1
|
Senousy MA, Shaker OG, Elmaasrawy AH, Ashour AM, Alsufyani SE, Arab HH, Ayeldeen G. Serum lncRNAs TUG1, H19, and NEAT1 and their target miR-29b/SLC3A1 axis as possible biomarkers of preeclampsia: Potential clinical insights. Noncoding RNA Res 2024; 9:995-1008. [PMID: 39026605 PMCID: PMC11254728 DOI: 10.1016/j.ncrna.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/26/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
To date, the epigenetic signature of preeclampsia (PE) is not completely deciphered. Oxidative stress-responsive long non-coding RNAs (lncRNAs) are deregulated in preeclamptic placenta; however, their circulating profiles and diagnostic abilities are still unexplored. We investigated serum redox-sensitive lncRNAs TUG1, H19, and NEAT1, and their target miR-29b/cystine/neutral/dibasic amino acids transporter solute carrier family 3, member 1 (SLC3A1) as potential non-invasive biomarkers of PE risk, onset, and severity. We recruited 82 patients with PE and 78 healthy pregnant women. We classified PE patients into early-onset (EOPE) and late-onset (LOPE) subgroups at a cut-off 34 gestational weeks and into severe and mild PE subgroups by blood pressure and proteinuria criteria. Bioinformatics analysis was employed to select lncRNAs/microRNA/target gene interactions. Serum H19, NEAT1, and SLC3A1 mRNA expression were reduced, meanwhile miR-29b levels were elevated, whereas there was no significant difference in TUG1 levels between PE patients and healthy pregnancies. Serum H19 levels were lower, whereas miR-29b levels were higher in EOPE versus LOPE. Serum miR-29b and H19 levels were higher in severe versus mild PE. ROC analysis identified serum H19, NEAT1, miR-29b, and SLC3A1 as potential diagnostic markers, with H19 (AUC = 0.818, 95%CI = 0.744-0.894) and miR-29b (AUC = 0.82, 95%CI = 0.755-0.885) were superior discriminators. Only H19 and miR-29b discriminated EOPE and severe PE cases. In multivariate logistic analysis, miR-29b and H19 were associated with EOPE, using maternal age and gestational age as covariates, while miR-29b was associated with severe PE, using maternal age as covariate. Studied markers were correlated with clinical and ultrasound data in the overall PE group. Serum H19 and TUG1 were negatively correlated with albuminuria in EOPE and LOPE, respectively. NEAT1 and SLC3A1 were correlated with ultrasound data in EOPE. Likewise, TUG1, miR-29b, and SLC3A1 showed significant correlations with ultrasound data in LOPE. Conclusively, this study configures SLC3A1 expression as a novel potential serum biomarker of PE and advocates serum H19 and miR-29b as biomarkers of EOPE and miR-29b as a biomarker of PE severity.
Collapse
Affiliation(s)
- Mahmoud A. Senousy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Olfat G. Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed H.Z. Elmaasrawy
- Department of Obstetrics and Gynecology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed M. Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, P.O. Box 13578, Makkah, 21955, Saudi Arabia
| | - Shuruq E. Alsufyani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Hany H. Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ghada Ayeldeen
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Cheng L, Yuan J, Fang L, Gao C, Cong L. The placental blood perfusion and LINC00473-mediated promotion of trophoblast apoptosis in fetal growth restriction. Gene 2024; 927:148727. [PMID: 38942180 DOI: 10.1016/j.gene.2024.148727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/31/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
This study aimed to investigate placental microblood flow perfusion in fetal growth restriction (FGR) both pre- and post-delivery, and explore the influence of LINC00473 and its downstream targets on FGR progression in trophoblast cells. Placental vascular distribution, placental vascular index (VIMV), CD34 expression, and histological changes were compared between control and FGR groups. FGR-related differentially expressed genes (DEGs) were analyzed and validated by quantitative real-time polymerase chain reaction (qPCR) and immunohistochemistry (IHC) in placentae. In vitro experiments examined the regulatory relationships among LINC00473, miR-5189-5p, and StAR, followed by investigations into their impacts on cell proliferation and apoptosis. FGR placentae exhibited irregular shapes, uneven parenchymal echo, stromal dysplasia, ischemic infarction, and variable degrees of thickening in some cases. FGR samples showed less prominent mother vessel lakes, significantly lower VIMV, and decreased CD34 expression. Hematoxylin & eosin (H&E) staining revealed placental fibrosis, fibrin adhesion, infarction, and interstitial dysplasia in FGR. LINC00473, miR-5189-5p, and StAR were identified as DEG, with qPCR demonstrating a significant increase in LINC00473 and a decrease in miR-5189-5p in FGR, while both qPCR and IHC indicated a significant increase in StAR expression. LINC00473 served as an endogenous sponge against miR-5189-5p in human HTR-8/SV neo cells, and StAR expression was regulated by both LINC00473 and miR-5189-5p. Dysregulation of these genes affected cell proliferation and apoptosis. Pathological changes in the placenta are significant contributors to FGR, with placental microblood flow potentially serving as an indicator for monitoring its progression. LINC00473 and its downstream targets may modulate trophoblasts proliferation and apoptosis, thus influencing the onset of FGR, suggesting novel avenues for diagnosis and treatment.
Collapse
Affiliation(s)
- Longfeng Cheng
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Anhui 230022, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Anhui 230022, China
| | - Jing Yuan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui 230022, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui 230022, China; Anhui Province Engineering Research Center of Biopreservation and Artificial Organs, Anhui 230022, China
| | - Lutong Fang
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Anhui 230022, China
| | - Chuanfen Gao
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, Anhui 230022, China
| | - Lin Cong
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Anhui 230022, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Anhui 230022, China.
| |
Collapse
|
3
|
Lizárraga-Verdugo E, Beltrán-Ontiveros SA, Gutiérrez-Grijalva EP, Montoya-Moreno M, Gutiérrez-Arzapalo PY, Avendaño-Félix M, Gutiérrez-Castro KP, Cuén-Lazcano DE, González-Quintero P, Mora-Palazuelos CE. The Underlying Molecular Mechanisms of the Placenta Accreta Spectrum: A Narrative Review. Int J Mol Sci 2024; 25:9722. [PMID: 39273667 PMCID: PMC11395310 DOI: 10.3390/ijms25179722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Placenta accreta spectrum (PAS) disorders are characterized by abnormal trophoblastic invasion into the myometrium, leading to significant maternal health risks. PAS includes placenta accreta (invasion < 50% of the myometrium), increta (invasion > 50%), and percreta (invasion through the entire myometrium). The condition is most associated with previous cesarean deliveries and increases in chance with the number of prior cesarians. The increasing global cesarean rates heighten the importance of early PAS diagnosis and management. This review explores genetic expression and key regulatory processes, such as apoptosis, cell proliferation, invasion, and inflammation, focusing on signaling pathways, genetic expression, biomarkers, and non-coding RNAs involved in trophoblastic invasion. It compiles the recent scientific literature (2014-2024) from the Scopus, PubMed, Google Scholar, and Web of Science databases. Identifying new biomarkers like AFP, sFlt-1, β-hCG, PlGF, and PAPP-A aids in early detection and management. Understanding genetic expression and non-coding RNAs is crucial for unraveling PAS complexities. In addition, aberrant signaling pathways like Notch, PI3K/Akt, STAT3, and TGF-β offer potential therapeutic targets to modulate trophoblastic invasion. This review underscores the need for interdisciplinary care, early diagnosis, and ongoing research into PAS biomarkers and molecular mechanisms to improve prognosis and quality of life for affected women.
Collapse
Affiliation(s)
- Erik Lizárraga-Verdugo
- Research Unit, Center for Research and Teaching in Health Sciences, Autonomous University of Sinaloa, Culiacan 80030, Mexico
| | - Saúl Armando Beltrán-Ontiveros
- Research Unit, Center for Research and Teaching in Health Sciences, Autonomous University of Sinaloa, Culiacan 80030, Mexico
| | | | - Marisol Montoya-Moreno
- Research Unit, Center for Research and Teaching in Health Sciences, Autonomous University of Sinaloa, Culiacan 80030, Mexico
| | - Perla Y Gutiérrez-Arzapalo
- Research Unit, Center for Research and Teaching in Health Sciences, Autonomous University of Sinaloa, Culiacan 80030, Mexico
| | | | - Karla Paola Gutiérrez-Castro
- Research Unit, Center for Research and Teaching in Health Sciences, Autonomous University of Sinaloa, Culiacan 80030, Mexico
| | - Daniel E Cuén-Lazcano
- Research Unit, Center for Research and Teaching in Health Sciences, Autonomous University of Sinaloa, Culiacan 80030, Mexico
| | - Paul González-Quintero
- Gynecology and Obstetrics Service, Women's Hospital of Culiacan, Health Secretary, Culiacan 80020, Mexico
| | - Carlos Ernesto Mora-Palazuelos
- Research Unit, Center for Research and Teaching in Health Sciences, Autonomous University of Sinaloa, Culiacan 80030, Mexico
| |
Collapse
|
4
|
Adu-Gyamfi EA, Cheeran EA, Salamah J, Enabulele DB, Tahir A, Lee BK. Long non-coding RNAs: a summary of their roles in placenta development and pathology†. Biol Reprod 2024; 110:431-449. [PMID: 38134961 DOI: 10.1093/biolre/ioad179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Long non-coding RNAs are cellular transcripts that have ˃200 nucleotides in length and do not code for proteins. Due to their low expression levels, long non-coding RNAs were previously considered as mere transcriptional noise. However, current evidence indicates that they regulate a myriad of biological processes such as cell proliferation, invasion, and apoptosis. Hence, their expression patterns are crucial indicators of the physiological or pathological states of cells, tissues, and organs. The utilization of long non-coding RNAs as biomarkers and therapeutic targets for the clinical management of several diseases have been suggested. Gradually, long non-coding RNAs are gaining a substantial attention in the field of feto-maternal medicine. After embryo implantation, the interactions between the trophoblast cells from the embryo and the uterus of the mother facilitate placenta development and pregnancy progression. These processes are tightly regulated, and their impairments result in pregnancy pathologies such as miscarriage and preeclampsia. Accumulating evidence implicates long non-coding RNAs in these processes. Herein, we have summarized the roles of several long non-coding RNAs in human placenta development, have proposed some mechanisms by which they participate in physiological and pathological placentation, have revealed some knowledge deficits, and have recommended ideal experimental approaches that will facilitate the clarification of the mechanistic actions of each long non-coding RNA at the feto-maternal interface during healthy and pathological pregnancies.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Biomedical Sciences, Cancer Research Center, University at Albany - State University of New York, Rensselaer, NY 12144, United States
| | - Elisha Ann Cheeran
- Department of Biomedical Sciences, Cancer Research Center, University at Albany - State University of New York, Rensselaer, NY 12144, United States
| | - Joudi Salamah
- Department of Biomedical Sciences, Cancer Research Center, University at Albany - State University of New York, Rensselaer, NY 12144, United States
| | - Divine Blessing Enabulele
- Department of Biomedical Sciences, Cancer Research Center, University at Albany - State University of New York, Rensselaer, NY 12144, United States
| | - Ayesha Tahir
- Department of Biomedical Sciences, Cancer Research Center, University at Albany - State University of New York, Rensselaer, NY 12144, United States
| | - Bum-Kyu Lee
- Department of Biomedical Sciences, Cancer Research Center, University at Albany - State University of New York, Rensselaer, NY 12144, United States
| |
Collapse
|
5
|
Adu-Gyamfi EA, Cheeran EA, Salamah J, Lee BK. Long noncoding RNA H19 in ovarian biology and placenta development. Cell Biochem Funct 2024; 42:e3907. [PMID: 38269505 DOI: 10.1002/cbf.3907] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/25/2023] [Accepted: 12/10/2023] [Indexed: 01/26/2024]
Abstract
As the first long noncoding RNA to be discovered, H19 has gained substantial attention as a key regulator of several biological processes and its roles in female reproductive biology are gradually getting revealed. Herein, we have summarized the current evidence regarding H19 expression pattern and involvement in the developmental and pathological processes associated with the ovary and the placenta. The findings indicate that within the ovaries, H19 is expressed in the antral and cystic atretic follicles as well as in the corpora lutea but absent in the primordial, primary, and secondary follicles. Its normal expression promotes the maturation of antral follicles and prevents their premature selection for the ovulatory journey while its aberrant induction promotes polycystic ovary syndrome development and ovarian cancer metastasis. In the placenta, H19 is highly expressed in the cytotrophoblasts and extravillous trophoblasts but weakly expressed in the syncytiotrophoblast layer and potentially controls trophoblast cell fate decisions during placenta development. Abnormal expression of H19 is observed in the placental villi of pregnancies affected by pre-eclampsia and fetal growth restriction. Therefore, dysregulated H19 is a candidate biomarker and therapeutic target for the mitigation of ovarian and placenta-associated diseases.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Biomedical Sciences, University at Albany-State University of New York, Rensselaer, New York, USA
- Cancer Research Center, University at Albany-State University of New York, Rensselaer, New York, USA
| | - Elisha Ann Cheeran
- Department of Biomedical Sciences, University at Albany-State University of New York, Rensselaer, New York, USA
- Cancer Research Center, University at Albany-State University of New York, Rensselaer, New York, USA
| | - Joudi Salamah
- Department of Biomedical Sciences, University at Albany-State University of New York, Rensselaer, New York, USA
- Cancer Research Center, University at Albany-State University of New York, Rensselaer, New York, USA
| | - Bum-Kyu Lee
- Department of Biomedical Sciences, University at Albany-State University of New York, Rensselaer, New York, USA
- Cancer Research Center, University at Albany-State University of New York, Rensselaer, New York, USA
| |
Collapse
|
6
|
Mora-Palazuelos C, Villegas-Mercado CE, Avendaño-Félix M, Lizárraga-Verdugo E, Romero-Quintana JG, López-Gutiérrez J, Beltrán-Ontiveros S, Bermúdez M. The Role of ncRNAs in the Immune Dysregulation of Preeclampsia. Int J Mol Sci 2023; 24:15215. [PMID: 37894897 PMCID: PMC10607488 DOI: 10.3390/ijms242015215] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
The main complications causing practically 75% of all maternal deaths are severe bleeding, infections, and high blood pressure during pregnancy (preeclampsia (PE) and eclampsia). The usefulness of ncRNAs as clinical biomarkers has been explored in an extensive range of human diseases including pregnancy-related diseases such as PE. Immunological dysregulation show that the Th1/17:Th2/Treg ratio is "central and causal" to PE. However, there is evidence of the involvement of placenta-expressed miRNAs and lncRNAs in the immunological regulation of crucial processes of placenta development and function during pregnancy. Abnormal expression of these molecules is related to immune physiopathological processes that occur in PE. Therefore, this work aims to describe the importance of miRNAs and lncRNAs in immune dysregulation in PE. Interestingly, multiple ncRNAS are involved in the immune dysregulation of PE participating in type 1 immune response regulation, immune microenvironment regulation in placenta promoting inflammatory factors, trophoblast cell invasion in women with Early-Onset PE (EOPE), placental development, and angiogenesis, promotion of population of M1 and M2, proliferation, invasion, and migration of placental trophoblast cells, and promotion of invasion and autophagy through vias such as PI3K/AKT/mTOR, VEGF/VEGFR1, and TLR9/STAT3.
Collapse
Affiliation(s)
- Carlos Mora-Palazuelos
- Health Sciences Research and Teaching Center, Autonomous University of Sinaloa, Culiacan 80010, Sinaloa, Mexico; (C.M.-P.); (E.L.-V.); (S.B.-O.)
| | | | - Mariana Avendaño-Félix
- Faculty of Dentistry, Autonomous University of Sinaloa, Culiacan 80010, Sinaloa, Mexico;
| | - Erik Lizárraga-Verdugo
- Health Sciences Research and Teaching Center, Autonomous University of Sinaloa, Culiacan 80010, Sinaloa, Mexico; (C.M.-P.); (E.L.-V.); (S.B.-O.)
| | | | - Jorge López-Gutiérrez
- Faculty of Biology, Autonomous University of Sinaloa, Culiacan 80010, Sinaloa, Mexico;
| | - Saúl Beltrán-Ontiveros
- Health Sciences Research and Teaching Center, Autonomous University of Sinaloa, Culiacan 80010, Sinaloa, Mexico; (C.M.-P.); (E.L.-V.); (S.B.-O.)
| | - Mercedes Bermúdez
- Faculty of Dentistry, Autonomous University of Chihuahua, Chihuahua 31110, Chihuahua, Mexico;
| |
Collapse
|
7
|
Jeong DS, Lee JY, Kim MH, Oh JH. Regulation of sexually dimorphic placental adaptation in LPS exposure-induced intrauterine growth restriction. Mol Med 2023; 29:114. [PMID: 37718409 PMCID: PMC10506314 DOI: 10.1186/s10020-023-00688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 06/15/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND Sexual dimorphism in placental physiology affects the functionality of placental adaptation during adverse pregnancy. Defects of placental function compromise fetal programming, affecting the offspring's adult life. However, studies focusing on the relationship between sex-specific placental adaptation and consequent fetal maldevelopment under sub-optimal uterus milieu are still elusive. METHODS Here, we investigated the effects of maternal lipopolysaccharide (LPS) exposure between placental sex. Pregnant ICR mice received intraperitoneal injection of phosphate-buffered saline or 100, 200, and 400 µg/kg LPS on the gestational day (GD) 15.5. To determine whether prenatal maternal LPS exposure resulted in complicated pregnancy outcomes, survival rate of embryos was calculated and the growth of embryos and placentas was examined. To elucidate global transcriptomic changes occurring in the placenta, total RNA-sequencing (RNA-seq) was performed in female and male placentas. RESULTS LPS administration induced placental inflammation in both sexes at GD 17.5. Prenatal infection resulted in growth retardation in both sexes of embryos, and especially more prevalently in male. Impaired placental development was observed in a sex-specific manner. LPS 400 µg/kg reduced the percentage area of the labyrinth in females and junctional zone in males, respectively. RNA-sequencing revealed widespread sexually dimorphic transcriptional changes in placenta. In particular, representative changes were involved in biological processes such as trophoblast differentiation, nutrient/ion transporter, pregnancy, and immune system. CONCLUSIONS Our results present the sexually dimorphic responses of placental physiology in intrauterine growth restriction model and provide tentative relationship further to be elucidated between sex-biased placental functional change and long-term effects on the offspring's later life.
Collapse
Affiliation(s)
- Da Som Jeong
- Department of Anatomy, Embryology Laboratory, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Ji-Yeon Lee
- Vivozon, Inc, Kolon Digital Tower3, 49, Achasan-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Myoung Hee Kim
- Department of Anatomy, Embryology Laboratory, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Ji Hoon Oh
- Department of Biological Sciences, Keimyung University College of Natural Sciences, Daegu, 42601, Republic of Korea.
| |
Collapse
|
8
|
Azizidoost S, Abouali Gale Dari M, Ghaedrahmati F, Razani Z, Keivan M, Mohammad Jafari R, Najafian M, Farzaneh M. Functional Roles of lncRNAs in Recurrent Pregnancy Loss: A Review Study. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2023; 17:218-225. [PMID: 37577902 PMCID: PMC10439990 DOI: 10.22074/ijfs.2022.559132.1339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/24/2022] [Accepted: 12/26/2022] [Indexed: 08/15/2023]
Abstract
Recurrent pregnancy loss (RPL) or recurrent miscarriage is the failure of pregnancy before 20-24 weeks that influences around 2-5% of couples. Several genetic, immunological, environmental and physical factors may influence RPL. Although various traditional methods have been used to treat post-implantation failures, identifying the mechanisms underlying RPL may improve an effective treatment. Recent evidence suggested that gene expression alterations presented essential roles in the occurrence of RPL. It has been found that long non-coding RNAs (lncRNAs) play functional roles in pregnancy pathologies, such as recurrent miscarriage. lncRNAs can function as dynamic scaffolds, modulate chromatin function, guide and bind to microRNAs (miRNAs) or transcription factors. lncRNAs, by targeting various miRNAs and mRNAs, play essential roles in the progression or suppression of RPL. Therefore, targeting lncRNAs and their downstream targets might be a suitable strategy for diagnosis and treatment of RPL. In this review, we summarized emerging roles of several lncRNAs in stimulation or suppression of RPL.
Collapse
Affiliation(s)
- Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahrokh Abouali Gale Dari
- Department of Obstetrics and Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Razani
- Department of Animal Physiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mona Keivan
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Razieh Mohammad Jafari
- Department of Obstetrics and Gynecology, Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Najafian
- Department of Obstetrics and Gynecology, Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
9
|
Fu X, Li Y, Zhang Z, Wang B, Wei R, Chu C, Xu K, Li L, Liu Y, Li X. Emerging role of miRNAs, lncRNAs, and circRNAs in pregnancy-associated diseases. Chin Med J (Engl) 2023; 136:1300-1310. [PMID: 36914956 PMCID: PMC10309522 DOI: 10.1097/cm9.0000000000002595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 03/15/2023] Open
Abstract
ABSTRACT Accumulating studies have demonstrated that non-coding RNAs (ncRNAs), functioning as important regulators of transcription and translation, are involved in the establishment and maintenance of pregnancy, especially the maternal immune adaptation process. The endometrial stromal cells (ESCs), trophoblast cells, and decidua immune cells that reside at the maternal-fetal interface are thought to play significant roles in normal pregnancy and pregnancy-associated diseases. Here, we reviewed the up-to-date evidence on how microRNA, long non-coding RNA, and circular RNA regulate ESCs, trophoblast cells, and immune cells and discussed the potential applications of these ncRNAs as diagnostic and therapeutic markers in pregnancy complications.
Collapse
Affiliation(s)
- Xiaoxiao Fu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Yuling Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, China
| | - Zhen Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Bin Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, China
| | - Ran Wei
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Chu Chu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Ke Xu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Lihua Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Yonglin Liu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Xia Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| |
Collapse
|
10
|
Kaur G, Porter CBM, Ashenberg O, Lee J, Riesenfeld SJ, Hofree M, Aggelakopoulou M, Subramanian A, Kuttikkatte SB, Attfield KE, Desel CAE, Davies JL, Evans HG, Avraham-Davidi I, Nguyen LT, Dionne DA, Neumann AE, Jensen LT, Barber TR, Soilleux E, Carrington M, McVean G, Rozenblatt-Rosen O, Regev A, Fugger L. Mouse fetal growth restriction through parental and fetal immune gene variation and intercellular communications cascade. Nat Commun 2022; 13:4398. [PMID: 35906236 PMCID: PMC9338297 DOI: 10.1038/s41467-022-32171-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 07/18/2022] [Indexed: 11/08/2022] Open
Abstract
Fetal growth restriction (FGR) affects 5-10% of pregnancies, and can have serious consequences for both mother and child. Prevention and treatment are limited because FGR pathogenesis is poorly understood. Genetic studies implicate KIR and HLA genes in FGR, however, linkage disequilibrium, genetic influence from both parents, and challenges with investigating human pregnancies make the risk alleles and their functional effects difficult to map. Here, we demonstrate that the interaction between the maternal KIR2DL1, expressed on uterine natural killer (NK) cells, and the paternally inherited HLA-C*0501, expressed on fetal trophoblast cells, leads to FGR in a humanized mouse model. We show that the KIR2DL1 and C*0501 interaction leads to pathogenic uterine arterial remodeling and modulation of uterine NK cell function. This initial effect cascades to altered transcriptional expression and intercellular communication at the maternal-fetal interface. These findings provide mechanistic insight into specific FGR risk alleles, and provide avenues of prevention and treatment.
Collapse
Affiliation(s)
- Gurman Kaur
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Caroline B M Porter
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jack Lee
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Samantha J Riesenfeld
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Matan Hofree
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Maria Aggelakopoulou
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | - Subita Balaram Kuttikkatte
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Kathrine E Attfield
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Christiane A E Desel
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- University Department of Neurology, University Hospital Magdeburg, Magdeburg, Germany
| | - Jessica L Davies
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Hayley G Evans
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Inbal Avraham-Davidi
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lan T Nguyen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Danielle A Dionne
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Lise Torp Jensen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas R Barber
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Elizabeth Soilleux
- Department of Pathology, Tennis Court Rd, University of Cambridge, Cambridge, England
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research in the Laboratory of Integrative Cancer Immunology, National Cancer Institute, Bethesda, MD, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Gil McVean
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Massachusetts Institute of Technology, Department of Biology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Genentech, 1 DNA Way, South San Francisco, CA, USA.
| | - Lars Fugger
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
11
|
Žarković M, Hufsky F, Markert UR, Marz M. The Role of Non-Coding RNAs in the Human Placenta. Cells 2022; 11:1588. [PMID: 35563893 PMCID: PMC9104507 DOI: 10.3390/cells11091588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 12/11/2022] Open
Abstract
Non-coding RNAs (ncRNAs) play a central and regulatory role in almost all cells, organs, and species, which has been broadly recognized since the human ENCODE project and several other genome projects. Nevertheless, a small fraction of ncRNAs have been identified, and in the placenta they have been investigated very marginally. To date, most examples of ncRNAs which have been identified to be specific for fetal tissues, including placenta, are members of the group of microRNAs (miRNAs). Due to their quantity, it can be expected that the fairly larger group of other ncRNAs exerts far stronger effects than miRNAs. The syncytiotrophoblast of fetal origin forms the interface between fetus and mother, and releases permanently extracellular vesicles (EVs) into the maternal circulation which contain fetal proteins and RNA, including ncRNA, for communication with neighboring and distant maternal cells. Disorders of ncRNA in placental tissue, especially in trophoblast cells, and in EVs seem to be involved in pregnancy disorders, potentially as a cause or consequence. This review summarizes the current knowledge on placental ncRNA, their transport in EVs, and their involvement and pregnancy pathologies, as well as their potential for novel diagnostic tools.
Collapse
Affiliation(s)
- Milena Žarković
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; (M.Ž.); (F.H.)
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Franziska Hufsky
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; (M.Ž.); (F.H.)
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| | - Udo R. Markert
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; (M.Ž.); (F.H.)
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
- FLI Leibniz Institute for Age Research, Beutenbergstraße 11, 07745 Jena, Germany
- Aging Research Center (ARC), 07745 Jena, Germany
| |
Collapse
|
12
|
Zhang C, Ding J, Li H, Wang T. Identification of key genes in pathogenesis of placental insufficiency intrauterine growth restriction. BMC Pregnancy Childbirth 2022; 22:77. [PMID: 35090410 PMCID: PMC8796578 DOI: 10.1186/s12884-022-04399-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/10/2022] [Indexed: 01/10/2023] Open
Abstract
Background Intrauterine growth restriction (IUGR) is defined as a fetus that fails to achieve its genetically determined growth potential. The exact molecular mechanisms of placental insufficiency IUGR pathogenesis are a little known. Our goal was to identify key genes and gene co-expression modules related to placental insufficiency IUGR. Methods We used weighted gene co-expression network analysis (WGCNA) and protein-protein interaction (PPI) network analysis to examine the IUGR dataset GSE114691 from NCBI Gene Expression Omnibus. Core modules and hub nodes of the protein-protein interaction network were identified. A gene network was constructed and genes were classified by WGCNA into different modules. The validation of potential key genes was carried out using additional datasets (GSE12216 and GSE24129). Results We identified in GSE114691 539 down regulated genes and 751 up regulated genes in placental tissues characteristic of placental insufficiency IUGR compared with non-IUGR, and defined 76 genes as hub nodes in the protein-protein interaction network. Genes in the key modules of the WGCNA network were most closely associated with placental insufficiency IUGR and significantly enriched in biological process such as cellular metabolic process and macromolecule metabolic process. We identified as key genes TGFB1, LEP, ENG, ITGA5, STAT5A, LYN, GATA3, FPR1, TGFB2, CEBPB, KLF4, FLT1, and PNPLA2. The RNA expression levels of ENG and LEP, as biomarkers, were validated. Conclusion A holistic gene expression profile of placental insufficiency IUGR has been generated and the key genes ENG and LEP has potential to serve as circulating diagnosis biomarkers and therapeutic targets for placental insufficiency IUGR. Supplementary Information The online version contains supplementary material available at 10.1186/s12884-022-04399-3.
Collapse
|
13
|
Doan TNA, Akison LK, Bianco-Miotto T. Epigenetic Mechanisms Responsible for the Transgenerational Inheritance of Intrauterine Growth Restriction Phenotypes. Front Endocrinol (Lausanne) 2022; 13:838737. [PMID: 35432208 PMCID: PMC9008301 DOI: 10.3389/fendo.2022.838737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/02/2022] [Indexed: 12/20/2022] Open
Abstract
A poorly functioning placenta results in impaired exchanges of oxygen, nutrition, wastes and hormones between the mother and her fetus. This can lead to restriction of fetal growth. These growth restricted babies are at increased risk of developing chronic diseases, such as type-2 diabetes, hypertension, and kidney disease, later in life. Animal studies have shown that growth restricted phenotypes are sex-dependent and can be transmitted to subsequent generations through both the paternal and maternal lineages. Altered epigenetic mechanisms, specifically changes in DNA methylation, histone modifications, and non-coding RNAs that regulate expression of genes that are important for fetal development have been shown to be associated with the transmission pattern of growth restricted phenotypes. This review will discuss the subsequent health outcomes in the offspring after growth restriction and the transmission patterns of these diseases. Evidence of altered epigenetic mechanisms in association with fetal growth restriction will also be reviewed.
Collapse
Affiliation(s)
- Thu Ngoc Anh Doan
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Lisa K. Akison
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Tina Bianco-Miotto
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
- *Correspondence: Tina Bianco-Miotto,
| |
Collapse
|
14
|
Nair J, Maheshwari A. Non-coding RNAs in Necrotizing Enterocolitis- A New Frontier? Curr Pediatr Rev 2022; 18:25-32. [PMID: 34727861 DOI: 10.2174/1573396317666211102093646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/30/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022]
Abstract
With the recognition that only 2% of the human genome encodes for a protein, a large part of the "non-coding" portion is now being evaluated for a regulatory role in cellular processes. These non-coding RNAs (ncRNAs) are subdivided based on the size of the nucleotide transcript into microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), but most of our attention has been focused on the role of microRNAs (miRNAs) in human health and disease. Necrotizing enterocolitis (NEC), an inflammatory bowel necrosis affecting preterm infants, has a multifactorial, unclear etiopathogenesis, and we have no specific biomarkers for diagnosis or the impact of directed therapies. The information on ncRNAs, in general, and particularly in NEC, is limited. Increasing information from other inflammatory bowel disorders suggests that these transcripts may play an important role in intestinal inflammation. Here, we review ncRNAs for definitions, classifications, and possible roles in prematurity and NEC using some preliminary information from our studies and from an extensive literature search in multiple databases including PubMed, EMBASE, and Science Direct. miRNAs will be described in another manuscript in this series, hence in this manuscript we mainly focus on lncRNAs.
Collapse
Affiliation(s)
- Jayasree Nair
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Akhil Maheshwari
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
15
|
He Z, Zhang J, Chen G, Cao J, Chen Y, Ai C, Wang H. H19/let-7 axis mediates caffeine exposure during pregnancy induced adrenal dysfunction and its multi-generation inheritance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148440. [PMID: 34465058 DOI: 10.1016/j.scitotenv.2021.148440] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Previously, we systemically confirmed that prenatal caffeine exposure (PCE) could cause intrauterine growth retardation (IUGR) and adrenal steroid synthesis dysfunction in offspring rats. However, the multi-generation inheritance of adrenal dysfunction and its epigenetic mechanism has not been reported. In this study, the PCE rat model was established, part of the pregnant rats were executed on gestational day 20, while the others were delivered normally and the fetal rats were reared into adulthood. The PCE female rats of filial generation 1 (F1) were mated with wild males to produce F2 offspring, and the same way to produce F3 offspring. All the adult female rats of three generations were sacrificed for the related detection. Results showed that PCE could decrease fetal weight, increase IUGR rate, and elevate serum corticosterone level. Meanwhile, the expression of fetal adrenal GR, DNMT3a/3b, miRNA let-7c increased while those of CTCF, H19, and StAR decreased, and the total methylation rate of the H19 promoter region was enhanced. We used SW-13 cells to clarify the molecular mechanism and found that cortisol-induced in vitro changes of these indexes were consistent with those in vivo. We confirmed that high level of cortisol through activating GR, on the one hand, promoted let-7 expression and inhibited StAR expression; on the other hand, caused high methylation and low expression of H19 by down-regulating CTCF and up-regulating DNMT3a/3b, then enhanced let-7 inhibitory effect on StAR by "molecular sponge" effect. Finally, in vivo experiments showed that the adrenal steroid synthesis function and H19/let-7 axis presented the glucocorticoid-dependent changes in the adult female F1, F2, and F3. In conclusion, PCE can cause female adrenal dysfunction with matrilineal multi-generation inheritance, which is related to the programming alteration of the H19/let-7 axis. This study provides a novel perspective to explain the multi-generation inheritance of fetal-originated disease in IUGR offspring.
Collapse
Affiliation(s)
- Zheng He
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jinzhi Zhang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Guanghui Chen
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Jiangang Cao
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Yawen Chen
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Can Ai
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China.
| |
Collapse
|
16
|
Abstract
Preeclampsia (PE) is an idiopathic disease that occurs during pregnancy. It comprises multiple organ and system damage, and can seriously threaten the safety of the mother and infant throughout the perinatal period. As the pathogenesis of PE is unclear, there are few specific remedies. Currently, the only way to eliminate the clinical symptoms is to terminate the pregnancy. Although noncoding RNA (ncRNA) was once thought to be the "junk" of gene transcription, it is now known to be widely involved in pathological and physiological processes, including pregnancy-related disorders. Moreover, there is growing evidence that the unbalanced expression of specific ncRNA is involved in the pathogenesis of PE. In the present review, we summarize the expression patterns of ncRNAs, i.e., microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), and the functional mechanisms by which they affect the development of PE, and examine the clinical significance of ncRNAs as biomarkers for the diagnosis of PE. We also discuss the contributions made by genetic polymorphisms and epigenetic ncRNA regulation to PE. In the present review, we wish to explore and reinforce the clinical value of ncRNAs as noninvasive biomarkers of PE.
Collapse
Affiliation(s)
- Ningxia Sun
- Department of Medical Genetic, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
- Department of Gynecology and obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Shiting Qin
- Department of Medical Genetic, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Lu Zhang
- Department of Medical Genetic, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Shiguo Liu
- Department of Medical Genetic, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
17
|
The Role of Long Non-Coding RNAs in Trophoblast Regulation in Preeclampsia and Intrauterine Growth Restriction. Genes (Basel) 2021; 12:genes12070970. [PMID: 34201957 PMCID: PMC8305149 DOI: 10.3390/genes12070970] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/06/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
Preeclampsia (PE) and Intrauterine Growth Restriction (IUGR) are two pregnancy-specific placental disorders with high maternal, fetal, and neonatal morbidity and mortality rates worldwide. The identification biomarkers involved in the dysregulation of PE and IUGR are fundamental for developing new strategies for early detection and management of these pregnancy pathologies. Several studies have demonstrated the importance of long non-coding RNAs (lncRNAs) as essential regulators of many biological processes in cells and tissues, and the placenta is not an exception. In this review, we summarize the importance of lncRNAs in the regulation of trophoblasts during the development of PE and IUGR, and other placental disorders.
Collapse
|
18
|
Sex-Biased lncRNA Signature in Fetal Growth Restriction (FGR). Cells 2021; 10:cells10040921. [PMID: 33923632 PMCID: PMC8072961 DOI: 10.3390/cells10040921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
Impaired fetal growth is one of the most important causes of prematurity, stillbirth and infant mortality. The pathogenesis of idiopathic fetal growth restriction (FGR) is poorly understood but is thought to be multifactorial and comprise a range of genetic causes. This research aimed to investigate non-coding RNAs (lncRNAs) in the placentas of male and female fetuses affected by FGR. RNA-Seq data were analyzed to detect lncRNAs, their potential target genes and circular RNAs (circRNAs); a differential analysis was also performed. The multilevel bioinformatic analysis enabled the detection of 23,137 placental lncRNAs and 4263 of them were classified as novel. In FGR-affected female fetuses’ placentas (ff-FGR), among 19 transcriptionally active regions (TARs), five differentially expressed lncRNAs (DELs) and 12 differentially expressed protein-coding genes (DEGs) were identified. Within 232 differentially expressed TARs identified in male fetuses (mf-FGR), 33 encompassed novel and 176 known lncRNAs, and 52 DEGs were upregulated, while 180 revealed decreased expression. In ff-FGR ACTA2-AS1, lncRNA expression was significantly correlated with five DEGs, and in mf-FGR, 25 TARs were associated with DELs correlated with 157 unique DEGs. Backsplicing circRNA processes were detected in the range of H19 lncRNA, in both ff- and mf-FGR placentas. The performed global lncRNAs characteristics in terms of fetal sex showed dysregulation of DELs, DEGs and circRNAs that may affect fetus growth and pregnancy outcomes. In female placentas, DELs and DEGs were associated mainly with the vasculature, while in male placentas, disturbed expression predominantly affected immune processes.
Collapse
|
19
|
Ogoyama M, Ohkuchi A, Takahashi H, Zhao D, Matsubara S, Takizawa T. LncRNA H19-Derived miR-675-5p Accelerates the Invasion of Extravillous Trophoblast Cells by Inhibiting GATA2 and Subsequently Activating Matrix Metalloproteinases. Int J Mol Sci 2021; 22:ijms22031237. [PMID: 33513878 PMCID: PMC7866107 DOI: 10.3390/ijms22031237] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
The invasion of extravillous trophoblast (EVT) cells into the maternal decidua, which plays a crucial role in the establishment of a successful pregnancy, is highly orchestrated by a complex array of regulatory mechanisms. Non-coding RNAs (ncRNAs) that fine-tune gene expression at epigenetic, transcriptional, and post-transcriptional levels are involved in the regulatory mechanisms of EVT cell invasion. However, little is known about the characteristic features of EVT-associated ncRNAs. To elucidate the gene expression profiles of both coding and non-coding transcripts (i.e., mRNAs, long non-coding RNAs (lncRNAs), and microRNAs (miRNAs)) expressed in EVT cells, we performed RNA sequencing analysis of EVT cells isolated from first-trimester placentae. RNA sequencing analysis demonstrated that the lncRNA H19 and its derived miRNA miR-675-5p were enriched in EVT cells. Although miR-675-5p acts as a placental/trophoblast growth suppressor, there is little information on the involvement of miR-675-5p in trophoblast cell invasion. Next, we evaluated a possible role of miR-675-5p in EVT cell invasion using the EVT cell lines HTR-8/SVneo and HChEpC1b; overexpression of miR-675-5p significantly promoted the invasion of both EVT cell lines. The transcription factor gene GATA2 was shown to be a target of miR-675-5p; moreover, small interfering RNA-mediated GATA2 knockdown significantly promoted cell invasion. Furthermore, we identified MMP13 and MMP14 as downstream effectors of miR-675-5p/GATA2-dependent EVT cell invasion. These findings suggest that miR-675-5p-mediated GATA2 inhibition accelerates EVT cell invasion by upregulating matrix metalloproteinases.
Collapse
Affiliation(s)
- Manabu Ogoyama
- Department of Obstetrics and Gynecology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan; (M.O.); (A.O.); (H.T.); (S.M.)
- Department of Molecular Medicine and Anatomy, Nippon Medical School, 1-1-5 Sendagi, Tokyo 113-8602, Japan;
| | - Akihide Ohkuchi
- Department of Obstetrics and Gynecology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan; (M.O.); (A.O.); (H.T.); (S.M.)
| | - Hironori Takahashi
- Department of Obstetrics and Gynecology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan; (M.O.); (A.O.); (H.T.); (S.M.)
| | - Dongwei Zhao
- Department of Molecular Medicine and Anatomy, Nippon Medical School, 1-1-5 Sendagi, Tokyo 113-8602, Japan;
| | - Shigeki Matsubara
- Department of Obstetrics and Gynecology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan; (M.O.); (A.O.); (H.T.); (S.M.)
| | - Toshihiro Takizawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, 1-1-5 Sendagi, Tokyo 113-8602, Japan;
- Correspondence: ; Tel.: +81-3-3822-2131
| |
Collapse
|
20
|
Sun M, Gao J, Meng T, Liu S, Chen H, Liu Q, Xing X, Zhao C, Luo Y. Cyclin G2 upregulation impairs migration, invasion, and network formation through RNF123/Dvl2/JNK signaling in the trophoblast cell line HTR8/SVneo, a possible role in preeclampsia. FASEB J 2020; 35:e21169. [PMID: 33205477 DOI: 10.1096/fj.202001559rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/31/2022]
Abstract
Disruption of extravillous trophoblast (EVT) migration and invasion is considered to be responsible for pathological placentation in preeclampsia (PE). Cyclin G2 (CCNG2) is an atypical cyclin that inhibits cell cycle progression. However, its biological function and underlying molecular mechanism in PE are poorly understood. In this study, clinical data demonstrated that CCNG2 was significantly upregulated in PE placenta and associated with invasive EVT dysfunction. Additionally, Ccng2 knockout led to an attenuation of PE-like symptoms in the PE mouse model produced via treatment with NG-nitro-L-arginine methyl ester (L-NAME). In vitro, CCNG2 inhibited the migration, invasion, and endothelial-like network formation of human trophoblast cell line HTR8/SVneo. Mechanically, CCNG2 suppressed JNK-dependent Wnt/PCP signaling and its downstream indicators including epithelial-to-mesenchymal transition (EMT) markers and matrix metalloproteinases (MMPs) via promoting the polyubiquitination degradation of dishevelled 2 (Dvl2) protein in HTR8/SVneo cells. We also discovered that the E3 ligase Ring finger protein 123 (RNF123), as a novel CCNG2 target among HTR8/SVneo cells, interacted with Dvl2 and participated in CCNG2-induced polyubiquitination degradation of Dvl2. Moreover, we verified that the treatment of HTR8/SVneo cells with RNF123-specific siRNA improved polyubiquitination-induced degradation of Dvl2 and the activity of Wnt/PCP-JNK signaling mediated by CCNG2. Taken together, our results reveal that the CCNG2/RNF123/Dvl2/JNK axis may be involved in the pathogenesis and progression of PE through trophoblastic cell function modulation, thus probably providing us with new therapeutic strategies for PE treatment.
Collapse
Affiliation(s)
- Manni Sun
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, PR China
| | - Jinlan Gao
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, PR China
| | - Tao Meng
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, PR China
| | - Shenghuan Liu
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, PR China
| | - Haiying Chen
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, PR China
| | - Qi Liu
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, PR China
| | - Xuesha Xing
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, PR China
| | - Chenyang Zhao
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, PR China
| | - Yang Luo
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, PR China
| |
Collapse
|
21
|
Preeclampsia-Associated lncRNA INHBA-AS1 Regulates the Proliferation, Invasion, and Migration of Placental Trophoblast Cells. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 22:684-695. [PMID: 33230466 PMCID: PMC7585871 DOI: 10.1016/j.omtn.2020.09.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
Preeclampsia is believed to be caused by impaired placentation with insufficient trophoblast invasion, leading to impaired uterine spiral artery remodeling and angiogenesis. However, the underlying molecular mechanism remains unknown. We recently carried out transcriptome profiling of placental long noncoding RNAs (lncRNAs) and identified 383 differentially expressed lncRNAs in early-onset severe preeclampsia. Here, we are reporting our identification of lncRNA INHBA-AS1 as a potential causal factor of preeclampsia and its downstream pathways that may be involved in placentation. We found that INHBA-AS1 was upregulated in patients and positively correlated with clinical severity. We systematically searched for potential INHBA-AS1-binding transcription factors and their targets in databases and found that the targets were enriched with differentially expressed genes in the placentae of patients. We further demonstrated that the lncRNA INHBA-AS1 inhibited the invasion and migration of trophoblast cells through restraining the transcription factor CENPB from binding to the promoter of TNF receptor-associated factor 1 (TRAF1). Therefore, we have identified the dysregulated pathway "INHBA-AS1-CENPB-TRAF1" as a contributor to the pathogenesis of preeclampsia through prohibiting the proliferation, invasion, and migration of trophoblasts during placentation.
Collapse
|
22
|
Association of lncRNA SH3PXD2A-AS1 with preeclampsia and its function in invasion and migration of placental trophoblast cells. Cell Death Dis 2020; 11:583. [PMID: 32719429 PMCID: PMC7385659 DOI: 10.1038/s41419-020-02796-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022]
Abstract
Accumulating evidence suggests that the pathogenesis of preeclampsia involves poor placentation caused by insufficient trophoblast invasion and impaired uterine spiral artery remodeling, yet the underlying molecular mechanism remains unclear. We carried out transcriptome profiling on placentae from preeclamptic patients and normal subjects, and identified about four hundred long non-coding RNAs differentially expressed in placentae of patients with early-onset severe preeclampsia. Here, we report our identification of lncRNA SH3PXD2A-AS1 as a potential causal factor for this disease and its downstream pathways involved in placentation. We found that expression level of SH3PXD2A-AS1 in the placentae is positively correlated with clinical severity of the patients. We demonstrated that SH3PXD2A-AS1 inhibited invasion and migration through recruiting CCCTC-binding factor (CTCF) to the promoters of SH3PXD2A and CCR7 to inhibit their transcription. Therefore, we conclude that the upregulation of lncRNA SH3PXD2A-AS1 may contribute to the pathogenesis of preeclampsia through prohibiting trophoblast invasion during placentation.
Collapse
|
23
|
Zhou F, Sun Y, Gao Q, Wang H. microRNA-21 regulates the proliferation of placental cells via FOXM1 in preeclampsia. Exp Ther Med 2020; 20:1871-1878. [PMID: 32782495 DOI: 10.3892/etm.2020.8930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/04/2019] [Indexed: 12/25/2022] Open
Abstract
The present study determined the expression of microRNA (miRNA or miR)-21 and forkhead box M1 (FOXM1) in placenta and blood samples from patients with preeclampsia (PE), and investigated the relationship between miR-21 and FOXM1. A total of 32 pregnant women with PE and 28 healthy pregnant women were included in the study as the experimental and control groups, respectively. Placental tissues and peripheral blood were collected from all subjects. ELISA was performed to measure the level of FOXM1 protein in the blood. HTR8/SVneo cells overexpressing miR-21 were established by transfection with agomiR-21. Reverse transcription-quantitative PCR was performed to measure the expression of FOXM1 mRNA and miR-21 in the placenta, blood and cells, and western blotting was used to evaluate FOXM1 protein expression in the placenta. An MTT assay was also performed to assess cell viability. In addition, a dual-luciferase reporter assay was used to investigate the direct interaction between FOXM1 and miR-21. The occurrence of PE was found to be associated with reduced FOXM1 mRNA levels, and elevated FOXM1 protein expression may serve a regulatory role that when attenuated leads to the occurrence of PE. Furthermore, miR-21 may serve a regulatory role in the pathology of PE by downregulating FOXM1 expression at the transcriptional level. In HTR8/SVneo cells, the overexpression of miR-21 reduced cell viability, possibly via the reduction of FOXM1 expression. The dual-luciferase assay indicated that miR-21 directly binds to the 3'-untranslated region of FOXM1 to regulate its expression. The present study demonstrated that the expression of FOXM1 mRNA and protein is downregulated, whereas the expression of miR-21 is upregulated in the placenta and blood samples of PE patients. In conclusion, miR-21 may regulate placental cell proliferation via its effects on FOXM1 to promote the occurrence and development of PE.
Collapse
Affiliation(s)
- Fenmei Zhou
- Department of Obstetrics and Gynecology, Huaian First People's Hospital, Nanjing Medical University, Huaian, Jiangsu 223300, P.R. China
| | - Yanlan Sun
- Department of Obstetrics and Gynecology, Huaian First People's Hospital, Nanjing Medical University, Huaian, Jiangsu 223300, P.R. China
| | - Qiong Gao
- Department of Obstetrics and Gynecology, Huaian First People's Hospital, Nanjing Medical University, Huaian, Jiangsu 223300, P.R. China
| | - Hairong Wang
- Department of Obstetrics and Gynecology, Huaian First People's Hospital, Nanjing Medical University, Huaian, Jiangsu 223300, P.R. China
| |
Collapse
|
24
|
The mechanism of lncRNA H19 in fibrosis and its potential as novel therapeutic target. Mech Ageing Dev 2020; 188:111243. [DOI: 10.1016/j.mad.2020.111243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/04/2020] [Accepted: 04/03/2020] [Indexed: 02/08/2023]
|
25
|
Zhao K, Guo Y, Huo Z, Ma G, Zhang G, Xing Y, Xu Q. [Serum level of lncRNA TUSC7 in patients with esophageal squamous cell carcinoma and its role in promoting tumor cell migration and invasion]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:661-669. [PMID: 32897196 DOI: 10.12122/j.issn.1673-4254.2020.05.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate serum levels of long non-coding RNA (lncRNA) TUSC7 in patients with esophageal squamous cell carcinoma (ESCC), its association with clinicopathological parameters and its role in promoting tumor metastasis and invasion. METHODS Serum samples were collected from 60 patients with ESCC admitted between January, 2017 and May, 2019, with 60 age- and gender-matched healthy subjects as the control group. Serum level of TUSC7 in ESCC patients and its expression in 4 ESCC cell lines was detected with RT-qPCR. The association of serum TUSC7 level with the clinicopathological features of the patients was analyzed. KYSE-30 cell models with TUSC7 overexpression or knockdown were established, and the proliferation of the cells was examined with MTT assay and their migration and invasion were assessed using wound healing and Transwell assays. Western blotting was used to detect the cellular expressions of the proteins associated with epithelial-mesenchymal transition (EMT). RESULTS The patients with ESCC had significantly lower serum TUSC7 level than the healthy control subjects (P < 0.05). The ESCC cell lines also expressed lower levels of TUSC7 than normal cells (P < 0.05). Serum TUSC7 level was negatively correlated with tumor staging, lymph node metastasis and infiltration (P < 0.05) but was not significantly correlated with other clinicopathological parameters in ESCC patients. In the invitro cell experiment, overexpression of TUSC7 in KYSE-30 cells significantly inhibited cell migration and invasion (P < 0.05), enhanced the expression of the EMT marker protein E-cadherin and lowered the expressions of N-cadherin, Vimentin and MMP9 (P < 0.05); knocking down TUSC7 in the cells produced the opposite effects. CONCLUSIONS The down-regulation of TUSC7 expression in the serum of ESCC patients and in ESCC cell lines is associated with the metastasis of ESCC and promotes tumor cell migration and invasion by promoting EMT, indicating the potential of serum TUSC7 level as a molecular marker for diagnosis, treatment and metastasis monitoring of ESCC.
Collapse
Affiliation(s)
- Ke Zhao
- Henan Provincial Engineering Laboratory of Insect Bio-reactor, Nanyang Normal University, Nanyang 473061, China
| | - Yugang Guo
- Henan Provincial Engineering Laboratory of Insect Bio-reactor, Nanyang Normal University, Nanyang 473061, China
| | - Zheng Huo
- Henan Provincial Engineering Laboratory of Insect Bio-reactor, Nanyang Normal University, Nanyang 473061, China
| | - Guohui Ma
- Henan Provincial Engineering Laboratory of Insect Bio-reactor, Nanyang Normal University, Nanyang 473061, China
| | - Gui Zhang
- Henan Provincial Engineering Laboratory of Insect Bio-reactor, Nanyang Normal University, Nanyang 473061, China
| | - Yuxin Xing
- Henan Provincial Engineering Laboratory of Insect Bio-reactor, Nanyang Normal University, Nanyang 473061, China
| | - Qian Xu
- Henan Provincial Engineering Laboratory of Insect Bio-reactor, Nanyang Normal University, Nanyang 473061, China
| |
Collapse
|
26
|
Medina-Bastidas D, Guzmán-Huerta M, Borboa-Olivares H, Ruiz-Cruz C, Parra-Hernández S, Flores-Pliego A, Salido-Guadarrama I, Camargo-Marín L, Arambula-Meraz E, Estrada-Gutierrez G. Placental Microarray Profiling Reveals Common mRNA and lncRNA Expression Patterns in Preeclampsia and Intrauterine Growth Restriction. Int J Mol Sci 2020; 21:ijms21103597. [PMID: 32443673 PMCID: PMC7279523 DOI: 10.3390/ijms21103597] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
Preeclampsia (PE) and Intrauterine Growth Restriction (IUGR) are major contributors to perinatal morbidity and mortality. These pregnancy disorders are associated with placental dysfunction and share similar pathophysiological features. The aim of this study was to compare the placental gene expression profiles including mRNA and lncRNAs from pregnant women from four study groups: PE, IUGR, PE-IUGR, and normal pregnancy (NP). Gene expression microarray analysis was performed on placental tissue obtained at delivery and results were validated using RTq-PCR. Differential gene expression analysis revealed that the largest transcript variation was observed in the IUGR samples compared to NP (n = 461; 314 mRNAs: 252 up-regulated and 62 down-regulated; 133 lncRNAs: 36 up-regulated and 98 down-regulated). We also detected a group of differentially expressed transcripts shared between the PE and IUGR samples compared to NP (n = 39), including 9 lncRNAs with a high correlation degree (p < 0.05). Functional enrichment of these shared transcripts showed that cytokine signaling pathways, protein modification, and regulation of JAK-STAT cascade are over-represented in both placental ischemic diseases. These findings contribute to the molecular characterization of placental ischemia showing common epigenetic regulation implicated in the pathophysiology of PE and IUGR.
Collapse
Affiliation(s)
- Diana Medina-Bastidas
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, Mexico;
| | - Mario Guzmán-Huerta
- Departamento de Medicina Traslacional, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (M.G.-H.); (L.C.-M.)
| | - Hector Borboa-Olivares
- Subdirección de Investigación en Intervenciones Comunitarias, Instituto Nacional de Perinatología, Mexico City 11000, Mexico;
| | - César Ruiz-Cruz
- Hospital de Ginecología y Obstetricia No. 4, Luis Castelazo Ayala, Instituto Mexicano del Seguro Social, Mexico City 01090, Mexico;
| | - Sandra Parra-Hernández
- Laboratorio de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (S.P.-H.); (A.F.-P.)
| | - Arturo Flores-Pliego
- Laboratorio de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (S.P.-H.); (A.F.-P.)
| | - Ivan Salido-Guadarrama
- Laboratorio de Biología Computacional, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| | - Lisbeth Camargo-Marín
- Departamento de Medicina Traslacional, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (M.G.-H.); (L.C.-M.)
| | - Eliakym Arambula-Meraz
- Laboratorio de Genética y Biología Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacan 80040, Mexico;
| | | |
Collapse
|
27
|
Cao T, Jiang Y, Li D, Sun X, Zhang Y, Qin L, Tellides G, Taylor HS, Huang Y. H19/TET1 axis promotes TGF-β signaling linked to endothelial-to-mesenchymal transition. FASEB J 2020; 34:8625-8640. [PMID: 32374060 PMCID: PMC7364839 DOI: 10.1096/fj.202000073rrrrr] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/21/2022]
Abstract
While emerging evidence suggests the link between endothelial activation of TGF-β signaling, induction of endothelial-to-mesenchymal transition (EndMT), and cardiovascular disease (CVD), the molecular underpinning of this connection remains enigmatic. Here, we report aberrant expression of H19 lncRNA and TET1 in endothelial cells (ECs) of human atherosclerotic coronary arteries. Using primary human umbilical vein endothelial cells (HUVECs) and aortic endothelial cells (HAoECs) we show that TNF-α, a known risk factor for endothelial dysfunction and CVD, induces H19 expression which in turn activates TGF-β signaling and EndMT via a TET1-dependent epigenetic mechanism. We also show that H19 regulates TET1 expression at the posttranscriptional level. Further, we provide evidence that this H19/TET1-mediated regulation of TGF-β signaling and EndMT occurs in mouse pulmonary microvascular ECs in vivo under hyperglycemic conditions. We propose that endothelial activation of the H19/TET1 axis may play an important role in EndMT and perhaps CVD.
Collapse
Affiliation(s)
- Tiefeng Cao
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.,Department of Gynecology and Obstetrics, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ying Jiang
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.,Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Da Li
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.,Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoli Sun
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.,Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuanyuan Zhang
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lingfeng Qin
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - George Tellides
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Yingqun Huang
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
28
|
Huang J, Qian Y, Cheng Q, Yang J, Ding H, Jia R. Overexpression of Long Noncoding RNA Uc.187 Induces Preeclampsia-Like Symptoms in Pregnancy Rats. Am J Hypertens 2020; 33:439-451. [PMID: 31950140 DOI: 10.1093/ajh/hpaa011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/26/2019] [Accepted: 01/13/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND As a serious pregnancy-specific condition, preeclampsia (PE) is a serious pregnancy-specific condition characterized by insufficient trophoblastic invasion and shallow placental implantation. Long noncoding RNA uc.187, which is transcribed from an ultra-conserved region is highly expressed in the placental tissue of patients with PE, is associated with abnormal trophoblast invasion. Therefore, we aimed to further characterize the relationship between uc.187 and PE through in vitro experimental studies to find new targets to treat PE. METHODS In this study, we constructed PE rat models induced by lipopolysaccharide, experimented with overexpressing uc.187 and performed experiments using HTR-8/SVneo cells. RESULTS We found uc.187 was elevated in the placenta of PE rats. By injecting pregnant rats with a lentivirus containing the lncRNA uc.187, we successfully triggered maternal hypertension along with a series of symptoms similar to PE in humans. In vitro experiments demonstrated that high levels of uc.187 lead to decreased trophoblast invasion. In addition, our results revealed that uc.187 had high expression in PE and fetal growth restricted cells, but low expression in placental site trophoblastic tumors compared with the control groups. Results of western blot and cell immunofluorescence indicated that the aberrant biological behavior of HTR-8/SVneo cells were related to the distribution of β-catenin in the cytoplasm and nucleus. CONCLUSIONS Taken together, our study revealed that uc.187 was negatively correlated to trophoblastic cell invasion, and overexpression of uc.187 could induce PE-like symptoms in a pregnant rat model by affecting the distribution of β-catenin in the cytoplasm and nucleus.
Collapse
Affiliation(s)
- Jin Huang
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
- Fourth Clinical Medicine College, Nanjing Medical University, Nanjing, China
| | - Yating Qian
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Qing Cheng
- Maternal and Child Health Care Hospital of Nantong, Nantong, China
| | - Jing Yang
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
- Fourth Clinical Medicine College, Nanjing Medical University, Nanjing, China
| | - Hongjuan Ding
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Ruizhe Jia
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
29
|
Tsunoda Y, Kudo M, Wada R, Ishino K, Kure S, Sakatani T, Takeshita T, Naito Z. Expression level of long noncoding RNA H19 of normotensive placentas in late pregnancy relates to the fetal growth restriction. J Obstet Gynaecol Res 2020; 46:1025-1034. [PMID: 32323427 DOI: 10.1111/jog.14260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/02/2020] [Accepted: 04/04/2020] [Indexed: 11/28/2022]
Abstract
AIM Infants with fetal growth restriction (FGR) are at an increased risk of perinatal morbidity and mortality. The long noncoding RNA H19 gene is expressed abundantly in placental villi and recent studies suggest that it regulates FGR. However, the role of H19 in the FGR placenta remains unclear. This study aimed to clarify the relationship between H19 expression and FGR using normotensive placentas after 34 weeks of gestation. METHODS Formalin-fixed paraffin-embedded tissues from human placentas collected from pregnancies resulting in small for gestational age (SGA) and appropriate for gestational age (AGA) newborns were used. The histopathological features of placenta tissues, such as villous stromal fibrosis, the numbers of terminal villi, villous vessels and cytotrophoblasts were analyzed using hematoxylin and eosin, Masson's trichrome staining and immunostaining. The localization and expression of H19 in the placentas were demonstrated by in situ hybridization and reverse transcription-quantitative polymerase chain reaction (RT-qPCR), respectively. Moreover, the expression levels of H19-regulated molecules such as IGF2 and decorin (DCN) were measured by RT-qPCR. RESULTS Histopathological features of the placental villous were not different between placentas associated with SGA and AGA. H19 localized to the villous stroma, endothelial cells and cytotrophoblasts. Moreover, the expression level of H19 in SGA placentas was significantly lower than that in AGA placentas. The expression levels of IGF2 and DCN in SGA placentas tended to be lower than those in AGA placentas similarly to H19. CONCLUSION This study highlights the potential importance of regulatory events mediated by H19 in SGA placentas without histopathological abnormalities in late pregnancy.
Collapse
Affiliation(s)
- Youhei Tsunoda
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan.,Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| | - Mitsuhiro Kudo
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| | - Ryuichi Wada
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| | - Kousuke Ishino
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| | - Shoko Kure
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| | - Takashi Sakatani
- Department of Diagnostic Pathology, Nippon Medical School Hospital, Tokyo, Japan
| | - Toshiyuki Takeshita
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan
| | - Zenya Naito
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
30
|
H19 regulates angiogenic capacity of extravillous trophoblasts by H19/miR-106a-5p/VEGFA axis. Arch Gynecol Obstet 2020; 301:671-679. [DOI: 10.1007/s00404-020-05469-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 02/13/2020] [Indexed: 02/07/2023]
|
31
|
Chen Y, Ding H, Wei M, Zha W, Guan S, Liu N, Li Y, Tan Y, Wang Y, Wu F. MSC-Secreted Exosomal H19 Promotes Trophoblast Cell Invasion and Migration by Downregulating let-7b and Upregulating FOXO1. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 19:1237-1249. [PMID: 32069774 PMCID: PMC7026285 DOI: 10.1016/j.omtn.2019.11.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/13/2019] [Accepted: 11/24/2019] [Indexed: 12/12/2022]
Abstract
Exosomes perform important functions for intercellular communication through extracellular signaling pathways, leading to the regulation of important biological processes, including cell proliferation, but also systemic dysfunctions such as preeclampsia (PE). However, the inhibitory effects of mesenchymal stem cell (MSCs)-derived exosomes in PE remain largely unknown. Thus, we assessed the possibility that exosomes could transport long non-coding RNA H19 and the correlation between H19 and the apoptosis of trophoblast cells. The expression of microRNA let-7b and forkhead box protein O1 (FOXO1) was characterized in placental tissues of PE patients. Gain- and loss-of-function experiments were performed to examine the roles of FOXO1 and let-7b in trophoblast cells. Interactions between let-7b and H19 as well as between let-7b and FOXO1 were confirmed by a dual-luciferase reporter assay, RNA pull-down, and RNA immunoprecipitation. HTR-8/SVneo cells were co-cultured with exosomes derived from MSCs overexpressing H19, followed by invasion, migration, and apoptosis assessments of trophoblast cells. We found that let-7b was highly expressed and FOXO1 was poorly expressed in placental tissues of PE patients. Furthermore, H19 acts as a competitive endogenous RNA against let-7b, and let-7b directly targeted FOXO1. Moreover, H19 could be transferred to trophoblast cells via MSC-secreted exosomes. MSC-derived exosomes overexpressing H19 decreased let-7b, increased FOXO1, and activated the protein kinase B (AKT) signaling pathway, thus increasing invasion and migration and inhibiting apoptosis of trophoblast cells. These results suggest that MSC-derived exosomes overexpressing H19 may be a novel direction for therapeutic strategies against PE.
Collapse
Affiliation(s)
- Yang Chen
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Haiyan Ding
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Min Wei
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Wenhui Zha
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Shuang Guan
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Ning Liu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Yang Li
- Center of Reproductive Medicine, Center of Prenatal Diagnosis, The First Hospital of JiLin University, Changchun 130041, P.R. China
| | - Yuan Tan
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Yan Wang
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Fuju Wu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, P.R. China.
| |
Collapse
|
32
|
Harati-Sadegh M, Kohan L, Teimoori B, Mehrabani M, Salimi S. The effects of placental long noncoding RNA H19 polymorphisms and promoter methylation on H19 expression in association with preeclampsia susceptibility. IUBMB Life 2019; 72:413-425. [PMID: 31769935 DOI: 10.1002/iub.2199] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
The effect of DNA methylation on gene expression triggered it as a susceptibility factor in various diseases including preeclampsia (PE). The pathogenesis of PE is closely associated with the methylation status and genetic variants of relevant genes. Therefore, the aim of the study was to investigate the possible impacts of the placental DNA methylation and rs3741219, rs217727, and rs2107425 polymorphisms of the H19 gene on the PE susceptibility as well as the its mRNA expression. Moreover, eight haplotypes of three loci in the H19 gene were analyzed. In this case-control study, the placentas of 107 preeclamptic and 113 non-preeclamptic women were collected after delivery. The methylation status was assessed by methylation-specific polymerase chain reaction (PCR). The H19 polymorphisms were genotyped using polymerase chain reaction-restriction fragment length polymorphism or amplification refractory mutation system-polymerase chain reaction methods. The quantitative real time PCR was used for mRNA expression assay. The placental H19 rs3741219 and rs2107425 polymorphisms were not associated with PE. However, H19 rs217727CT and TT genotypes might be associated with a 9.2- and 17.7-fold increased risk of PE, respectively. The Trs3741219 Crs217727 Crs2107425 and Trs3741219 Crs217727 Trs2107425 haplotypes were significantly lower, whereas the Trs3741219 Trs217727 Crs2107425 and Crs3741219 Trs217727 Crs2107425 haplotypes were significantly higher in PE women. Promoter but not upstream region hypermethylation of H19 gene could be led to decreased risk of PE (MM vs. UM + UU). No significant difference was observed in the placental mRNA expression between two groups. The H19 expression was significantly higher in women with unmethylated (UU), compared to methylated promoter (MM). The H19 expression was 17- and 15-fold higher in H19-rs2107425 CC and CT genotypes in PE women. In conclusion, the H19 rs2107425 polymorphism was associated with a higher risk of PE and increased H19 mRNA expression. The promoter hypermethylation of H19 gene was associated with a lower risk of PE and decreased H19 mRNA expression.
Collapse
Affiliation(s)
- Mahdiyeh Harati-Sadegh
- Genetic of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Leila Kohan
- Department of Biology, Arsanjan Branch, Islamic Azad University, Arsanjan, Iran
| | - Batool Teimoori
- Department of Obstetrics and Gynecology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeedeh Salimi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.,Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
33
|
Tsuchida N, Kojima J, Fukuda A, Oda M, Kawasaki T, Ito H, Kuji N, Isaka K, Nishi H, Umezawa A, Akutsu H. Transcriptomic features of trophoblast lineage cells derived from human induced pluripotent stem cells treated with BMP 4. Placenta 2019; 89:20-32. [PMID: 31675487 DOI: 10.1016/j.placenta.2019.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/31/2019] [Accepted: 10/07/2019] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Early development of the human placenta remains poorly understood due to the lack of proper model systems. Previous reports have demonstrated that human induced pluripotent stem cells (hiPSCs) treated with bone morphogenetic protein 4 (BMP4) can differentiate into extraembryonic tissues as useful models of the early stage of trophoblast (TB) differentiation. In our previous study, we optimized the culture conditions of hiPSC-derived TB lineages, but the differentiated cells were heterogeneous. METHODS In order to characterize the hiPSC-derived TB lineage cells, four types of hiPSCs were treated with 50 ng/mL of BMP4 for 10 days. Subsequently, cells that were positive for the pan-TB marker keratin 7(KRT7) were purified from the differentiated cells using flow cytometry and identified with a DNA microarray. RESULTS Comparisons of our microarray data with the human transcriptome in a previous large-scale analysis showed that the gene expression patterns of KRT7+ cells were similar to the placenta. In total, 259 upregulated genes were commonly expressed in all four KRT7+ groups, including well-known TB markers. Among these upregulated genes, several with poorly investigated expression patterns and functions were confirmed as expressed in the primary placenta. While only XAGE2 and KCNQ2 were expressed in TB layers, XAGE2 was expressed throughout pregnancy and KCNQ2 was expressed only in cytotrophoblasts of the first trimester placenta. CONCLUSION BMP4-treated KRT7+ cells were in the course of the human placental development. In addition, this approach allowed the identification of new genes that might be involved in placentation. However, further studies are needed to confirm their functions.
Collapse
Affiliation(s)
- Nanae Tsuchida
- Department of Obstetrics and Gynecology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku, Tokyo, 160-0023, Japan; Center for Regenerative Medicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Junya Kojima
- Department of Obstetrics and Gynecology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku, Tokyo, 160-0023, Japan
| | - Atsushi Fukuda
- Center for Regenerative Medicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Mayumi Oda
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Tomoyuki Kawasaki
- Center for Regenerative Medicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Hiroe Ito
- Department of Obstetrics and Gynecology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku, Tokyo, 160-0023, Japan
| | - Naoaki Kuji
- Department of Obstetrics and Gynecology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku, Tokyo, 160-0023, Japan
| | - Keiichi Isaka
- Department of Obstetrics and Gynecology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku, Tokyo, 160-0023, Japan
| | - Hirotaka Nishi
- Department of Obstetrics and Gynecology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku, Tokyo, 160-0023, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Hidenori Akutsu
- Center for Regenerative Medicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan.
| |
Collapse
|
34
|
Ding T, Mokshagundam S, Rinaudo PF, Osteen KG, Bruner-Tran KL. Paternal developmental toxicant exposure is associated with epigenetic modulation of sperm and placental Pgr and Igf2 in a mouse model. Biol Reprod 2019; 99:864-876. [PMID: 29741588 DOI: 10.1093/biolre/ioy111] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/04/2018] [Indexed: 01/16/2023] Open
Abstract
Preterm birth (PTB), parturition prior to 37 weeks' gestation, is the leading cause of neonatal mortality. The causes of spontaneous PTB are poorly understood; however, recent studies suggest that this condition may arise as a consequence of the parental fetal environment. Specifically, we previously demonstrated that developmental exposure of male mice (F1 animals) to the environmental endocrine disruptor 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was associated with reduced sperm quantity/quality in adulthood and control female partners frequently delivered preterm. Reproductive defects persisted in the F2 and F3 descendants, and spontaneous PTB was common. Reproductive changes in the F3 males, the first generation without direct TCDD exposure, suggest the occurrence of epigenetic alterations in the sperm, which have the potential to impact placental development. Herein, we conducted an epigenetic microarray analysis of control and F1 male-derived placentae, which identified 2171 differentially methylated regions, including the progesterone receptor (Pgr) and insulin-like growth factor (Igf2). To assess if Pgr and Igf2 DNA methylation changes were present in sperm and persist in future generations, we assessed methylation and expression of these genes in F1/F3 sperm and F3-derived placentae. Although alterations in methylation and gene expression were observed, in most tissues, only Pgr reached statistical significance. Despite the modest gene expression changes in Igf2, offspring of F1 and F3 males consistently exhibited IUGR. Taken together, our data indicate that paternal developmental TCDD exposure is associated with transgenerational placental dysfunction, suggesting epigenetic modifications within the sperm have occurred. An evaluation of additional genes and alternative epigenetic mechanisms is warranted.
Collapse
Affiliation(s)
- Tianbing Ding
- Women's Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Shilpa Mokshagundam
- Women's Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Paolo F Rinaudo
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, California, USA
| | - Kevin G Osteen
- Women's Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,VA Tennessee Valley Healthcare System, Nashville Tennessee, USA
| | - Kaylon L Bruner-Tran
- Women's Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
35
|
Chen J, Ao L, Yang J. Long non-coding RNAs in diseases related to inflammation and immunity. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:494. [PMID: 31700930 DOI: 10.21037/atm.2019.08.37] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been key regulators of gene expression in innate and adaptive immunity. Although lncRNAs have been reported to be associated with some diseases, its expression and function in diseases related to inflammation and immunity are still unknown. We reviewed how lncRNA regulated transcription and controlled the function and balance of the cells in the immune response. In addition, we discussed the impacts and challenges of lncRNAs on immunity in diseases.
Collapse
Affiliation(s)
- Jiao Chen
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430000, China.,Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430000, China
| | - Liangfei Ao
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430000, China.,Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430000, China
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430000, China.,Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430000, China
| |
Collapse
|
36
|
Yamaguchi Y, Tayama C, Tomikawa J, Akaishi R, Kamura H, Matsuoka K, Wake N, Minakami H, Kato K, Yamada T, Nakabayashi K, Hata K. Placenta-specific epimutation at H19-DMR among common pregnancy complications: its frequency and effect on the expression patterns of H19 and IGF2. Clin Epigenetics 2019; 11:113. [PMID: 31370882 PMCID: PMC6676526 DOI: 10.1186/s13148-019-0712-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/22/2019] [Indexed: 12/17/2022] Open
Abstract
Background H19 and IGF2 genes are imprinted and involved in regulating fetal and placental growth. The H19 differentially methylated region (DMR) is paternally methylated and maternally unmethylated and regulates the imprinted expression of H19 and IGF2. Epimutation at the H19-DMR in humans results in congenital growth disorders, Beckwith-Wiedemann and Silver-Russell syndromes, when erroneously its maternal allele becomes methylated and its paternal allele becomes unmethylated, respectively. Although H19 and IGF2 have been assessed for their involvement in pregnancy complications including fetal growth restriction (FGR) and pregnancy-induced hypertension (PIH)/hypertensive disorder of pregnancy (HDP) intensively in the last decade, it is still not established whether epimutation at the H19-DMR in the placenta results in pathogenic conditions in pregnancy. We aimed to assess the frequency of H19-DMR epimutation and its effects on the allelic expression patterns of H19 and IGF2 genes among normal and abnormal pregnancy cases. Results We enrolled two independently collected sets of placenta samples from normal pregnancies as controls and common pregnancy complications, FGR and PIH (HDP). The first set consisted of 39 controls and 140 FGR and/or PIH cases, and the second set consisted of 29 controls and 62 cases. For these samples, we initially screened for DNA methylation changes at H19-DMR and IGF2-DMRs by combined bisulfite restriction analysis, and further analyzed cases with methylation changes for their allelic methylation and expression patterns. We identified one case each of FGR and PIH showing hypomethylation of H19-DMR and IGF2-DMRs only in the placenta, but not in cord blood, from the first case/control set. For the PIH case, we were able to determine the allelic expression pattern of H19 to be biallelically expressed and the H19/IGF2 expression ratio to be highly elevated compared to controls. We also identified a PIH case with hypomethylation at H19-DMR and IGF2-DMRs in the placenta from the second case/control set. Conclusions Placental epimutation at H19-DMR was observed among common pregnancy complication cases at the frequency of 1.5% (3 out of 202 cases examined), but not in 68 normal pregnancy cases examined. Alteration of H19/IGF2 expression patterns due to hypomethylation of H19-DMR may have been involved in the pathogenesis of pregnancy complications in these cases. Electronic supplementary material The online version of this article (10.1186/s13148-019-0712-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuko Yamaguchi
- Department of Maternal-Fetal Biology, Research Institute, National Center for Child Health and Development, Tokyo, 157-8535, Japan.,Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Chiharu Tayama
- Department of Maternal-Fetal Biology, Research Institute, National Center for Child Health and Development, Tokyo, 157-8535, Japan
| | - Junko Tomikawa
- Department of Maternal-Fetal Biology, Research Institute, National Center for Child Health and Development, Tokyo, 157-8535, Japan
| | - Rina Akaishi
- Center of Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, 157-8535, Japan
| | - Hiromi Kamura
- Department of Maternal-Fetal Biology, Research Institute, National Center for Child Health and Development, Tokyo, 157-8535, Japan
| | - Kentaro Matsuoka
- Department of Pathology, National Center for Child Health and Development, Tokyo, 157-8535, Japan.,Present Address: Department of Pathology, Dokkyo Medical University, Saitama Medical Center, Koshigaya, Japan
| | - Norio Wake
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hisanori Minakami
- Department of Obstetrics and Gynecology, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Kiyoko Kato
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takahiro Yamada
- Clinical Genetics Unit, Kyoto University Hospital, Kyoto, 606-8507, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, Research Institute, National Center for Child Health and Development, Tokyo, 157-8535, Japan.
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, Research Institute, National Center for Child Health and Development, Tokyo, 157-8535, Japan.
| |
Collapse
|
37
|
He T, Qiao Y, Lv Y, Wang J, Hu R, Cao Y. lncRNA FAM99A is downregulated in preeclampsia and exerts a regulatory effect on trophoblast cell invasion, migration and apoptosis. Mol Med Rep 2019; 20:1451-1458. [PMID: 31173227 DOI: 10.3892/mmr.2019.10350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/03/2019] [Indexed: 11/06/2022] Open
Abstract
Preeclampsia (PE) is a complication of pregnancy, and a leading cause of maternal mortality and morbidity worldwide. Recently, the dysregulation of long non‑coding RNAs (lncRNAs) has been reported to contribute to the pathogenesis and progression of PE. This study aimed to examine the alterations in the lncRNA family with sequence similarity 99 member A (FAM99A) in PE and its effects on trophoblasts. The results of reverse transcription‑quantitative PCR indicated that the expression levels of FAM99A were downregulated in placental tissues from women with severe PE compared with in those from controls. A Transwell invasion assay and wound healing assay revealed that overexpression of FAM99A promoted invasion and migration of HTR‑8/SVneo cells; conversely, knockdown of FAM99A suppressed the invasive and migratory abilities of HTR‑8/SVneo cells. Flow cytometry demonstrated that FAM99A overexpression induced a decrease in the apoptotic rate of cells, whereas knockdown of FAM99A increased the apoptotic rate of HTR‑8/SVneo cells. Western blot analysis revealed that overexpression of FAM99A decreased the protein expression levels of cleaved caspase‑3, cleaved caspase‑9 and Bax, and increased Bcl‑2 protein expression, whereas knockdown of FAM99A had the opposite effects on these protein levels. Overexpression of FAM99A also decreased caspase‑3 activity in HTR‑8/SVneo cells; however, knockdown of FAM99A increased caspase‑3 activity. In addition, overexpression of FAM99A enhanced Wnt/β‑catenin signaling activity, whereas FAM99A knockdown exerted an inhibitory effect on the Wnt/β‑catenin signaling activity in HTR‑8/SVneo cells. In conclusion, these results indicated that FAM99A may serve a role in modulating the functions of trophoblasts, partially via targeting Wnt/β‑catenin signaling.
Collapse
Affiliation(s)
- Tongqiang He
- Obstetrics and Gynecology Intensive Care Unit, The Northwest Women and Children's Hospital, Xi'an, Shaanxi 718900, P.R. China
| | - Yuan Qiao
- Obstetrics and Gynecology Intensive Care Unit, The Northwest Women and Children's Hospital, Xi'an, Shaanxi 718900, P.R. China
| | - Yanxiang Lv
- Obstetrics and Gynecology Intensive Care Unit, The Northwest Women and Children's Hospital, Xi'an, Shaanxi 718900, P.R. China
| | - Jun Wang
- Obstetrics and Gynecology Intensive Care Unit, The Northwest Women and Children's Hospital, Xi'an, Shaanxi 718900, P.R. China
| | - Rui Hu
- Obstetrics and Gynecology Intensive Care Unit, The Northwest Women and Children's Hospital, Xi'an, Shaanxi 718900, P.R. China
| | - Yinli Cao
- Department of Obstetrics, The Northwest Women and Children's Hospital, Xi'an, Shaanxi 718900, P.R. China
| |
Collapse
|
38
|
Cao T, Jiang Y, Wang Z, Zhang N, Al-Hendy A, Mamillapalli R, Kallen AN, Kodaman P, Taylor HS, Li D, Huang Y. H19 lncRNA identified as a master regulator of genes that drive uterine leiomyomas. Oncogene 2019; 38:5356-5366. [PMID: 31089260 PMCID: PMC6755985 DOI: 10.1038/s41388-019-0808-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/11/2019] [Accepted: 03/19/2019] [Indexed: 12/17/2022]
Abstract
Uterine leiomyomas or fibroids (UFs) are benign tumors characterized by hyperplastic smooth muscle cells and excessive deposition of extracellular matrix (ECM). Afflicting ~80% of women, and symptomatic in 25%, UFs bring tremendous suffering and are an economic burden worldwide; they cause severe pain and bleeding, and are the leading cause of hysterectomy. Yet, UFs are severely understudied with few effective treatment options available; those that are available frequently have significant side effects such as menopausal symptoms. Recently, integrated genome-scale studies have revealed mutations and fibroid subtype-specific expression changes in key driver genes, with MED12 and HMGA2 together contributing to nearly 90% of all UFs, but their regulation of expression is poorly characterized. Here we report that the expression of H19 long noncoding RNA (lncRNA) is aberrantly increased in UFs. Using cell culture and genome-wide transcriptome and methylation profiling analyses, we demonstrate that H19 promotes expression of MED12, HMGA2, and key ECM-remodeling genes via multiple mechanisms including a new class of epigenetic modification by TET3. Our results mark the first example of an evolutionarily conserved lncRNA in pathogenesis of UFs and regulation of TET expression. Given the link between a H19 single-nucleotide polymorphism (SNP) and increased risk and tumor size of UFs, and the existence of multiple fibroid subtypes driven by key pathway genes regulated by H19, we propose a unifying mechanism for pathogenesis of uterine fibroids mediated by H19 and identify a pathway for future exploration of novel target therapies for uterine leiomyomas.
Collapse
Affiliation(s)
- Tiefeng Cao
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA.,Department of Gynecology and Obstetrics, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510070, China
| | - Ying Jiang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA.,Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Zhangsheng Wang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA.,Department of Cardiology, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Na Zhang
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Amanda N Kallen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Pinar Kodaman
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, 110004, China.
| | - Yingqun Huang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
39
|
Zhang L, Deng X, Shi X, Dong X. Silencing H19 regulated proliferation, invasion, and autophagy in the placenta by targeting miR-18a-5p. J Cell Biochem 2018; 120:9006-9015. [PMID: 30536700 PMCID: PMC6587755 DOI: 10.1002/jcb.28172] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022]
Abstract
Fetal growth restriction (FGR) is a serious pregnancy complication associated with increased perinatal mortality and morbidity. It may lead to neurodevelopmental impairment and adulthood onset disorders. Recently, long noncoding RNAs (lncRNAs) were found to be associated with the pathogenesis of FGR. Here we report that the lncRNAH19 is significantly decreased in placentae from pregnancies with FGR. Downregulation of H19 leads to reduced proliferation and invasion of extravillous trophoblast cells. This is identified with reduced trophoblast invasion, which has been discovered in FGR. Autophagy is exaggerated in FGR. Downregulation of H19 promotes autophagy via the PI3K/AKT/mTOR and MAPK/ERK/mTOR pathways of extravillous trophoblast cells in FGR. We also found that the expression level of microRNAs miR-18a-5p was negatively correlated with that of H19. H19 can act as an endogenous sponge by directly binding to miR-18a-5p, which targets IRF2. The expression of miR-18a-5p was upregulated, but IRF2 expression was downregulated after the H19 knockdown. In conclusion, our study revealed that H19 downexpressed could inhibit proliferation and invasion, and promote autophagy by targeting miR-18a-5pin HTR8 and JEG3 cells. We propose that aberrant regulation of H19/miR-18a-5p-mediated regulatory pathway may contribute to the molecular mechanism of FGR. We indicated that H19 may be a potential predictive, diagnostic, and therapeutic modality for FGR.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Xinru Deng
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Xian Shi
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Xiaojing Dong
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| |
Collapse
|
40
|
Geng T, Liu Y, Xu Y, Jiang Y, Zhang N, Wang Z, Carmichael GG, Taylor HS, Li D, Huang Y. H19 lncRNA Promotes Skeletal Muscle Insulin Sensitivity in Part by Targeting AMPK. Diabetes 2018; 67:2183-2198. [PMID: 30201684 PMCID: PMC6198334 DOI: 10.2337/db18-0370] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/24/2018] [Indexed: 12/12/2022]
Abstract
Skeletal muscle plays a pivotal role in regulating systemic glucose homeostasis in part through the conserved cellular energy sensor AMPK. AMPK activation increases glucose uptake, lipid oxidation, and mitochondrial biogenesis, leading to enhanced muscle insulin sensitivity and whole-body energy metabolism. Here we show that the muscle-enriched H19 long noncoding RNA (lncRNA) acts to enhance muscle insulin sensitivity, at least in part, by activating AMPK. We identify the atypical dual-specificity phosphatase DUSP27/DUPD1 as a potentially important downstream effector of H19. We show that DUSP27, which is highly expressed in muscle with previously unknown physiological function, interacts with and activates AMPK in muscle cells. Consistent with decreased H19 expression in the muscle of insulin-resistant human subjects and rodents, mice with genetic H19 ablation exhibit muscle insulin resistance. Furthermore, a high-fat diet downregulates muscle H19 via both posttranscriptional and epigenetic mechanisms. Our results uncover an evolutionarily conserved, highly expressed lncRNA as an important regulator of muscle insulin sensitivity.
Collapse
Affiliation(s)
- Tingting Geng
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT
- Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China
| | - Ya Liu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, People's Republic of China
| | - Yetao Xu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Ying Jiang
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Na Zhang
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT
| | - Zhangsheng Wang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT
- Department of Cardiology, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| | - Gordon G Carmichael
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT
| | - Da Li
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yingqun Huang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT
| |
Collapse
|
41
|
Clabault H, Cohen M, Vaillancourt C, Sanderson JT. Effects of selective serotonin-reuptake inhibitors (SSRIs) in JEG-3 and HIPEC cell models of the extravillous trophoblast. Placenta 2018; 72-73:62-73. [PMID: 30501883 DOI: 10.1016/j.placenta.2018.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/14/2018] [Accepted: 10/24/2018] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Between 2 and 10% of pregnant women are treated with selective serotonin-reuptake inhibitors (SSRIs) for depression. The extravillous trophoblasts (evTBs), which migrate and invade maternal tissues, are crucial for embryo implantation and remodeling of maternal spiral arteries. Poor migration/invasion of evTBs can cause serious pregnancy complications, yet the effects of SSRIs on these processes has never been studied. To determine the effects of five SSRIs (fluoxetine, norfluoxetine, citalopram, sertraline and venlafaxine) on migration/invasion, we used JEG-3 and HIPEC cells as evTB models. METHODS Cells were treated with increasing concentrations (0.03-10 μM) of SSRIs. Cell proliferation was monitored using an impedance-based system and cell cycle by flow cytometry. Migration was determined using a scratch test, and metalloproteinase (MMP) activities, by zymography. Invasion markers were determined by RT-qPCR. RESULTS Fluoxetine and sertraline (10 μM) significantly decreased cell proliferation by 94% and by 100%, respectively, in JEG-3 cells, and by 58.6% and 100%, respectively, in HIPEC cells. Norfluoxetine increased MMP-9 activity in JEG-3 cells by 2.0% at 0.03 μM and by 43.9% at 3 μM, but decreased MMP-9 activity in HIPEC cells by 63.7% at 3 μM. Sertraline at 0.03 μM increased mRNA level of TIMP-1 in JEG-3 cells by 36% and that of ADAM-10 by 85% and 115% at 0.3 and 3 μM, respectively. In HIPEC cells, venlafaxine at 0.03 and 0.3 μM, increased ADAM-10 mRNA levels by 156% and 167%, respectively. DISCUSSION This study shows that SSRIs may affect evTBs homeostasis at therapeutic levels and provides guidance for future research.
Collapse
Affiliation(s)
- Hélène Clabault
- INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, H7V 1B7, Canada; BioMed Research Centre, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada; Center for Interdisciplinary Research on Well-Being, Health, Society and Environment (CINBIOSE), Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada
| | - Marie Cohen
- Department of Gynecology Obstetrics, Faculty of Medicine, Université de Genève, 1 rue Michel Servet, 1205, Geneva, Switzerland
| | - Cathy Vaillancourt
- INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, H7V 1B7, Canada; BioMed Research Centre, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada; Center for Interdisciplinary Research on Well-Being, Health, Society and Environment (CINBIOSE), Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada.
| | - J Thomas Sanderson
- INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, H7V 1B7, Canada.
| |
Collapse
|
42
|
Liu R, Meng Q, Shi Y, Xu H. Regulatory role of microRNA‐320a in the proliferation, migration, invasion, and apoptosis of trophoblasts and endothelial cells by targeting estrogen‐related receptor γ. J Cell Physiol 2018; 234:682-691. [PMID: 30216440 DOI: 10.1002/jcp.26842] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/09/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Rong‐Hua Liu
- Department of Obstetrics and Gynecology Linyi People’s Hospital Linyi China
| | - Qin Meng
- Teaching and Research Department of Obstetrics and Gynecology Shandong Medical College Linyi China
| | - Yan‐Ping Shi
- Department of Obstetrics and Gynecology Linyi People’s Hospital Linyi China
| | - Huai‐Sheng Xu
- Department of Obstetrics and Gynecology Linyi People’s Hospital Linyi China
| |
Collapse
|
43
|
Majewska M, Lipka A, Paukszto L, Jastrzebski JP, Gowkielewicz M, Jozwik M, Majewski MK. Preliminary RNA-Seq Analysis of Long Non-Coding RNAs Expressed in Human Term Placenta. Int J Mol Sci 2018; 19:ijms19071894. [PMID: 29954144 PMCID: PMC6073670 DOI: 10.3390/ijms19071894] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 06/24/2018] [Indexed: 12/20/2022] Open
Abstract
Development of particular structures and proper functioning of the placenta are under the influence of sophisticated pathways, controlled by the expression of substantial genes that are additionally regulated by long non-coding RNAs (lncRNAs). To date, the expression profile of lncRNA in human term placenta has not been fully established. This study was conducted to characterize the lncRNA expression profile in human term placenta and to verify whether there are differences in the transcriptomic profile between the sex of the fetus and pregnancy multiplicity. RNA-Seq data were used to profile, quantify, and classify lncRNAs in human term placenta. The applied methodology enabled detection of the expression of 4463 isoforms from 2899 annotated lncRNA loci, plus 990 putative lncRNA transcripts from 607 intergenic regions. Those placentally expressed lncRNAs displayed features such as shorter transcript length, longer exon length, fewer exons, and lower expression levels compared to messenger RNAs (mRNAs). Among all placental transcripts, 175,268 were classified as mRNAs and 15,819 as lncRNAs, and 56,727 variants were discovered within unannotated regions. Five differentially expressed lncRNAs (HAND2-AS1, XIST, RP1-97J1.2, AC010084.1, TTTY15) were identified by a sex-bias comparison. Splicing events were detected within 37 genes and 4 lncRNA loci. Functional analysis of cis-related potential targets for lncRNAs identified 2021 enriched genes. It is presumed that the obtained data will expand the current knowledge of lncRNAs in placenta and human non-coding catalogs, making them more contemporary and specific.
Collapse
Affiliation(s)
- Marta Majewska
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland.
| | - Aleksandra Lipka
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-045 Olsztyn, Poland.
| | - Lukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland.
| | - Jan Pawel Jastrzebski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland.
| | - Marek Gowkielewicz
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-045 Olsztyn, Poland.
| | - Marcin Jozwik
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-045 Olsztyn, Poland.
| | - Mariusz Krzysztof Majewski
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland.
| |
Collapse
|
44
|
Cui X, Xu J, Ji Y, Song X, Wang J, Zhang L, Yang S, Ye Y. Effects of forkhead box protein M1 on trophoblast invasion and its role in preeclampsia development. Exp Ther Med 2018; 16:197-203. [PMID: 29896240 PMCID: PMC5995065 DOI: 10.3892/etm.2018.6195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022] Open
Abstract
The present study aimed to investigate the expression of the forkhead box protein M1 (FOXM1) in the placenta of patients with preeclampsia, and its effect on trophoblasts. A total of 28 patients with preeclampsia and 30 patients without preeclampsia (controls) who underwent cesarean section and were admitted to the Affiliated Hospital of Qingdao University between June 2013 and September 2016 were enrolled in the present study. The expression of FOXM1 in placental tissues was examined by reverse transcription-quantitative polymerase chain reaction, western blotting and immunohistochemistry. HTR8/SVneo cells were used to measure the in vitro expression of the vascular endothelial growth factor (VEGF). The results demonstrated that FOXM1 expression was downregulated in the placental tissues of patient with preeclampsia (P<0.05). Following the silencing of FOXM1 expression, the proliferation of HTR8/SVneo cells was suppressed. The results of flow cytometry demonstrated that proportion of HTR8/SVneo cells in the G0/G1 phase and the proportion of apoptotic cells increased. The expression of the apoptosis regulator BCL-2, as well as the expression of VEGF mRNA and protein expression were also downregulated following FOXM1 silencing. FOXM1 may therefore promote the development of preeclampsia via the VEGF signaling pathway.
Collapse
Affiliation(s)
- Xuena Cui
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Jin'e Xu
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Yuzhi Ji
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xiuhong Song
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Junhuan Wang
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Lijuan Zhang
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Shengmei Yang
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Yuanhua Ye
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
45
|
Overexpression of long non-coding RNA H19 promotes invasion and autophagy via the PI3K/AKT/mTOR pathways in trophoblast cells. Biomed Pharmacother 2018. [PMID: 29522949 DOI: 10.1016/j.biopha.2018.02.134] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Preeclampsia (PE), characterized by hypertension and proteinuria, is a leading cause of perinatal and maternal mortality. Considering that mutation of H19 gene is closely associated with PE, we aimed to explore the functional role of long non-coding RNA H19 (lncRNA-H19) in trophoblast cells. METHODS Expression of lncRNA-H19 in placenta tissues from patients with PE and healthy pregnant women after delivery was determined by quantitative reverse transcription PCR. Then, lncRNA-H19 was abnormally expressed in JEG-3 and HTR-8 cells by stable cell transfection. Cell viability and invasion were assessed by using CCK-8 and Matrigel-coated Millicell system, respectively. Expression of key proteins associated with invasion and autophagy as well as key kinases in the phosphatidylinositol-3-kinase (PI3K)/AKT/mechanistic target of rapamycin (mTOR) pathways were measured by Western blot analysis. Number of GFP-labeled autophagosomes was counted under a confocal microscope. RESULTS Level of lncRNA-H19 in the placenta tissues from PE patients was higher than that from healthy controls. LncRNA-H19 overexpression reduced cell viability but increased invasion of JEG-3 and HTR-8 cells. LncRNA-H19 silence showed the opposite effects. In addition, lncRNA-H19 overexpression promoted autophagy in trophoblast cells. Furthermore, phosphorylated levels of key kinases in the PI3K/AKT/mTOR pathways were enhanced by lncRNA-H19 overexpression while were reduced by lncRNA-H19 silence. CONCLUSION LncRNA-H19, which was up-regulated in PE, reduced cell viability but promoted invasion and autophagy in trophoblast cells, along with activation of the PI3K/AKT/mTOR pathways. Our study provides a theoretical basis for pathogenesis of PE, aiding to identification of novel therapeutic strategies for PE.
Collapse
|
46
|
Zong L, Wei X, Gou W, Huang P, Lv Y. Zinc improves learning and memory abilities of fetal growth restriction rats and promotes trophoblast cell invasion and migration via enhancing STAT3-MMP-2/9 axis activity. Oncotarget 2017; 8:115190-115201. [PMID: 29383152 PMCID: PMC5777764 DOI: 10.18632/oncotarget.23122] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/16/2017] [Indexed: 12/26/2022] Open
Abstract
Fetal growth restriction (FGR) is a well-known risk factor for cognitive dysfunction, especially for learning and memory abilities. However, knowledge about prevention and treatment methods of learning and memory abilities of fetal are limit. Here, Morris water maze and passive avoidance tests showed zinc supplementation could protect the impairment of the learning and memory abilities caused by FGR. As accumulating evidence suggested that insufficiency of placental trophoblast cell invasion was closely related to FGR fetal neurodevelopmental dysplasia, we further explored the relationship between zinc supplementation during pregnancy and placental trophoblast. Microarray identified 346 differently expressed genes in placental tissues with and without zinc supplementation, and GO and KEGG analyses showed these differently expressed genes were highly enriched in cell invasion and migration and STAT3 pathway. Protein-protein interaction(PPI) analysis found that STAT3 interacted with matrix metalloproteinase-2/9 (MMP-2/9). In vivo, western blot results authenticated that the expression levels of phospho-STAT3, STAT3, MMP-2 and MMP-9 were up-regulated in placental tissues after zinc treatment. To validate whether zinc could promotes trophoblast cell invasion and migration via enhancing STAT3-MMP-2/9 activity. In vitro, Transwell assay was performed, and we observed that abilities of invasion and migration were obviously increased in zinc treated trophoblast cells. And phospho-STAT3, STAT3, MMP-2 and MMP-9 expression levels were correspondingly increased in zinc treated trophoblast cells, which were dose-dependent. Moreover, gain-of-function and loss-of-function of STAT3 confirmed that zinc promotes cell invasion and migration via regulating STAT3 mediated up-regulation of MMP-2/9 activity. We propose that activation of MMP-2/9 mediated by STAT3 may contribute to invasion and migration of trophoblast cells, which improved neurodevelopmental impairment of FGR rats probably via contributing to placental development. Our findings are the first to show a possible mechanism of reversing neurodevelopmental impairment of FGR rats by zinc supplementation, holding promise for the development of novel therapeutic modalities for learning and memory abilities impairment caused by FGR.
Collapse
Affiliation(s)
- Lu Zong
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaohua Wei
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wenli Gou
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Pu Huang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ye Lv
- Department of Behavioral Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
47
|
Expression of H19 imprinted gene in patients with repeated implantation failure during the window of implantation. Arch Gynecol Obstet 2017; 296:835-839. [DOI: 10.1007/s00404-017-4482-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/31/2017] [Indexed: 01/02/2023]
|
48
|
Mechanistic Insight into Long Noncoding RNAs and the Placenta. Int J Mol Sci 2017; 18:ijms18071371. [PMID: 28653993 PMCID: PMC5535864 DOI: 10.3390/ijms18071371] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/19/2017] [Accepted: 06/21/2017] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are classified as RNAs greater than 200 nucleotides in length that do not produce a protein product. lncRNAs are expressed with cellular and temporal specificity and have been shown to play a role in many cellular events, including the regulation of gene expression, post-transcriptional modifications and epigenetic modifications. Since lncRNAs were first discovered, there has been increasing evidence that they play important roles in the development and function of most organs, including the placenta. The placenta is an essential transient organ that facilitates communication and nutrient exchange between the mother and foetus. The placenta is of foetal origin and begins to form shortly after the embryo implants into the uterine wall. The placenta relies heavily on the successful differentiation and function of trophoblast cells, including invasion as well as the formation of the maternal/foetal interface. Here, we review the current literature surrounding the involvement of lncRNAs in the development and function of trophoblasts and the human placenta.
Collapse
|
49
|
Long noncoding RNA RP11-766N7.4 functions as a tumor suppressor by regulating epithelial-mesenchymal transition in esophageal squamous cell carcinoma. Biomed Pharmacother 2017; 88:778-785. [PMID: 28157654 DOI: 10.1016/j.biopha.2017.01.124] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Numerous studies have proved that long non-coding RNAs participate in the initiation and metastasis of various cancers including esophageal squamous cell carcinoma (ESCC). Recently, a novel long non-coding RNA RP11-766N7.4 was discovered in a variety of human tissues. However, its role in oncogenesis and tumor metastasis remains unknown. METHODS To investigate the function of long noncoding RNA RP11-766N7.4 in ESCC, RT-qPCR was used to monitor the expression level of long non-coding RNA RP11-766N7.4 in ESCC cell lines and 50 paired ESCC tissues. Moreover, the association between long non-coding RNA RP11-766N7.4 expression level and clinicopathological characteristics as well as 5-year survival rate of ESCC patients was evaluated. Furthermore, function assays containing cell proliferation assay, flow cytometry, Colony Formation, wound healing assay and Transwell assays were conducted to investigate the role of long noncoding RNA RP11-766N7.4 in ESCC. Western blotting assay were used to explore the regulation mechanism. RESULTS In this study, we found that long noncoding RNA RP11-766N7.4 was downregulated in ESCC tissues and cell lines and correlated with lymph node metastasis, tumor stage and survival rate. Results also revealed that long noncoding RNA RP11-766N7.4 had no significant effect on cell proliferation, cell cycle or cell apoptosis of ESCC cells. In addition, long noncoding RNA RP11-766N7.4 knockdown promoted cellular migration and invasion via inducing EMT process, and overexpression of long noncoding RNA RP11-766N7.4 inhibited cellular migration and invasion by suppressing EMT process. CONCLUSION Our study suggested that long noncoding RNA RP11-766N7.4 acts as a tumor suppressor in ESCC carcinogenesis and metastasis, and may be a potential prognostic mark and a therapeutic target for ESCC.
Collapse
|