cells resulted in an inverse effect on the size and number of colonies, whereas CAPAN-2 cells were rather stimulated. To explain the heterogeneous pattern of the observed PDAC crosstalk at the in vitro level, we further compared the phenotype of primary cultures of cells derived from ascitic fluid with that of the tested PDAC cell lines, analyzed tumor samples of PDAC patients, and performed gene expression profiling of PANFs. Immuno-cyto/histo-chemical analysis found specific phenotype differences within the group of examined patients and tested PDAC cell lines, whereas the genomic approach in PANFs found the key molecules (IL6, IL8, MFGE8 and periostin) that may contribute to the cancer aggressive behavior. CONCLUSION The desmoplastic patient-specific regulation of cancer cells by CAFs (also demonstrated by the heterogeneous response of PDAC cell lines to fibroblasts) precludes simple targeting and development of an effective treatment strategy and rather requires establishment of an individualized tumor-specific treatment protocol.
Collapse
Affiliation(s)
- Štepán Novák
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Otorhinolaryngology, Head and Neck Surgery, First Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Michal Kolář
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Arpád Szabó
- Department of Pathology, Third Faculty of Medicine, Charles University and University Hospital Královske Vinohrady, Prague, Czech Republic
| | - Zdena Vernerová
- Department of Pathology, Third Faculty of Medicine, Charles University and University Hospital Královske Vinohrady, Prague, Czech Republic
| | - Lukáš Lacina
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic.,BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic.,Department of Dermatology and Venereology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Hynek Strnad
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Šáchová
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Miluše Hradilová
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Havránek
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Michal Španko
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Stomatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Matúš Čoma
- Department of Pharmacology, Pavol Jozef Šafárik University, Košice, Slovak Republic.,Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Košice, Slovak Republic
| | - Lukáš Urban
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Košice, Slovak Republic.,Laboratory of Cell Interactions, Center of Clinical and Preclinical Research MediPark, Pavol Jozef Šafárik University, Košice, Slovak Republic
| | - Miriam Kaňuchová
- Laboratory of Cell Interactions, Center of Clinical and Preclinical Research MediPark, Pavol Jozef Šafárik University, Košice, Slovak Republic
| | - Nikola Melegová
- Laboratory of Cell Interactions, Center of Clinical and Preclinical Research MediPark, Pavol Jozef Šafárik University, Košice, Slovak Republic
| | - Robert Gürlich
- Department of Surgery, Third Faculty of Medicine, Charles University and University Hospital Královske Vinohrady, Prague, Czech Republic
| | - Josef Dvořák
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Karel Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic.,BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Peter Gál
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Košice, Slovak Republic; .,Laboratory of Cell Interactions, Center of Clinical and Preclinical Research MediPark, Pavol Jozef Šafárik University, Košice, Slovak Republic.,Prague Burn Centre, Third Faculty of Medicine, Charles University and University Hospital Královske Vinohrady, Prague, Czech Republic
| | - Pavol Szabo
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic; .,BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic.,Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Košice, Slovak Republic
| |
Collapse
|
16
|
Periostin Is Required for the Maintenance of Muscle Fibers during Muscle Regeneration. Int J Mol Sci 2021; 22:ijms22073627. [PMID: 33807264 PMCID: PMC8036386 DOI: 10.3390/ijms22073627] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/15/2021] [Accepted: 03/26/2021] [Indexed: 02/03/2023] Open
Abstract
Skeletal muscle regeneration is a well-organized process that requires remodeling of the extracellular matrix (ECM). In this study, we revealed the protective role of periostin, a matricellular protein that binds to several ECM proteins during muscle regeneration. In intact muscle, periostin was localized at the neuromuscular junction, muscle spindle, and myotendinous junction, which are connection sites between muscle fibers and nerves or tendons. During muscle regeneration, periostin exhibited robustly increased expression and localization at the interstitial space. Periostin-null mice showed decreased muscle weight due to the loss of muscle fibers during repeated muscle regeneration. Cultured muscle progenitor cells from periostin-null mice showed no deficiencies in their proliferation, differentiation, and the expression of Pax7, MyoD, and myogenin, suggesting that the loss of muscle fibers in periostin-null mice was not due to the impaired function of muscle stem/progenitor cells. Periostin-null mice displayed a decreased number of CD31-positive blood vessels during muscle regeneration, suggesting that the decreased nutritional supply from blood vessels was the cause of muscle fiber loss in periostin-null mice. These results highlight the novel role of periostin in maintaining muscle mass during muscle regeneration.
Collapse
|
17
|
Stromal Protein-Mediated Immune Regulation in Digestive Cancers. Cancers (Basel) 2021; 13:cancers13010146. [PMID: 33466303 PMCID: PMC7795083 DOI: 10.3390/cancers13010146] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Solid cancers are surrounded by a network of non-cancerous cells comprising different cell types, including fibroblasts, and acellular protein structures. This entire network is called the tumor microenvironment (TME) and it provides a physical barrier to the tumor shielding it from infiltrating immune cells, such as lymphocytes, or therapeutic agents. In addition, the TME has been shown to dampen efficient immune responses of infiltrated immune cells, which are key in eliminating cancer cells from the organism. In this review, we will discuss how TME proteins in particular are involved in this dampening effect, known as immunosuppression. We will focus on three different types of digestive cancers: pancreatic cancer, colorectal cancer, and gastric cancer. Moreover, we will discuss current therapeutic approaches using TME proteins as targets to reverse their immunosuppressive effects. Abstract The stromal tumor microenvironment (TME) consists of immune cells, vascular and neural structures, cancer-associated fibroblasts (CAFs), as well as extracellular matrix (ECM), and favors immune escape mechanisms promoting the initiation and progression of digestive cancers. Numerous ECM proteins released by stromal and tumor cells are crucial in providing physical rigidity to the TME, though they are also key regulators of the immune response against cancer cells by interacting directly with immune cells or engaging with immune regulatory molecules. Here, we discuss current knowledge of stromal proteins in digestive cancers including pancreatic cancer, colorectal cancer, and gastric cancer, focusing on their functions in inhibiting tumor immunity and enabling drug resistance. Moreover, we will discuss the implication of stromal proteins as therapeutic targets to unleash efficient immunotherapy-based treatments.
Collapse
|
18
|
Kubo Y, Ishikawa K, Mori K, Kobayashi Y, Nakama T, Arima M, Nakao S, Hisatomi T, Haruta M, Sonoda KH, Yoshida S. Periostin and tenascin-C interaction promotes angiogenesis in ischemic proliferative retinopathy. Sci Rep 2020; 10:9299. [PMID: 32518264 PMCID: PMC7283227 DOI: 10.1038/s41598-020-66278-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
Ischemic proliferative retinopathy (IPR), such as proliferative diabetic retinopathy (PDR), retinal vein occlusion and retinopathy of prematurity is a major cause of vision loss. Our previous studies demonstrated that periostin (PN) and tenascin-C (TNC) are involved in the pathogenesis of IPR. However, the interactive role of PN and TNC in angiogenesis associated with IPR remain unknown. We found significant correlation between concentrations of PN and TNC in PDR vitreous humor. mRNA and protein expression of PN and TNC were found in pre-retinal fibrovascular membranes excised from PDR patients. Interleukin-13 (IL-13) promoted mRNA and protein expression of PN and TNC, and co-immunoprecipitation assay revealed binding between PN and TNC in human microvascular endothelial cells (HRECs). IL-13 promoted angiogenic functions of HRECs. Single inhibition of PN or TNC and their dual inhibition by siRNA suppressed the up-regulated angiogenic functions. Pathological pre-retinal neovessels of oxygen-induced retinopathy (OIR) mice were attenuated in PN knock-out, TNC knock-out and dual knock-out mice compared to wild-type mice. Both in vitro and in vivo, PN inhibition had a stronger inhibitory effect on angiogenesis compared to TNC inhibition, and had a similar effect to dual inhibition of PN and TNC. Furthermore, PN knock-out mice showed scant TNC expression in pre-retinal neovessels of OIR retinas. Our findings suggest that interaction of PN and TNC facilitates pre-retinal angiogenesis, and PN is an effective therapeutic target for IPR such as PDR.
Collapse
Affiliation(s)
- Yuki Kubo
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Keijiro Ishikawa
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| | - Kenichiro Mori
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yoshiyuki Kobayashi
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takahito Nakama
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Mitsuru Arima
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shintaro Nakao
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Toshio Hisatomi
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Masatoshi Haruta
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
19
|
Yorozu A, Yamamoto E, Niinuma T, Tsuyada A, Maruyama R, Kitajima H, Numata Y, Kai M, Sudo G, Kubo T, Nishidate T, Okita K, Takemasa I, Nakase H, Sugai T, Takano K, Suzuki H. Upregulation of adipocyte enhancer-binding protein 1 in endothelial cells promotes tumor angiogenesis in colorectal cancer. Cancer Sci 2020; 111:1631-1644. [PMID: 32086986 PMCID: PMC7226196 DOI: 10.1111/cas.14360] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/08/2020] [Accepted: 02/16/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor angiogenesis is an important therapeutic target in colorectal cancer (CRC). We aimed to identify novel genes associated with angiogenesis in CRC. Using RNA sequencing analysis in normal and tumor endothelial cells (TECs) isolated from primary CRC tissues, we detected frequent upregulation of adipocyte enhancer‐binding protein 1 (AEBP1) in TECs. Immunohistochemical analysis revealed that AEBP1 is upregulated in TECs and stromal cells in CRC tissues. Quantitative RT‐PCR analysis showed that there is little or no AEBP1 expression in CRC cell lines, but that AEBP1 is well expressed in vascular endothelial cells. Levels of AEBP1 expression in Human umbilical vein endothelial cells (HUVECs) were upregulated by tumor conditioned medium derived from CRC cells or by direct coculture with CRC cells. Knockdown of AEBP1 suppressed proliferation, migration, and in vitro tube formation by HUVECs. In xenograft experiments, AEBP1 knockdown suppressed tumorigenesis and microvessel formation. Depletion of AEBP1 in HUVECs downregulated a series of genes associated with angiogenesis or endothelial function, including aquaporin 1 (AQP1) and periostin (POSTN), suggesting that AEBP1 might promote angiogenesis through regulation of those genes. These results suggest that upregulation of AEBP1 contributes to tumor angiogenesis in CRC, which makes AEBP1 a potentially useful therapeutic target.
Collapse
Affiliation(s)
- Akira Yorozu
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Eiichiro Yamamoto
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akihiro Tsuyada
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Reo Maruyama
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiroshi Kitajima
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuto Numata
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahiro Kai
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Gota Sudo
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshiyuki Kubo
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshihiko Nishidate
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kenji Okita
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ichiro Takemasa
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Kenichi Takano
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
20
|
Yoshida H, Koodie L, Jacobsen K, Hanzawa K, Miyamoto Y, Yamamoto M. B4GALNT1 induces angiogenesis, anchorage independence growth and motility, and promotes tumorigenesis in melanoma by induction of ganglioside GM2/GD2. Sci Rep 2020; 10:1199. [PMID: 31988291 PMCID: PMC6985110 DOI: 10.1038/s41598-019-57130-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022] Open
Abstract
β-1,4-N-Acetyl-Galactosaminyltransferase 1 (B4GALNT1) encodes the key enzyme B4GALNT1 to generate gangliosides GM2/GD2. GM2/GD2 gangliosides are surface glycolipids mainly found on brain neurons as well as peripheral nerves and skin melanocytes and are reported to exacerbate the malignant potential of melanomas. In order to elucidate the mechanism, we performed functional analyses of B4GALNT1-overexpressing cells. We analyzed ganglioside pattern on four melanoma and two neuroblastoma cell lines by high performance liquid chromatography (HPLC). We overexpressed B4GALNT1 in GM2/GD2-negative human melanoma cell line (SH4) and confirmed production of GM2/GD2 by HPLC. They showed higher anchorage independence growth (AIG) in colony formation assay, and exhibited augmented motility. In vitro, cell proliferation was not affected by GM2/GD2 expression. In vivo, GM2/GD2-positive SH4 clones showed significantly higher tumorigenesis in NOD/Scid/IL2Rγ-null mice, and immunostaining of mouse CD31 revealed that GM2/GD2 induced remarkable angiogenesis. No differences were seen in melanoma stem cell and Epithelial-Mesenchymal Transition markers between GM2/GD2-positive and -negative SH4 cells. We therefore concluded that B4GALNT1, and consequently GM2/GD2, enhanced tumorigenesis via induction of angiogenesis, AIG, and cell motility. RNA-Seq suggested periostin as a potential key factor for angiogenesis and AIG. These findings may lead to development of novel therapy for refractory melanoma.
Collapse
Affiliation(s)
- Hideki Yoshida
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lisa Koodie
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kari Jacobsen
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ken Hanzawa
- Department of Molecular Biology, Osaka International Cancer Institute, Osaka, Japan
| | - Yasuhide Miyamoto
- Department of Molecular Biology, Osaka International Cancer Institute, Osaka, Japan
| | - Masato Yamamoto
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
21
|
Design, synthesis, biological evaluation of benzoyl amide derivatives containing nitrogen heterocyclic ring as potential VEGFR-2 inhibitors. Bioorg Med Chem 2019; 27:3813-3824. [DOI: 10.1016/j.bmc.2019.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/13/2019] [Accepted: 07/04/2019] [Indexed: 12/15/2022]
|
22
|
Chen Q, Yu D, Zhao Y, Qiu J, Xie Y, Tao M. Screening and identification of hub genes in pancreatic cancer by integrated bioinformatics analysis. J Cell Biochem 2019; 120:19496-19508. [PMID: 31297881 DOI: 10.1002/jcb.29253] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer (Pa) is a malignant tumor of the digestive tract with high degree of malignancy, this study aimed to obtain the hub genes in the tumorigenesis of Pa. Microarray datasets GSE15471, GSE16515, and GSE62452 were downloaded from Gene Expression Omnibus (GEO) database, GEO2R was conducted to screen the differentially expressed genes (DEGs), and functional enrichment analyses were carried out by Database for Annotation, Visualization and Integrated Discovery (DAVID). The protein-protein interaction (PPI) network was constructed with the Search Tool for the Retrieval of Interacting Genes (STRING), and the hub genes were identified by Cytoscape. Totally 205 DEGs were identified, consisting of 51 downregulated genes and 154 upregulated genes enriched in Gene Ontology terms including extracellular matrix (ECM) organization, collagen binding, cell adhesion, and pathways associated with ECM-receptor interaction, focal adhesion, and protein digestion. Two modules in the PPI were chosen and biological process analyses showed that the module genes were mainly enriched in ECM and cell adhesion. Twenty-four hub genes were confirmed, the survival analyses from the cBioPortal online platform revealed that topoisomerase (DNA) II α (TOP2A), periostin (POSTN), plasminogen activator, urokinase (PLAU), and versican (VCAN) may be involved in the carcinogenesis and progression of Pa, and the receiver-operating characteristic curves indicated their diagnostic value for Pa. Among them, TOP2A, POSTN, and PLAU have been previously reported as biomarkers for Pa, and far too little attention has been paid to VCAN. Analysis from R2 online platform showed that Pa patients with high VCAN expression were more sensitive to gemcitabine than those with low level, suggesting that VCAN may be an indicator to guide the use of the chemotherapeutic drug. In vitro experiments also showed that the sensitivity of the VCAN siRNA group to gemcitabine was lower than that of the control group. In conclusion, this study discerned hub genes and pathways related to the development of Pa, and VCAN was identified as a novel biomarker for the diagnose and therapy of Pa.
Collapse
Affiliation(s)
- Qing Chen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China.,Department of Oncology, Jingjiang People's Hospital, Jingjiang, Jiangsu, P.R. China
| | - Dongmei Yu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Yingying Zhao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Jiajun Qiu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Yufeng Xie
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Min Tao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China.,Jiangsu Institute of Clinical Immunology, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
23
|
Cao L, Zhang Z, Li Y, Zhao P, Chen Y. LncRNA H19/miR-let-7 axis participates in the regulation of ox-LDL-induced endothelial cell injury via targeting periostin. Int Immunopharmacol 2019; 72:496-503. [DOI: 10.1016/j.intimp.2019.04.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 12/12/2022]
|
24
|
Peng YQ, Cao MJ, Yoshida S, Zhang LS, Zeng HL, Zou JL, Kobayashi Y, Nakama T, Shi JM, Jia SB, Zhou YD. Attenuation of periostin in retinal Müller glia by TNF-α and IFN-γ. Int J Ophthalmol 2019; 12:212-218. [PMID: 30809475 DOI: 10.18240/ijo.2019.02.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/05/2018] [Indexed: 01/10/2023] Open
Abstract
AIM To investigate the regulation and mechanisms of periostin expression in retinal Müller glia, and to explore the relevance to retinal neovascularization. METHODS The oxygen-induced retinopathy (OIR) mouse model and the human Moorfield/Institute of Ophthalmology-Müller 1 (MIO-M1) cell line were used in the study. Immunofluorescence staining was used to determine the distribution and expression of periostin and a Müller glial cell marker glutamine synthetase (GS). Cytokines TNF-α and IFN-γ were added to stimulate the MIO-M1 cells. ShRNA was used to knockdown periostin expression in MIO-M1 cells. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) was conducted to assess the mRNA expression of periostin. RESULTS Immunofluorescence staining showed that periostin was expressed by MIO-M1 Müller glia. GS-positive Müller glia and periostin increased in OIR retinas, and were partially overlaid. The stimulation of TNF-α and IFN-γ reduced the mRNA expression of periostin significantly and dose-dependently in MIO-M1 cells. Knockdown of periostin reduced mRNA expression of vascular endothelial growth factor A (VEGFA) in MIO-M1 cells, while VEGFA expression was not changed in periostin knock-out OIR retinas. CONCLUSION Müller glia could be one of the main sources of periostin in the retina, and might contribute to the pathogenesis of retinal neovascularization. Proinflammatory cytokines TNF-α and IFN-γ attenuate the periostin expression in retinal Müller glia, which provides a potential and novel method in treating retinal neovascular diseases.
Collapse
Affiliation(s)
- Ying-Qian Peng
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| | - Man-Jing Cao
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan.,Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Lu-Si Zhang
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| | - Hui-Lan Zeng
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| | - Jing-Ling Zou
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| | - Yoshiyuki Kobayashi
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Takahito Nakama
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Jing-Ming Shi
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| | - Song-Bai Jia
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| | - Ye-Di Zhou
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China.,Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| |
Collapse
|
25
|
Choi HY, Yang GM, Dayem AA, Saha SK, Kim K, Yoo Y, Hong K, Kim JH, Yee C, Lee KM, Cho SG. Hydrodynamic shear stress promotes epithelial-mesenchymal transition by downregulating ERK and GSK3β activities. Breast Cancer Res 2019; 21:6. [PMID: 30651129 PMCID: PMC6335853 DOI: 10.1186/s13058-018-1071-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/26/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) occurs in the tumor microenvironment and presents an important mechanism of tumor cell intravasation, stemness acquisition, and metastasis. During metastasis, tumor cells enter the circulation to gain access to distant tissues, but how this fluid microenvironment influences cancer cell biology is poorly understood. METHODS AND RESULTS Here, we present both in vivo and in vitro evidence that EMT-like transition also occurs in circulating tumor cells (CTCs) as a result of hydrodynamic shear stress (+SS), which promotes conversion of CD24middle/CD44high/CD133middle/CXCR4low/ALDH1low primary patient epithelial tumor cells into specific high sphere-forming CD24low/CD44low/CD133high/CXCR4high/ALDH1high cancer stem-like cells (CSLCs) or tumor-initiating cells (TICs) with elevated tumor progression and metastasis capacity in vitro and in vivo. We demonstrate that conversion of CSLCs/TICs from epithelial tumor cells via +SS is dependent on reactive oxygen species (ROS)/nitric oxide (NO) generation, and suppression of extracellular signal-related kinase (ERK)/glycogen synthase kinase (GSK)3β, a mechanism similar to that operating in embryonic stem cells to prevent their differentiation while promoting self-renewal. CONCLUSION Fluid shear stress experienced during systemic circulation of human breast tumor cells can lead to specific acquisition of mesenchymal stem cell (MSC)-like potential that promotes EMT, mesenchymal-epithelial transition, and metastasis to distant organs. Our data revealed that biomechanical forces appeared to be important microenvironmental factors that not only drive hematopoietic development but also lead to acquisition of CSLCs/TIC potential in cancer metastasis. Our data highlight that +SS is a critical factor that promotes the conversion of CTCs into distinct TICs in blood circulation by endowing plasticity to these cells and by maintaining their self-renewal signaling pathways.
Collapse
Affiliation(s)
- Hye Yeon Choi
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Gwang-Mo Yang
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Subbroto Kumar Saha
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Kyeongseok Kim
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Youngbum Yoo
- Department of Surgery, Konkuk University School of Medicine, Seoul, 05030, Republic of Korea
| | - Kwonho Hong
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jin-Hoi Kim
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Cassian Yee
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Kyung-Mi Lee
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 26-1 Anam-dong, Sungbuk-gu, Seoul, 02841, Republic of Korea.
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
26
|
Han X, Wang Q, Wang Y, Hu B, Dong X, Zhang H, Wang W. Long non‐coding RNA metastasis‐associated lung adenocarcinoma transcript 1/microRNA‐202‐3p/periostin axis modulates invasion and epithelial–mesenchymal transition in human cervical cancer. J Cell Physiol 2019; 234:14170-14180. [PMID: 30633360 DOI: 10.1002/jcp.28113] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/07/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Xiting Han
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Qian Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Yan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Bin Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Xue Dong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Hailing Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Wuliang Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| |
Collapse
|
27
|
Chen L, Tian X, Gong W, Sun B, Li G, Liu D, Guo P, He Y, Chen Z, Xia Y, Song T, Guo H. Periostin mediates epithelial-mesenchymal transition through the MAPK/ERK pathway in hepatoblastoma. Cancer Biol Med 2019; 16:89-100. [PMID: 31119049 PMCID: PMC6528457 DOI: 10.20892/j.issn.2095-3941.2018.0077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Objective The aim of the present study was to analyze the prognostic factors in patients with hepatoblastoma (HB) in our single center and to evaluate periostin (POSTN) expression in HB and its association with clinicopathological variables. In addition, the underlying mechanism of how POSTN promotes HB progression was discussed. Methods POSTN expression was investigated in HB tumors by immunohistochemistry (IHC), immunofluorescence (IF) and Western blot (WB). The association among POSTN expression, clinicopathological features and overall survival (OS) was also evaluated. The migration and adhesion ability of HB cells were measured using chemotaxis and cell-matrix adhesion assays, respectively. Epithelial-mesenchymal transition (EMT)-associated markers and activation of the ERK pathway were detected by WB. Results HB patients had poor prognosis which displayed lymph node metastasis, vascular invasion, POSTN and vimentin expression. POSTN expression was also associated with lymph node metastasis. Furthermore, overexpressed POSTN promoted migration and the adhesive ability of HB cells in vitro. In addition, we demonstrated that POSTN activated the MAPK/ERK pathway, upregulated the expression of Snail and decreased the expression of OVOL2. Finally, POSTN promoted the expression of EMT-associated markers. Conclusions POSTN might modulate EMT via the ERK signaling pathway, thereby promoting cellular migration and invasion. Our study also suggests that POSTN may serve as a therapeutic biomarker in HB patients.
Collapse
Affiliation(s)
- Lu Chen
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiangdong Tian
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Wenchen Gong
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Bo Sun
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Guangtao Li
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Dongming Liu
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Piao Guo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yuchao He
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Ziye Chen
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yuren Xia
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Tianqiang Song
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Hua Guo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
28
|
The Multiaspect Functions of Periostin in Tumor Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1132:125-136. [DOI: 10.1007/978-981-13-6657-4_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Abstract
Accumulating evidence suggests that periostin is frequently upregulated in tissue injury, inflammation, fibrosis and tumor progression. Periostin expression in cancer cells can promote metastatic potential of colorectal cancer (CRC) via activating PI3K/Akt signaling pathway. Moreover, periostin is observed mainly in tumor stroma and cytoplasm of cancer cells, which may facilitate aggressiveness of CRC. In this review, we summarize information regarding periostin to emphasize its role as a prognostic marker of CRC.
Collapse
Affiliation(s)
- Xingming Deng
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Sheng Ao
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jianing Hou
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Zhuofei Li
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yunpeng Lei
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Guoqing Lyu
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
30
|
Dong D, Jia L, Zhang L, Ma N, Zhang A, Zhou Y, Ren L. Periostin and CA242 as potential diagnostic serum biomarkers complementing CA19.9 in detecting pancreatic cancer. Cancer Sci 2018; 109:2841-2851. [PMID: 29945294 PMCID: PMC6125476 DOI: 10.1111/cas.13712] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/24/2018] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor with few biomarkers to guide treatment options. Carbohydrate antigen 19.9 (CA19.9), the most frequently used biomarker for PDAC, is not sensitive and specific enough for the detection of the disease. This study aimed to evaluate serum periostin (POSTN) and CA242 as potential diagnostic biomarkers complementing CA19.9 in detecting pancreatic cancer. Blood samples were from 362 participants, including 213 patients with different stages of PDAC, 75 patients with benign pancreatic disease, and 74 healthy individuals. All samples were randomly divided into a training set and a validation set. Carbohydrate antigen 19.9, CA242, POSTN, as well as carcinoembryonic antigen, were measured by ELISA or automated immunoassay. The receiver operating characteristic curve analysis revealed that the performance of CA19.9 in the validation group were improved by the marker panel composed of CA19.9, POSTN, and CA242, to discriminate early stage PDAC not only from healthy controls (area under the curve [AUC]CA19.9 = 0.94 vs AUCCA19.9 + POSTN + CA242 = 0.98, P < .05) but also from benign conditions (AUCCA19.9 = 0.87 vs AUCCA19.9 + POSTN + CA242 = 0.90, P < .05). In addition, POSTN retained significant diagnostic capabilities to distinguish PDAC CA19.9-negative from healthy controls (AUCPOSTN = 0.87) as well as from benign conditions (AUCPOSTN = 0.84) in the whole set. This study suggested that POSTN and CA242 are potential diagnostic serum biomarkers complementing CA19.9 in detecting early pancreatic cancer.
Collapse
Affiliation(s)
- Dong Dong
- Department of LaboratoryTianjin Medical University Cancer Institute and HospitalTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjinChina
| | - Li Jia
- Department of LaboratoryTianjin Medical University Cancer Institute and HospitalTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjinChina
| | - Lufang Zhang
- Department of LaboratoryTianjin Medical University Cancer Institute and HospitalTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjinChina
| | - Na Ma
- Cancer BiobankTianjin Medical University Cancer Institute and HospitalTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjinChina
| | - Aimin Zhang
- Department of LaboratoryTianjin Medical University Cancer Institute and HospitalTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjinChina
| | - Yunli Zhou
- Department of LaboratoryTianjin Medical University Cancer Institute and HospitalTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjinChina
| | - Li Ren
- Department of LaboratoryTianjin Medical University Cancer Institute and HospitalTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjinChina
| |
Collapse
|
31
|
Okazaki T, Tamai K, Shibuya R, Nakamura M, Mochizuki M, Yamaguchi K, Abe J, Takahashi S, Sato I, Kudo A, Okada Y, Satoh K. Periostin is a negative prognostic factor and promotes cancer cell proliferation in non-small cell lung cancer. Oncotarget 2018; 9:31187-31199. [PMID: 30131847 PMCID: PMC6101292 DOI: 10.18632/oncotarget.25435] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/28/2018] [Indexed: 12/11/2022] Open
Abstract
Periostin is a matricellular protein that is secreted by fibroblasts and interacts with various cell-surface integrin molecules. Although periostin is known to support tumor development in human malignancies, little is known about its effect on lung-cancer progression. We here demonstrate that periostin is a negative prognostic factor that increases tumor proliferation through ERK signaling in non-small cell lung carcinoma. We classified 189 clinical specimens from patients with non-small cell lung-cancer according to high or low periostin expression, and found a better prognosis for patients with low rather than high periostin, even in cases of advanced-stage cancer. In a syngenic implantation model, murine Ex3LL lung-cancer cells formed smaller tumor nodules in periostin−/− mice than in periostin+/+ mice, both at the primary site and at metastatic lung sites. An in vitro proliferation assay showed that stimulation with recombinant periostin increased Ex3LL-cell proliferation. We also found that periostin promotes ERK phosphorylation, but not Akt or FAK activation. These findings suggest that periostin represents a potential target in lung-cancer tumor progression.
Collapse
Affiliation(s)
- Toshimasa Okazaki
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Japan.,Department of Thoracic Surgery, Miyagi Cancer Center, Natori, Japan.,Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Keiichi Tamai
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Rie Shibuya
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Mao Nakamura
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Mai Mochizuki
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Kazunori Yamaguchi
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Jiro Abe
- Department of Thoracic Surgery, Miyagi Cancer Center, Natori, Japan
| | - Satomi Takahashi
- Department of Thoracic Surgery, Miyagi Cancer Center, Natori, Japan
| | - Ikuro Sato
- Department of Pathology, Miyagi Cancer Center, Natori, Japan
| | - Akira Kudo
- Department of Biological Information, Tokyo Institute of Technology, Yokohama, Japan
| | - Yoshinori Okada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Kennichi Satoh
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Japan
| |
Collapse
|
32
|
Ye D, Zhou C, Wang S, Deng H, Shen Z. Tumor suppression effect of targeting periostin with siRNA in a nude mouse model of human laryngeal squamous cell carcinoma. J Clin Lab Anal 2018; 33:e22622. [PMID: 29978598 DOI: 10.1002/jcla.22622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/20/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The incidence of laryngeal carcinoma is increasing, however, the mechanism is not fully understood. We aimed to investigate the efficacy of periostin gene silencing by siRNA on tumor inhibition, in a novel nude mouse model of human laryngeal squamous cell carcinoma, and to explore possible inhibitory mechanisms. METHODS Tumors were established in nude mice by transplantation of LSCC AMC-HN-8 cell line. Forty-eight nude mice were randomly divided into groups of eight each, and treated with high (1.0 OD) or low (0.5 OD) doses of periostin-siRNA or appropriate control solutions. Tumor growth was observed and used to calculate an inhibition rate (%). Routine pathological and electron microscopic examination were used to determine tumor apoptosis and proliferation. Changes in periostin mRNA and protein levels were analyzed. RESULTS Tumor growth was significantly inhibited in mice treated by high dose periostin-siRNA compared to untreated and those treated with low dose periostin-siRNA (P < 0.05). Pathological examination showed increased tumor necrosis and apoptotic changes in treated mice, which was confirmed by electron microscopy. Periostin mRNA and protein expression were significantly reduced in tumors from mice treated with high dose periostin-siRNA, compared to controls and low-dose periostin-siRNA treatment groups (P < 0.05). CONCLUSION Periostin silencing was associated with growth inhibition of tumor cells in a nude mouse model of LSCC. The underlying mechanism may be due to receptor-mediated induction of relevant signal transduction pathways that modulate the microenvironment needed for cancer cell survival. Periostin is expected to become a new target for cancer therapy.
Collapse
Affiliation(s)
- Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, China
| | - Chongchang Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, China
| | - Sijia Wang
- Ningbo Xiaoshi High School, Ningbo, China
| | - Hongxia Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, China
| | - Zhisen Shen
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
33
|
Shan Y, Wang B, Zhang J. New strategies in achieving antiangiogenic effect: Multiplex inhibitors suppressing compensatory activations of RTKs. Med Res Rev 2018; 38:1674-1705. [DOI: 10.1002/med.21517] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/19/2018] [Accepted: 05/19/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Yuanyuan Shan
- Department of Pharmacy; The First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - Binghe Wang
- Department of Chemistry; Center for Diagnostics and Therapeutics; Georgia State University; Atlanta GA USA
| | - Jie Zhang
- School of Pharmacy, Health Science Center; Xi'an Jiaotong University; Xi'an China
| |
Collapse
|
34
|
Zeng J, Liu Z, Sun S, Xie J, Cao L, Lv P, Nie S, Zhang B, Xie B, Peng S, Jiang B. Tumor-associated macrophages recruited by periostin in intrahepatic cholangiocarcinoma stem cells. Oncol Lett 2018; 15:8681-8686. [PMID: 29805605 DOI: 10.3892/ol.2018.8372] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/03/2017] [Indexed: 12/26/2022] Open
Abstract
Periostin (POSTN) secreted by intrahepatic cholangiocarcinoma stem cells (ICSCs) serves important roles in promoting tumor progression. The present study aimed to investigate POSTN-recruited tumor-associated macrophages (TAMs) in intrahepatic cholangiocarcinoma (ICC). A total of 50 cases were used to investigate the distribution of ICSCs and TAMs in ICC. HCCC-9810 cells were sorted by cluster of differentiation (CD)44, the expression of POSTN of CD44+ (cancer stem cells) and CD44- cells (non-cancer stem cells), and medium were evaluated by western blot analysis. HCCC-9810 cells and THP-1 macrophages were used to detect the effects of POSTN on recruiting TAMs in vitro. The present study revealed that CD44+ cells in ICC tissues and the HCCC-9810 cell line were associated with high POSTN secretion levels. Furthermore, POSTN was associated with TAM density in primary ICC tissues. Additionally, POSTN increased the migration of TAMs derived from THP-1 cells. These findings suggested that POSTN secreted by ICSCs may serve important functions in TAM recruitment, and it may be a potential curative strategy to target the tumor microenvironment in ICC.
Collapse
Affiliation(s)
- Jiehong Zeng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University-Hunan Provincial People's Hospital, Changsha, Hunan 410006, P.R. China.,Department of General Surgery, Yiyang Central Hospital, Yiyang, Hunan 413000, P.R. China
| | - Zhengkai Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University-Hunan Provincial People's Hospital, Changsha, Hunan 410006, P.R. China
| | - Shuwen Sun
- Department of Pharmacy, Yiyang Central Hospital, Yiyang, Hunan 413000, P.R. China
| | - Jianhong Xie
- Department of General Surgery, Yiyang Central Hospital, Yiyang, Hunan 413000, P.R. China
| | - Li Cao
- Department of General Surgery, Yiyang Central Hospital, Yiyang, Hunan 413000, P.R. China
| | - Pin Lv
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University-Hunan Provincial People's Hospital, Changsha, Hunan 410006, P.R. China
| | - Shengdan Nie
- Intistute of Clinical Medical Research, The First Affiliated Hospital of Hunan Normal University-Hunan Provincial People's Hospital, Changsha, Hunan 410006, P.R. China
| | - Bao Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University-Hunan Provincial People's Hospital, Changsha, Hunan 410006, P.R. China
| | - Bowen Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University-Hunan Provincial People's Hospital, Changsha, Hunan 410006, P.R. China
| | - Siyuan Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University-Hunan Provincial People's Hospital, Changsha, Hunan 410006, P.R. China
| | - Bo Jiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University-Hunan Provincial People's Hospital, Changsha, Hunan 410006, P.R. China
| |
Collapse
|
35
|
Luo W, Wang H, Hu J. Increased concentration of serum periostin is associated with poor outcome of patients with aneurysmal subarachnoid hemorrhage. J Clin Lab Anal 2018; 32:e22389. [PMID: 29498090 DOI: 10.1002/jcla.22389] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/27/2017] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To explore the role of serum periostin in patients with aneurysmal subarachnoid hemorrhage (aSAH). METHOD We conducted a retrospective study and 124 aSAH patients treated in Shenzhen People's hospital during March 1st 2015 to December 30th 2016 were included. Baseline information, neurological status and clinical outcome were recorded. Blood samples on admission were collected and enzyme linked immunosorbent assay (ELISA) kits were used to detect the serum level of periostin. Spearman's Correlation Analysis was used to analyze the correlation between periostin and clinical severity. Receiver operating characteristic (ROC) curve was performed to investigate variables' prognostic value in patients with aSAH. RESULTS The average age of patients included was 57.23 years old. Preliminary analysis revealed that serum periostin was significantly correlated with clinical severity. Patients with poor outcome at 12 months had higher level of periostin than patients with good outcome. Multivariate logistic regression analysis showed elevated level of periostin was significantly associated with poor outcome and the AUC was 0.85 for periostin in predicting poor outcome of patient with aSAH. CONCLUSION Elevated serum periostin concentrations are significantly associated with clinical severity and poor outcome of aSAH patients, which indicate serum periostin can be used as a prognostic biomarker in patients with aSAH.
Collapse
Affiliation(s)
- Weijian Luo
- Department of Neurosurgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Hao Wang
- Department of Neurosurgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Jiliang Hu
- Department of Neurosurgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, China
| |
Collapse
|
36
|
Fu Y, Liu S, Zeng S, Shen H. The critical roles of activated stellate cells-mediated paracrine signaling, metabolism and onco-immunology in pancreatic ductal adenocarcinoma. Mol Cancer 2018; 17:62. [PMID: 29458370 PMCID: PMC5817854 DOI: 10.1186/s12943-018-0815-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/12/2018] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignant diseases worldwide. It is refractory to conventional treatments, and consequently has a documented 5-year survival rate as low as 7%. Increasing evidence indicates that activated pancreatic stellate cells (PSCs), one of the stromal components in tumor microenvironment (TME), play a crucial part in the desmoplasia, carcinogenesis, aggressiveness, metastasis associated with PDAC. Despite the current understanding of PSCs as a "partner in crime" to PDAC, detailed regulatory roles of PSCs and related microenvironment remain obscure. In addition to multiple paracrine signaling pathways, recent research has confirmed that PSCs-mediated tumor microenvironment may influence behaviors of PDAC via diverse mechanisms, such as rewiring metabolic networks, suppressing immune responses. These new activities are closely linked with treatment and prognosis of PDAC. In this review, we discuss the recent advances regarding new functions of activated PSCs, including PSCs-cancer cells interaction, mechanisms involved in immunosuppressive regulation, and metabolic reprogramming. It's clear that these updated experimental or clinical studies of PSCs may provide a promising approach for PDAC treatment in the near future.
Collapse
Affiliation(s)
- Yaojie Fu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shanshan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
37
|
Lin L, Fan Y, Gao F, Jin L, Li D, Sun W, Li F, Qin P, Shi Q, Shi X, Du L. UTMD-Promoted Co-Delivery of Gemcitabine and miR-21 Inhibitor by Dendrimer-Entrapped Gold Nanoparticles for Pancreatic Cancer Therapy. Theranostics 2018; 8:1923-1939. [PMID: 29556365 PMCID: PMC5858509 DOI: 10.7150/thno.22834] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/23/2017] [Indexed: 12/22/2022] Open
Abstract
Conventional chemotherapy of pancreatic cancer (PaCa) suffers the problems of low drug permeability and inherent or acquired drug resistance. Development of new strategies for enhanced therapy still remains a great challenge. Herein, we report a new ultrasound-targeted microbubble destruction (UTMD)-promoted delivery system based on dendrimer-entrapped gold nanoparticles (Au DENPs) for co-delivery of gemcitabine (Gem) and miR-21 inhibitor (miR-21i). Methods: In this study, Gem-Au DENPs/miR-21i was designed and synthesized. The designed polyplexes were characterized via transmission electron microscopy (TEM), Gel retardation assay and dynamic light scattering (DLS). Then, the optimum exposure parameters were examined by an ultrasound exposure platform. The cellular uptake, cytotoxicity and anticancer effects in vitro were analyzed by confocal laser microscopy, spectra microplate reader, flow cytometry and a chemiluminescence imaging system. Lastly, the anticancer effects in vivo were evaluated by contrast-enhanced ultrasound (CEUS), hematoxylin and eosin (H&E) staining, TUNEL staining and comparison of tumor volume. Results: The results showed that the Gem-Au DENPs/miR-21i can be uptake by cancer cells and the cellular uptake was further facilitated by UTMD with an ultrasound power of 0.4 W/cm2 to enhance the cell permeability. Further, the co-delivery of Gem and miR-21i with or without UTMD treatment displayed 82-fold and 13-fold lower IC50 values than the free Gem, respectively. The UTMD-promoted co-delivery of Gem and miR-21i was further validated by in vivo treatment and showed a significant tumor volume reduction and an increase in blood perfusion of xenografted pancreatic tumors. Conclusion: The co-delivery of Gem and miR-21i using Au DENPs can be significantly promoted by UTMD technology, hence providing a promising strategy for effective pancreatic cancer treatments.
Collapse
|
38
|
Fiorino S, Bacchi-Reggiani ML, Birtolo C, Acquaviva G, Visani M, Fornelli A, Masetti M, Tura A, Sbrignadello S, Grizzi F, Patrinicola F, Zanello M, Mastrangelo L, Lombardi R, Benini C, Di Tommaso L, Bondi A, Monetti F, Siopis E, Orlandi PE, Imbriani M, Fabbri C, Giovanelli S, Domanico A, Accogli E, Di Saverio S, Grifoni D, Cennamo V, Leandri P, Jovine E, de Biase D. Matricellular proteins and survival in patients with pancreatic cancer: A systematic review. Pancreatology 2018; 18:122-132. [PMID: 29137857 DOI: 10.1016/j.pan.2017.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 10/29/2017] [Accepted: 11/01/2017] [Indexed: 02/05/2023]
Abstract
Extracellular matrix (ECM) plays a fundamental role in tissue architecture and homeostasis and modulates cell functions through a complex interaction between cell surface receptors, hormones, several bioeffector molecules, and structural proteins like collagen. These components are secreted into ECM and all together contribute to regulate several cellular activities including differentiation, apoptosis, proliferation, and migration. The so-called "matricellular" proteins (MPs) have recently emerged as important regulators of ECM functions. The aim of our review is to consider all different types of MPs family assessing the potential relationship between MPs and survival in patients with pancreatic ductal adenocarcinoma (PDAC). A systematic computer-based search of published articles, according to the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) Statement issued in 2009 was conducted through Ovid interface, and literature review was performed in May 2017. The search text words were identified by means of controlled vocabulary, such as the National Library of Medicine's MESH (Medical Subject Headings) and Keywords. Collected data showed an important role of MPs in carcinogenesis and in PDAC prognosis even though the underlying mechanisms are still largely unknown and data are not univocal. Therefore, a better understanding of MPs role in regulation of ECM homeostasis and remodeling of specific organ niches may suggest potential novel extracellular targets for the development of efficacious therapeutic strategies.
Collapse
Affiliation(s)
- Sirio Fiorino
- Internal Medicine Unit C, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy.
| | - Maria Letizia Bacchi-Reggiani
- Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), Cardiology Unit, Policlinico S. Orsola-Malpighi, University of Bologna, via Massarenti 9, Bologna, Italy
| | - Chiara Birtolo
- Internal Medicine Unit A, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Giorgia Acquaviva
- Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), University of Bologna, Azienda USL di Bologna, Largo Nigrisoli 3, Bologna, Italy
| | - Michela Visani
- Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), University of Bologna, Azienda USL di Bologna, Largo Nigrisoli 3, Bologna, Italy
| | - Adele Fornelli
- Anatomic Pathology Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Michele Masetti
- Surgery Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Andrea Tura
- CNR Institute of Neuroscience, Via Giuseppe Moruzzi 1, Padova, Italy
| | | | - Fabio Grizzi
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, Milano, Italy
| | - Federica Patrinicola
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, Milano, Italy
| | - Matteo Zanello
- Surgery Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Laura Mastrangelo
- Surgery Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Raffaele Lombardi
- Surgery Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Claudia Benini
- Surgery Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Luca Di Tommaso
- Department of Pathology, Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, Milano, Italy
| | - Arrigo Bondi
- Anatomic Pathology Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Francesco Monetti
- Radiology Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Elena Siopis
- Radiology Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Paolo Emilio Orlandi
- Radiology Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Michele Imbriani
- Radiology Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Carlo Fabbri
- Unit of Gastroenterology and Digestive Endoscopy, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Silvia Giovanelli
- Unit of Gastroenterology and Digestive Endoscopy, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Andrea Domanico
- Internal Medicine Unit A, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Esterita Accogli
- Internal Medicine Unit A, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Salomone Di Saverio
- Surgical Emergency Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Daniela Grifoni
- Department of Pharmacy and Biotechnology, University of Bologna, via San Donato 15, Bologna, Italy
| | - Vincenzo Cennamo
- Unit of Gastroenterology and Digestive Endoscopy, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Paolo Leandri
- Surgical Emergency Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Elio Jovine
- Surgery Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology, University of Bologna, via San Donato 15, Bologna, Italy.
| |
Collapse
|
39
|
Cui D, Huang Z, Liu Y, Ouyang G. The multifaceted role of periostin in priming the tumor microenvironments for tumor progression. Cell Mol Life Sci 2017; 74:4287-4291. [PMID: 28884337 PMCID: PMC11107730 DOI: 10.1007/s00018-017-2646-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/04/2017] [Indexed: 12/13/2022]
Abstract
Tumor microenvironment consists of tumor cells, stromal cells, extracellular matrix and a plethora of soluble components. The complex array of interactions between tumor cells and their surrounding tumor microenvironments contribute to the determination of the fate of tumor cells during tumorigenesis and metastasis. Matricellular protein periostin is generally absent in most adult tissues but is highly expressed in tumor microenvironments. Current evidence reveals that periostin plays a critical role in establishing and remodeling tumor microenvironments such as the metastatic niche, cancer stem cell niche, perivascular niche, pre-metastatic niche, fibrotic microenvironment and bone marrow microenvironment. Here, we summarize the current knowledge of the multifaceted role of periostin in the tumor microenvironments.
Collapse
Affiliation(s)
- Dan Cui
- First Affiliated Hospital of Xiamen University, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhengjie Huang
- First Affiliated Hospital of Xiamen University, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yingfu Liu
- Department of Basic Medical Sciences, Medical College, Xiamen University, Xiamen, China
| | - Gaoliang Ouyang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
40
|
Ansari D, Carvajo M, Bauden M, Andersson R. Pancreatic cancer stroma: controversies and current insights. Scand J Gastroenterol 2017; 52:641-646. [PMID: 28276831 DOI: 10.1080/00365521.2017.1293726] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pancreatic cancer is characterized by a dense stromal response. The stroma includes a heterogeneous mass of cells, including pancreatic stellate cells, fibroblasts, immune cells and nerve cells, as well as extracellular matrix proteins, cytokines and growth factors, which interact with the tumor cells. Previous research has indicated that stromal elements contribute to tumor growth and aggressiveness. However, recent studies suggest that some elements of the stroma may actually restrain the tumor. This review focuses on the complex interactions between the stromal microenvironment and tumor cells, discussing molecular mechanisms and potential future diagnostic and therapeutic approaches by targeting the stroma.
Collapse
Affiliation(s)
- Daniel Ansari
- a Department of Surgery , Clinical Sciences Lund, Lund University and Skåne University Hospital , Lund , Sweden
| | - Maria Carvajo
- a Department of Surgery , Clinical Sciences Lund, Lund University and Skåne University Hospital , Lund , Sweden
| | - Monika Bauden
- a Department of Surgery , Clinical Sciences Lund, Lund University and Skåne University Hospital , Lund , Sweden
| | - Roland Andersson
- a Department of Surgery , Clinical Sciences Lund, Lund University and Skåne University Hospital , Lund , Sweden
| |
Collapse
|
41
|
Ye D, Shen ZS, Qiu SJ, Li Q, Wang GL. Role and underlying mechanisms of the interstitial protein periostin in the diagnosis and treatment of malignant tumors. Oncol Lett 2017; 14:5099-5106. [PMID: 29142596 DOI: 10.3892/ol.2017.6866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/23/2016] [Indexed: 12/16/2022] Open
Abstract
Invasion and metastasis are the major characteristics of malignant tumors and are complex processes involving multiple genes. Gene regulation is a precise, large and complex biological control system, and its underlying mechanisms remain to be elucidated. Mesenchymal-specific genes are expressed primarily by mesenchymal cells, and the expression products of these genes are molecules with various structures and functions, including secreted proteins and extracellular matrix proteins. The periostin gene has been newly identified as a mesenchymal-specific gene and an extracellular-matrix secreted protein. Periostin is able to bind to various subtypes of integrin receptors on the surface of the cell membrane. This triggers relevant signal transduction pathways to alter the microenvironment of cancer cells in order to facilitate their survival, invasion, metastasis and angiogenesis as well as enhance the tolerance to hypoxia and chemicals. Therefore, periostin is associated with the grade of malignancy, level of invasion and prognosis of malignant tumors. The in-depth study of periostin may provide an effective marker for tumor diagnosis and prognosis, as well as a novel treatment target.
Collapse
Affiliation(s)
- Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Zhi Sen Shen
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Shi Jie Qiu
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Qun Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Guo Li Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| |
Collapse
|
42
|
Liu Y, Li F, Gao F, Xing L, Qin P, Liang X, Zhang J, Qiao X, Lin L, Zhao Q, Du L. Role of microenvironmental periostin in pancreatic cancer progression. Oncotarget 2016; 8:89552-89565. [PMID: 29163770 PMCID: PMC5685691 DOI: 10.18632/oncotarget.11533] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/09/2016] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a prominent desmoplastic reaction. Pancreatic stellate cells (PSCs) are the principal effector cells responsible for stroma production. Aberrant up-regulation of periostin expression has been reported in activated PSCs. In this study, we investigated the role of periostin and the mechanisms underlying its aberrant upregulation in PDAC. We used lentiviral shRNA and human recombinant periostin protein to down and up regulate periostin expression in vitro. Specific oncogenic signaling pathways such as EGFR-Akt and EGFR-Erk-c-Myc were assessed in vitro and in vivo. Tissue microarray immunohistochemical assays including 80 pancreatic cancer tissues and paired normal tissues were used to understand the function relationship between periostin expression and PDAC pathologic stage and overall survival. We found that periostin was strongly expressed in PSCs and the stroma of PDAC tumors. We also observed a significant decrease in proliferation, metastasis, and clonality of pancreatic cancer cells when co-cultured with supernatant of periostin shRNA-transfected PSCs. Specifically, the biological behavior of periostin correlated with EGFR-Akt and EGER-Erk-c-Myc signaling pathways. Moreover, increased periostin expression significantly associated with advanced disease stage and decreased survival rate in PDAC patients. Together, our findings provide novel insights into the role of microenvironmental periostin in pancreatic cancer progression, and periostin may serve as a prognostic biomarker for PDAC.
Collapse
Affiliation(s)
- Yang Liu
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, China
| | - Fan Li
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, China
| | - Feng Gao
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, China
| | - Lingxi Xing
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, China
| | - Peng Qin
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xingxin Liang
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, China
| | - Jiajie Zhang
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, China
| | - Xiaohui Qiao
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, China
| | - Lizhou Lin
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, China
| | - Qian Zhao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis and National Ministry of Education, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Lianfang Du
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, China
| |
Collapse
|