1
|
Hao C, Chen P, Setrerrahmane S, Xu H. A peptide-salinomycin conjugate with a bystander effect reduces the stemness characteristics of ovarian cancer cells and enhances drug sensitivity. Eur J Med Chem 2024; 276:116701. [PMID: 39067438 DOI: 10.1016/j.ejmech.2024.116701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/07/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Salinomycin (Sal) has attracted considerable attention in the field of tumor treatment, especially for its inhibitory effect on cancer stem cells (CSCs) and drug-resistant tumor cells. However, its solubility and targeting specificity pose significant challenges to its pharmaceutical development. Sal-A6, a novel peptide-drug conjugate (PDC), was formed by linking the peptide A6 targeting the CSC marker CD44 with Sal using a specific linker. This conjugation markedly enhances the physicochemical properties of Sal and compared to Sal, Sal-A6 demonstrated a significantly increased activity against ovarian cancer. Furthermore, Sal-A6, employing a disulfide bond as a linker, exhibited bystander killing effect. Moreover, it induces substantial cytotoxic effect on both cancer stem cells and drug-resistant cells in addition to enhance chemosensitivity of resistant ovarian cancer cells. In summary, the results indicated that Sal-A6, a novel PDC derived from Sal, has potential therapeutic applications in the treatment of ovarian cancer and drug-resistant patients. Additionally, this discovery offers insights for developing PDC-type drugs using Sal as a foundation.
Collapse
Affiliation(s)
- Chaowei Hao
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province, China Pharmaceutical University, Nanjing 210009, P.R. China; State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Peng Chen
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province, China Pharmaceutical University, Nanjing 210009, P.R. China; State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | | | - Hanmei Xu
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province, China Pharmaceutical University, Nanjing 210009, P.R. China; State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Rolver MG, Severin M, Pedersen SF. Regulation of cancer cell lipid metabolism and oxidative phosphorylation by microenvironmental acidosis. Am J Physiol Cell Physiol 2024; 327:C869-C883. [PMID: 39099426 DOI: 10.1152/ajpcell.00429.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
The expansion of cancer cell mass in solid tumors generates a harsh environment characterized by dynamically varying levels of acidosis, hypoxia, and nutrient deprivation. Because acidosis inhibits glycolytic metabolism and hypoxia inhibits oxidative phosphorylation, cancer cells that survive and grow in these environments must rewire their metabolism and develop a high degree of metabolic plasticity to meet their energetic and biosynthetic demands. Cancer cells frequently upregulate pathways enabling the uptake and utilization of lipids and other nutrients derived from dead or recruited stromal cells, and in particular lipid uptake is strongly enhanced in acidic microenvironments. The resulting lipid accumulation and increased reliance on β-oxidation and mitochondrial metabolism increase susceptibility to oxidative stress, lipotoxicity, and ferroptosis, in turn driving changes that may mitigate such risks. The spatially and temporally heterogeneous tumor microenvironment thus selects for invasive, metabolically flexible, and resilient cancer cells capable of exploiting their local conditions and of seeking out more favorable surroundings. This phenotype relies on the interplay between metabolism, acidosis, and oncogenic mutations, driving metabolic signaling pathways such as peroxisome proliferator-activated receptors (PPARs). Understanding the particular vulnerabilities of such cells may uncover novel therapeutic liabilities of the most aggressive cancer cells.
Collapse
Affiliation(s)
- Michala G Rolver
- Section for Computational and RNA Biology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Marc Severin
- Section for Computational and RNA Biology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Stine F Pedersen
- Section for Computational and RNA Biology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Ochiai Y, Suzuki-Karasaki M, Ando T, Suzuki-Karasaki M, Nakayama H, Suzuki-Karasaki Y. Nitric oxide-dependent cell death in glioblastoma and squamous cell carcinoma via prodeath mitochondrial clustering. Eur J Cell Biol 2024; 103:151422. [PMID: 38795505 DOI: 10.1016/j.ejcb.2024.151422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024] Open
Abstract
Besides the fission-fusion dynamics, the cellular distribution of mitochondria has recently emerged as a critical biological parameter in regulating mitochondrial function and cell survival. We previously found that mitochondrial clustering on the nuclear periphery, or monopolar perinuclear mitochondrial clustering (MPMC), accompanies the anticancer activity of air plasma-activated medium (APAM) against glioblastoma and human squamous cell carcinoma, which is closely associated with oxidant-dependent tubulin remodeling and mitochondrial fragmentation. Accordingly, this study investigated the regulatory roles of nitric oxide (NO) in the anticancer activity of APAM. Time-lapse analysis revealed a time-dependent increase in NO accompanied by MPMC. In contrast, APAM caused minimal increases in MPMC and NO levels in nontransformed cells. NO, hydroxyl radicals, and lipid peroxide levels increased near the damaged nuclear periphery, possibly within mitochondria. NO scavenging prevented tubulin remodeling, MPMC, perinuclear oxidant production, nuclear damage, and cell death. Conversely, synthetic NO donors augmented all the prodeath events and acted synergistically with APAM. Salinomycin, an emerging drug against multidrug-resistant cancers, had similar NO-dependent effects. These results suggest that APAM and salinomycin induce NO-dependent cell death, where MPMC and oxidative mitochondria play critical roles. Our findings encourage further investigations on MPMC as a potential target for NO-driven anticancer agents against drug-resistant cancers.
Collapse
Affiliation(s)
- Yushi Ochiai
- Department of Research and Development, Plasma ChemiBio Laboratory, Nasushiobara, Tochigi Japan
| | - Manami Suzuki-Karasaki
- Department of Research and Development, Plasma ChemiBio Laboratory, Nasushiobara, Tochigi Japan; Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takashi Ando
- Department of Research and Development, Plasma ChemiBio Laboratory, Nasushiobara, Tochigi Japan
| | - Miki Suzuki-Karasaki
- Department of Research and Development, Plasma ChemiBio Laboratory, Nasushiobara, Tochigi Japan
| | - Hideki Nakayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | | |
Collapse
|
4
|
Hashemi M, Paskeh MDA, Orouei S, Abbasi P, Khorrami R, Dehghanpour A, Esmaeili N, Ghahremanzade A, Zandieh MA, Peymani M, Salimimoghadam S, Rashidi M, Taheriazam A, Entezari M, Hushmandi K. Towards dual function of autophagy in breast cancer: A potent regulator of tumor progression and therapy response. Biomed Pharmacother 2023; 161:114546. [PMID: 36958191 DOI: 10.1016/j.biopha.2023.114546] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023] Open
Abstract
As a devastating disease, breast cancer has been responsible for decrease in life expectancy of females and its morbidity and mortality are high. Breast cancer is the most common tumor in females and its treatment has been based on employment of surgical resection, chemotherapy and radiotherapy. The changes in biological behavior of breast tumor relies on genomic and epigenetic mutations and depletions as well as dysregulation of molecular mechanisms that autophagy is among them. Autophagy function can be oncogenic in increasing tumorigenesis, and when it has pro-death function, it causes reduction in viability of tumor cells. The carcinogenic function of autophagy in breast tumor is an impediment towards effective therapy of patients, as it can cause drug resistance and radio-resistance. The important hallmarks of breast tumor such as glucose metabolism, proliferation, apoptosis and metastasis can be regulated by autophagy. Oncogenic autophagy can inhibit apoptosis, while it promotes stemness of breast tumor. Moreover, autophagy demonstrates interaction with tumor microenvironment components such as macrophages and its level can be regulated by anti-tumor compounds in breast tumor therapy. The reasons of considering autophagy in breast cancer therapy is its pleiotropic function, dual role (pro-survival and pro-death) and crosstalk with important molecular mechanisms such as apoptosis. Moreover, current review provides a pre-clinical and clinical evaluation of autophagy in breast tumor.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sima Orouei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pegah Abbasi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esmaeili
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azin Ghahremanzade
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari 4815733971, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
5
|
Wu L, Shen B, Li J, Zhang H, Zhang K, Yang Y, Zu Z, Shen D, Luo M. STAT3 exerts pro-tumor and anti-autophagy roles in cervical cancer. Diagn Pathol 2022; 17:13. [PMID: 35057825 PMCID: PMC8772194 DOI: 10.1186/s13000-021-01182-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 12/03/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
STAT3 plays an important role in cervical cancer. LC3B, the most potential molecular biomarker of autophagy that may promote or inhibit cancer progression, can be downregulated by STAT3. However the role of STAT3 in the autophagy of cervical cancer remains unclear.
Purpose
This study aimed to evaluate the relationship between STAT3 and LC3B in protein level, and verify whether STAT3 promotes proliferation, migration and plate colony formation by inhibiting autophagy of cervical cancer cells through bcl2-beclin1 axis.
Results
STAT3 was overexpressed in cervical cancer tissues, and negatively correlated with the expression level of LC3B. STAT3 knockout or knockdown significantly increased the autophagy level and decreased proliferation, migration, plate colony formation and subcutaneous tumorigenesis of cervical cancer cells in vitro and in vivo. STAT3 is known to mediate autophagy through Bcl2-Beclin1 complex. Bcl2 was positively whereas Beclin1 negatively correlated with STAT3 expression, indicating that Bcl2-Beclin1 complex involved in this transition.
Conclusion
STAT3 may upregulate the autophagy level of cervical cancer cells through the Bcl2-Beclin1 axis. This indicates that STAT3 may be an important prognostic and therapeutic target for cervical cancer.
Collapse
|
6
|
Gonçalves AC, Richiardone E, Jorge J, Polónia B, Xavier CPR, Salaroglio IC, Riganti C, Vasconcelos MH, Corbet C, Sarmento-Ribeiro AB. Impact of cancer metabolism on therapy resistance - Clinical implications. Drug Resist Updat 2021; 59:100797. [PMID: 34955385 DOI: 10.1016/j.drup.2021.100797] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite an increasing arsenal of anticancer therapies, many patients continue to have poor outcomes due to the therapeutic failures and tumor relapses. Indeed, the clinical efficacy of anticancer therapies is markedly limited by intrinsic and/or acquired resistance mechanisms that can occur in any tumor type and with any treatment. Thus, there is an urgent clinical need to implement fundamental changes in the tumor treatment paradigm by the development of new experimental strategies that can help to predict the occurrence of clinical drug resistance and to identify alternative therapeutic options. Apart from mutation-driven resistance mechanisms, tumor microenvironment (TME) conditions generate an intratumoral phenotypic heterogeneity that supports disease progression and dismal outcomes. Tumor cell metabolism is a prototypical example of dynamic, heterogeneous, and adaptive phenotypic trait, resulting from the combination of intrinsic [(epi)genetic changes, tissue of origin and differentiation dependency] and extrinsic (oxygen and nutrient availability, metabolic interactions within the TME) factors, enabling cancer cells to survive, metastasize and develop resistance to anticancer therapies. In this review, we summarize the current knowledge regarding metabolism-based mechanisms conferring adaptive resistance to chemo-, radio-and immunotherapies as well as targeted therapies. Furthermore, we report the role of TME-mediated intratumoral metabolic heterogeneity in therapy resistance and how adaptations in amino acid, glucose, and lipid metabolism support the growth of therapy-resistant cancers and/or cellular subpopulations. We also report the intricate interplay between tumor signaling and metabolic pathways in cancer cells and discuss how manipulating key metabolic enzymes and/or providing dietary changes may help to eradicate relapse-sustaining cancer cells. Finally, in the current era of personalized medicine, we describe the strategies that may be applied to implement metabolic profiling for tumor imaging, biomarker identification, selection of tailored treatments and monitoring therapy response during the clinical management of cancer patients.
Collapse
Affiliation(s)
- Ana Cristina Gonçalves
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) - Group of Environment Genetics and Oncobiology (CIMAGO), FMUC, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Elena Richiardone
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium
| | - Joana Jorge
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) - Group of Environment Genetics and Oncobiology (CIMAGO), FMUC, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Bárbara Polónia
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Cristina P R Xavier
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | | | - Chiara Riganti
- Department of Oncology, School of Medicine, University of Torino, Italy
| | - M Helena Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy of the University of Porto, Porto, Portugal
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium.
| | - Ana Bela Sarmento-Ribeiro
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) - Group of Environment Genetics and Oncobiology (CIMAGO), FMUC, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Hematology Service, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.
| |
Collapse
|
7
|
Adam C, Paolini L, Gueguen N, Mabilleau G, Preisser L, Blanchard S, Pignon P, Manero F, Le Mao M, Morel A, Reynier P, Beauvillain C, Delneste Y, Procaccio V, Jeannin P. Acetoacetate protects macrophages from lactic acidosis-induced mitochondrial dysfunction by metabolic reprograming. Nat Commun 2021; 12:7115. [PMID: 34880237 PMCID: PMC8655019 DOI: 10.1038/s41467-021-27426-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/09/2021] [Indexed: 01/01/2023] Open
Abstract
Lactic acidosis, the extracellular accumulation of lactate and protons, is a consequence of increased glycolysis triggered by insufficient oxygen supply to tissues. Macrophages are able to differentiate from monocytes under such acidotic conditions, and remain active in order to resolve the underlying injury. Here we show that, in lactic acidosis, human monocytes differentiating into macrophages are characterized by depolarized mitochondria, transient reduction of mitochondrial mass due to mitophagy, and a significant decrease in nutrient absorption. These metabolic changes, resembling pseudostarvation, result from the low extracellular pH rather than from the lactosis component, and render these cells dependent on autophagy for survival. Meanwhile, acetoacetate, a natural metabolite produced by the liver, is utilized by monocytes/macrophages as an alternative fuel to mitigate lactic acidosis-induced pseudostarvation, as evidenced by retained mitochondrial integrity and function, retained nutrient uptake, and survival without the need of autophagy. Our results thus show that acetoacetate may increase tissue tolerance to sustained lactic acidosis. Lactic acidosis is a metabolic state that occurs in injured tissues. Here the authors show that macrophages, in order to remain functional in acidosis, reduce their mitochondrial mass by mitophagy and rely on autophagy for survival, with mitochondrial integrity retained using acetoacetate as alternative fuel.
Collapse
Affiliation(s)
- Clément Adam
- Univ Angers, Université de Nantes, INSERM, CRCINA, LabEx IGO, SFR ICAT, F-49000, Angers, France
| | - Léa Paolini
- Univ Angers, Université de Nantes, INSERM, CRCINA, LabEx IGO, SFR ICAT, F-49000, Angers, France
| | - Naïg Gueguen
- Univ Angers, CHU d'Angers, INSERM, CNRS, MitoVasc, SFR ICAT, F-49000, Angers, France.,Département de Biochimie et Génétique, CHU d'Angers, Angers, France
| | - Guillaume Mabilleau
- GEROM, Université d'Angers, Angers, France.,Département de Pathologie Cellulaire et Tissulaire, CHU d'Angers, Angers, France
| | - Laurence Preisser
- Univ Angers, Université de Nantes, INSERM, CRCINA, LabEx IGO, SFR ICAT, F-49000, Angers, France
| | - Simon Blanchard
- Univ Angers, Université de Nantes, INSERM, CRCINA, LabEx IGO, SFR ICAT, F-49000, Angers, France.,Laboratoire d'Immunologie et Allergologie, CHU d'Angers, Angers, France
| | - Pascale Pignon
- Univ Angers, Université de Nantes, INSERM, CRCINA, LabEx IGO, SFR ICAT, F-49000, Angers, France
| | | | - Morgane Le Mao
- Univ Angers, CHU d'Angers, INSERM, CNRS, MitoVasc, SFR ICAT, F-49000, Angers, France
| | - Alain Morel
- Univ Angers, Université de Nantes, INSERM, CRCINA, LabEx IGO, SFR ICAT, F-49000, Angers, France.,Institut de Cancérologie de l'Ouest, F-49000, Angers, France
| | - Pascal Reynier
- Laboratoire de Biochimie et biologie moléculaire, CHU d'Angers, Angers, France
| | - Céline Beauvillain
- Univ Angers, Université de Nantes, INSERM, CRCINA, LabEx IGO, SFR ICAT, F-49000, Angers, France.,Laboratoire d'Immunologie et Allergologie, CHU d'Angers, Angers, France
| | - Yves Delneste
- Univ Angers, Université de Nantes, INSERM, CRCINA, LabEx IGO, SFR ICAT, F-49000, Angers, France.,Laboratoire d'Immunologie et Allergologie, CHU d'Angers, Angers, France
| | - Vincent Procaccio
- Univ Angers, CHU d'Angers, INSERM, CNRS, MitoVasc, SFR ICAT, F-49000, Angers, France.,Département de Biochimie et Génétique, CHU d'Angers, Angers, France
| | - Pascale Jeannin
- Univ Angers, Université de Nantes, INSERM, CRCINA, LabEx IGO, SFR ICAT, F-49000, Angers, France. .,Laboratoire d'Immunologie et Allergologie, CHU d'Angers, Angers, France.
| |
Collapse
|
8
|
Wang H, Zhang H, Zhu Y, Wu Z, Cui C, Cai F. Anticancer Mechanisms of Salinomycin in Breast Cancer and Its Clinical Applications. Front Oncol 2021; 11:654428. [PMID: 34381705 PMCID: PMC8350729 DOI: 10.3389/fonc.2021.654428] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 06/28/2021] [Indexed: 01/11/2023] Open
Abstract
Breast cancer (BC) is the most frequent cancer among women worldwide and is the leading cause of cancer-related deaths in women. Cancer cells with stem cell-like features and tumor-initiating potential contribute to drug resistance, tumor recurrence, and metastasis. To achieve better clinical outcomes, it is crucial to eradicate both bulk BC cells and breast cancer stem cells (BCSCs). Salinomycin, a monocarboxylic polyether antibiotic isolated from Streptomyces albus, can precisely kill cancer stem cells (CSCs), particularly BCSCs, by various mechanisms, including apoptosis, autophagy, and necrosis. There is increasing evidence that salinomycin can inhibit cell proliferation, invasion, and migration in BC and reverse the immune-inhibitory microenvironment to prevent tumor growth and metastasis. Therefore, salinomycin is a promising therapeutic drug for BC. In this review, we summarize established mechanisms by which salinomycin protects against BC and discuss its future clinical applications.
Collapse
Affiliation(s)
- Hui Wang
- Laboratory of Tumor Molecular Biology, School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Hongyi Zhang
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yihao Zhu
- Laboratory of Tumor Molecular Biology, School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Zhonghang Wu
- Department of Scientific Research, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Chunhong Cui
- Laboratory of Tumor Molecular Biology, School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China.,Department of Scientific Research, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Fengfeng Cai
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Ando T, Suzuki-Karasaki M, Suzuki-Karasaki M, Ichikawa J, Ochiai T, Yoshida Y, Haro H, Suzuki-Karasaki Y. Combined Anticancer Effect of Plasma-Activated Infusion and Salinomycin by Targeting Autophagy and Mitochondrial Morphology. Front Oncol 2021; 11:593127. [PMID: 34150606 PMCID: PMC8212785 DOI: 10.3389/fonc.2021.593127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 05/11/2021] [Indexed: 01/10/2023] Open
Abstract
Non-thermal atmospheric pressure plasma (NTAPP)-activated liquids have emerged as new promising anticancer agents because they preferentially injure malignant cells. Here, we report plasma-activated infusion (PAI) as a novel NTAPP-based anti-neoplastic agent. PAI was prepared by irradiating helium NTAP to form a clinically approved infusion fluid. PAI dose-dependently killed malignant melanoma and osteosarcoma cell lines while showing much lower cytotoxic effects on dermal and lung fibroblasts. We found that PAI and salinomycin (Sal), an emerging anticancer stem cell agent, mutually operated as adjuvants. The combined administration of PAI and Sal was much more effective than single-agent application in reducing the growth and lung metastasis of osteosarcoma allografts with minimal adverse effects. Mechanistically, PAI explicitly induced necroptosis and increased the phosphorylation of receptor-interacting protein 1/3 rapidly and transiently. PAI also suppressed the ambient autophagic flux by activating the mammalian target of the rapamycin pathway. PAI increased the phosphorylation of Raptor, Rictor, and p70-S6 kinase, along with decreased LC3-I/II expression. In contrast, Sal promoted autophagy. Moreover, Sal exacerbated the mitochondrial network collapse caused by PAI, resulting in aberrant clustering of fragmented mitochondrial in a tumor-specific manner. Our findings suggest that combined administration of PAI and Sal is a promising approach for treating these apoptosis-resistant cancers.
Collapse
Affiliation(s)
- Takashi Ando
- Department of Orthopaedic Surgery, Yamanashi University School of Medicine, Yamanashi, Japan
| | - Manami Suzuki-Karasaki
- Department of Research and Development, Plasma ChemiBio Laboratory, Plasma ChemiBio Laboratory, Nasushiobara, Tochigi, Japan
| | - Miki Suzuki-Karasaki
- Department of Research and Development, Plasma ChemiBio Laboratory, Plasma ChemiBio Laboratory, Nasushiobara, Tochigi, Japan
| | - Jiro Ichikawa
- Department of Orthopaedic Surgery, Yamanashi University School of Medicine, Yamanashi, Japan
| | - Toyoko Ochiai
- Department of Research and Development, Plasma ChemiBio Laboratory, Plasma ChemiBio Laboratory, Nasushiobara, Tochigi, Japan.,Department of Dermatology, Nihon University Hospital, Tokyo, Japan
| | - Yukihiro Yoshida
- Department of Orthopaedic Surgery, Nihon University School of Medicine, Nihon University Orthopaedic Surgery, Tokyo, Japan
| | - Hirotaka Haro
- Department of Orthopaedic Surgery, Yamanashi University School of Medicine, Yamanashi, Japan
| | - Yoshihiro Suzuki-Karasaki
- Department of Research and Development, Plasma ChemiBio Laboratory, Plasma ChemiBio Laboratory, Nasushiobara, Tochigi, Japan
| |
Collapse
|
10
|
Ishaq M, Ojha R, Sharma AP, Singh SK. Autophagy in cancer: Recent advances and future directions. Semin Cancer Biol 2020; 66:171-181. [PMID: 32201367 DOI: 10.1016/j.semcancer.2020.03.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 02/10/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023]
Abstract
Autophagy is being explored as a potential therapeutic target for enhancing the cytotoxic effects of chemotherapeutic regimens in various malignancies. Autophagy plays a very important role in cancer pathogenesis. Here, we discuss the updates on the modulation of autophagy via dynamic interactions with different organelles and the exploitation of selective autophagy for exploring therapeutic strategies. We further discuss the role of autophagy inhibitors in cancer preclinical and clinical trials, novel autophagy inhibitors, and challenges likely to be faced by clinicians while inducting autophagy modulators in clinical practice.
Collapse
Affiliation(s)
- Mohd Ishaq
- School of Medicine, Department of Pathology, Stanford University, CA, USA.
| | - Rani Ojha
- School of Medicine, Department of Pathology, Stanford University, CA, USA.
| | - Aditya P Sharma
- Department of Urology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Shrawan K Singh
- Department of Urology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
11
|
Varisli L, Cen O, Vlahopoulos S. Dissecting pharmacological effects of chloroquine in cancer treatment: interference with inflammatory signaling pathways. Immunology 2020; 159:257-278. [PMID: 31782148 PMCID: PMC7011648 DOI: 10.1111/imm.13160] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Chloroquines are 4-aminoquinoline-based drugs mainly used to treat malaria. At pharmacological concentrations, they have significant effects on tissue homeostasis, targeting diverse signaling pathways in mammalian cells. A key target pathway is autophagy, which regulates macromolecule turnover in the cell. In addition to affecting cellular metabolism and bioenergetic flow equilibrium, autophagy plays a pivotal role at the interface between inflammation and cancer progression. Chloroquines consequently have critical effects in tissue metabolic activity and importantly, in key functions of the immune system. In this article, we will review the work addressing the role of chloroquines in the homeostasis of mammalian tissue, and the potential strengths and weaknesses concerning their use in cancer therapy.
Collapse
Affiliation(s)
- Lokman Varisli
- Union of Education and Science Workers (EGITIM SEN), Diyarbakir Branch, Diyarbakir, Turkey
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir, Turkey
| | - Osman Cen
- Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Natural Sciences, Joliet Jr College, Joliet, IL, USA
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
12
|
Harguindey S, Alfarouk K, Polo Orozco J, Hardonnière K, Stanciu D, Fais S, Devesa J. A New and Integral Approach to the Etiopathogenesis and Treatment of Breast Cancer Based upon Its Hydrogen Ion Dynamics. Int J Mol Sci 2020; 21:E1110. [PMID: 32046158 PMCID: PMC7036897 DOI: 10.3390/ijms21031110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
Despite all efforts, the treatment of breast cancer (BC) cannot be considered to be a success story. The advances in surgery, chemotherapy and radiotherapy have not been sufficient at all. Indeed, the accumulated experience clearly indicates that new perspectives and non-main stream approaches are needed to better characterize the etiopathogenesis and treatment of this disease. This contribution deals with how the new pH-centric anticancer paradigm plays a fundamental role in reaching a more integral understanding of the etiology, pathogenesis, and treatment of this multifactorial disease. For the first time, the armamentarium available for the treatment of the different types and phases of BC is approached here from a Unitarian perspective-based upon the hydrogen ion dynamics of cancer. The wide-ranged pH-related molecular, biochemical and metabolic model is able to embrace most of the fields and subfields of breast cancer etiopathogenesis and treatment. This single and integrated approach allows advancing towards a unidirectional, concerted and synergistic program of treatment. Further efforts in this line are likely to first improve the therapeutics of each subtype of this tumor and every individual patient in every phase of the disease.
Collapse
Affiliation(s)
- Salvador Harguindey
- Institute of Clinical Biology and Metabolism, Postas 13, 01004 Vitoria, Spain;
| | - Khalid Alfarouk
- Al-Ghad International Colleges for Applied Medical Sciences, Al-Madinah Al-Munawarah, Saudi Arabia and Alfarouk Biomedical Research LLC, Tampa, FL 33617, USA;
| | - Julián Polo Orozco
- Institute of Clinical Biology and Metabolism, Postas 13, 01004 Vitoria, Spain;
| | - Kévin Hardonnière
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290 Châtenay-Malabry, France;
| | - Daniel Stanciu
- Scientific Direction, MCS Foundation For Life, 5623KR Eindhoven, The Netherlands;
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità (National Institute of Health), Viale Regina Elena, 299, 00161 Rome, Italy;
| | - Jesús Devesa
- Scientific Direction, Foltra Medical Centre, Travesía de Montouto 24, 15886 Teo, Spain;
| |
Collapse
|
13
|
Garcia-Mayea Y, Mir C, Masson F, Paciucci R, LLeonart ME. Insights into new mechanisms and models of cancer stem cell multidrug resistance. Semin Cancer Biol 2020; 60:166-180. [PMID: 31369817 DOI: 10.1016/j.semcancer.2019.07.022] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/24/2022]
Abstract
The acquisition of genetic alterations, clonal evolution, and the tumor microenvironment promote cancer progression, metastasis and therapy resistance. These events correspond to the establishment of the great phenotypic heterogeneity and plasticity of cancer cells that contribute to tumor progression and resistant disease. Targeting resistant cancers is a major challenge in oncology; however, the underlying processes are not yet fully understood. Even though current treatments can reduce tumor size and increase life expectancy, relapse and multidrug resistance (MDR) ultimately remain the second cause of death in developed countries. Recent evidence points toward stem-like phenotypes in cancer cells, promoted by cancer stem cells (CSCs), as the main culprit of cancer relapse, resistance (radiotherapy, hormone therapy, and/or chemotherapy) and metastasis. Many mechanisms have been proposed for CSC resistance, such as drug efflux through ABC transporters, overactivation of the DNA damage response (DDR), apoptosis evasion, prosurvival pathways activation, cell cycle promotion and/or cell metabolic alterations. Nonetheless, targeted therapy toward these specific CSC mechanisms is only partially effective to prevent or abolish resistance, suggesting underlying additional causes for CSC resilience. This article aims to provide an integrated picture of the MDR mechanisms that operate in CSCs' behavior and to propose a novel model of tumor evolution during chemotherapy. Targeting the pathways mentioned here might hold promise and reveal new strategies for future clinical therapeutic approaches.
Collapse
Affiliation(s)
- Y Garcia-Mayea
- Biomedical Research in Cancer Stem Cells, Vall d´Hebron Research Institute (VHIR), Passeig Vall d´Hebron 119-129, 08035 Barcelona, Spain
| | - C Mir
- Biomedical Research in Cancer Stem Cells, Vall d´Hebron Research Institute (VHIR), Passeig Vall d´Hebron 119-129, 08035 Barcelona, Spain
| | - F Masson
- Biomedical Research in Cancer Stem Cells, Vall d´Hebron Research Institute (VHIR), Passeig Vall d´Hebron 119-129, 08035 Barcelona, Spain
| | - R Paciucci
- Clinical Biochemistry Group, Vall d'Hebron Hospital and Vall d´Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d´Hebron 119-129, 08035 Barcelona, Spain
| | - M E LLeonart
- Biomedical Research in Cancer Stem Cells, Vall d´Hebron Research Institute (VHIR), Passeig Vall d´Hebron 119-129, 08035 Barcelona, Spain; Spanish Biomedical Research Network Centre in Oncology, CIBERONC, Spain.
| |
Collapse
|
14
|
Garcia-Mayea Y, Mir C, Muñoz L, Benavente S, Castellvi J, Temprana J, Maggio V, Lorente J, Paciucci R, LLeonart ME. Autophagy inhibition as a promising therapeutic target for laryngeal cancer. Carcinogenesis 2019; 40:1525-1534. [PMID: 31050705 DOI: 10.1093/carcin/bgz080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/25/2019] [Indexed: 12/16/2022] Open
Abstract
To identify the putative relevance of autophagy in laryngeal cancer, we performed an immunohistochemistry study to analyze the expression of the proteins involved in this process, namely, LC3, ATG5 and p62/SQSTM1. Additionally, Prostate tumor-overexpressed gene 1 protein (PTOV1) was included due to its potential relevance in laryngeal cancer. Moreover, as cancer resistance might involve autophagy in some circumstances, we studied the intrinsic drug resistance capacity of primary tumor cultures derived from 13 laryngeal cancer biopsies and their expression levels of LC3, ATG5, p62 and PTOV1. Overall, our results suggest that (i) cytoplasmic p62 and PTOV1 can be considered prognostic markers in laryngeal cancer, (ii) the acquisition of resistance seems to be related to PTOV1 and autophagy-related protein overexpression, (iii) by increasing autophagy, PTOV1 might contribute to resistance in this model and (iv) the expression of autophagy-related proteins could classify a subgroup of laryngeal cancer patients who will benefit from a therapy based upon autophagy inhibition. Our study suggests that autophagy inhibition with hydroxychloroquine could be a promising strategy for laryngeal cancer patients, particularly those patients with high resistance to the CDDP treatment that in addition have autophagy upregulation.
Collapse
Affiliation(s)
- Yoelsis Garcia-Mayea
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d´Hebron, Barcelona, Spain
| | - Cristina Mir
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d´Hebron, Barcelona, Spain
| | - Lisandra Muñoz
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d´Hebron, Barcelona, Spain
| | - Sergi Benavente
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d´Hebron, Barcelona, Spain
| | - Josep Castellvi
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d´Hebron, Barcelona, Spain
| | - Jordi Temprana
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d´Hebron, Barcelona, Spain
| | - Valentina Maggio
- Otorhinolaryngology Department, Hospital Vall d´Hebron (HUVH), Passeig Vall d´Hebron, Barcelona, Spain
| | - Juan Lorente
- Biomedical Research Group of Urology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d´Hebron, Barcelona, Spain
| | - Rosanna Paciucci
- Otorhinolaryngology Department, Hospital Vall d´Hebron (HUVH), Passeig Vall d´Hebron, Barcelona, Spain
| | - Matilde E LLeonart
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d´Hebron, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology, CIBERONC, Madrid, Spain
| |
Collapse
|
15
|
Vander Linden C, Corbet C. Therapeutic Targeting of Cancer Stem Cells: Integrating and Exploiting the Acidic Niche. Front Oncol 2019; 9:159. [PMID: 30941310 PMCID: PMC6433943 DOI: 10.3389/fonc.2019.00159] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/25/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSC) or tumor-initiating cells represent a small subpopulation of cells within the tumor bulk that share features with somatic stem cells, such as self-renewal and pluripotency. From a clinical point of view, CSC are thought to be the main drivers of tumor relapse in patients by supporting treatment resistance and dissemination to distant organs. Both genome instability and microenvironment-driven selection support tumor heterogeneity and enable the emergence of resistant cells with stem-like properties, when therapy is applied. Besides hypoxia and nutrient deprivation, acidosis is another selection barrier in the tumor microenvironment (TME) which provides a permissive niche to shape more aggressive and fitter cancer cell phenotypes. This review describes our current knowledge about the influence of the "acidic niche" on the stem-like phenotypic features of cancer cells. In addition, we briefly survey new therapeutic options that may help eradicate CSC by integrating and/or exploiting the acidic niche, and thereby contribute to prevent the occurrence of therapy resistance as well as metastatic dissemination.
Collapse
Affiliation(s)
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| |
Collapse
|
16
|
Antoszczak M. A medicinal chemistry perspective on salinomycin as a potent anticancer and anti-CSCs agent. Eur J Med Chem 2019; 164:366-377. [DOI: 10.1016/j.ejmech.2018.12.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 01/30/2023]
|
17
|
Pellegrini P, Serviss JT, Lundbäck T, Bancaro N, Mazurkiewicz M, Kolosenko I, Yu D, Haraldsson M, D'Arcy P, Linder S, De Milito A. A drug screening assay on cancer cells chronically adapted to acidosis. Cancer Cell Int 2018; 18:147. [PMID: 30263014 PMCID: PMC6156858 DOI: 10.1186/s12935-018-0645-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/18/2018] [Indexed: 11/10/2022] Open
Abstract
Background Drug screening for the identification of compounds with anticancer activity is commonly performed using cell lines cultured under normal oxygen pressure and physiological pH. However, solid tumors are characterized by a microenvironment with limited access to nutrients, reduced oxygen supply and acidosis. Tumor hypoxia and acidosis have been identified as important drivers of malignant progression and contribute to multicellular resistance to different forms of therapy. Tumor acidosis represents an important mechanism mediating drug resistance thus the identification of drugs active on acid-adapted cells may improve the efficacy of cancer therapy. Methods Here, we characterized human colon carcinoma cells (HCT116) chronically adapted to grow at pH 6.8 and used them to screen the Prestwick drug library for cytotoxic compounds. Analysis of gene expression profiles in parental and low pH-adapted cells showed several differences relating to cell cycle, metabolism and autophagy. Results The screen led to the identification of several compounds which were further selected for their preferential cytotoxicity towards acid-adapted cells. Amongst 11 confirmed hits, we primarily focused our investigation on the benzoporphyrin derivative Verteporfin (VP). VP significantly reduced viability in low pH-adapted HCT116 cells as compared to parental HCT116 cells and normal immortalized epithelial cells. The cytotoxic activity of VP was enhanced by light activation and acidic pH culture conditions, likely via increased acid-dependent drug uptake. VP displayed the unique property to cause light-dependent cross-linking of proteins and resulted in accumulation of polyubiquitinated proteins without inducing inhibition of the proteasome. Conclusions Our study provides an example and a tool to identify anticancer drugs targeting acid-adapted cancer cells. Electronic supplementary material The online version of this article (10.1186/s12935-018-0645-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paola Pellegrini
- 1Cancer Center Karolinska, R8:00, Department of Oncology-Pathology, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Jason T Serviss
- 1Cancer Center Karolinska, R8:00, Department of Oncology-Pathology, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Thomas Lundbäck
- 2Chemical Biology Consortium Sweden, Science for Life Laboratory, Stockholm, Sweden.,4Present Address: Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Nicolo Bancaro
- 1Cancer Center Karolinska, R8:00, Department of Oncology-Pathology, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Magdalena Mazurkiewicz
- 1Cancer Center Karolinska, R8:00, Department of Oncology-Pathology, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Iryna Kolosenko
- 1Cancer Center Karolinska, R8:00, Department of Oncology-Pathology, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Di Yu
- 1Cancer Center Karolinska, R8:00, Department of Oncology-Pathology, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Martin Haraldsson
- 2Chemical Biology Consortium Sweden, Science for Life Laboratory, Stockholm, Sweden
| | - Padraig D'Arcy
- 3Department of Medical and Health Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Stig Linder
- 3Department of Medical and Health Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Angelo De Milito
- 1Cancer Center Karolinska, R8:00, Department of Oncology-Pathology, Karolinska Institute, 171 76 Stockholm, Sweden
| |
Collapse
|
18
|
Perut F, Sbrana FV, Avnet S, De Milito A, Baldini N. Spheroid-based 3D cell cultures identify salinomycin as a promising drug for the treatment of chondrosarcoma. J Orthop Res 2018; 36:2305-2312. [PMID: 29469166 DOI: 10.1002/jor.23880] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/15/2018] [Indexed: 02/04/2023]
Abstract
Chondrosarcoma (CS) is a cartilage malignancy of adulthood that is treated by surgery alone, since chemotherapy is considered ineffective. Unfortunately, a large proportion of patients with CS develop lung metastases, and several die of the disease. In this study, we compared 3D-spheroid cultures and conventional cell monolayer models in order to identify the best way to select anticancer agents that could be effective for the systemic control of CS. Using SW1353 cells, we developed a three-dimensional (3D) in vitro culture model to mimic in vivo features of CS microenvironment and evaluated the efficacy of different drugs to modulate CS cell proliferation and survival in 2D versus 3D-cultures. Doxorubicin (DXR) and cisplatin, that are widely employed in sarcomas, were less effective on 3D-CS spheroids when compared to standard monolayer models, whereas treatment with the ionophore salinomycin (SAL) had a strong cytotoxic effect both on 2D and 3D-cultures. Furthermore, as demonstrated by the reduced viability and the enhanced DXR nuclear localization, SAL enhanced DXR cytotoxicity in 3D-CS spheroids also at sub-lethal doses. SAL activity on 3D-CS spheroids was mediated by a significant induction of apoptosis via caspase activation. This study demonstrates that preclinical tests significantly differ in monolayer and 3D cultures of CS cells. Using this approach, SAL, alone or, at sub-lethal concentrations, in combination with DXR, represents a promising agent for the systemic treatment of CS. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Francesca Perut
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, Bologna, 40136, Italy
| | - Francesca V Sbrana
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, Bologna, 40136, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40123, Italy
| | - Sofia Avnet
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, Bologna, 40136, Italy
| | - Angelo De Milito
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Nicola Baldini
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, Bologna, 40136, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40123, Italy
| |
Collapse
|
19
|
Jiang J, Li H, Qaed E, Zhang J, Song Y, Wu R, Bu X, Wang Q, Tang Z. Salinomycin, as an autophagy modulator-- a new avenue to anticancer: a review. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:26. [PMID: 29433536 PMCID: PMC5809980 DOI: 10.1186/s13046-018-0680-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/15/2018] [Indexed: 12/25/2022]
Abstract
Since Salinomycin (Sal) emerged its ability to target breast cancer stem cells in 2009, numerous experiments have been carried out to test Sal’s anticancer effects. What deserve to be mentioned is that Sal can efficiently induce proliferation inhibition, cell death and metastasis suppression against human cancers from different origins both in vivo and in vitro without causing serious side effects as the conventional chemotherapeutical drugs on the body. There may be novel cell death pathways involving the anticancer effects of Sal except the conventional pathways, such as autophagic pathway. This review is focused on how autophagy involves the effects of Sal, trying to describe clearly and systematically why autophagy plays a vital role in predominant anticancer effects of Sal, including its distinctive characteristic. Based on recent advances, we present evidence that a dual role of Sal involving in autophagy may account for its unique anticancer effects - the preference for cancer cells. Further researches are required to confirm the authenticity of this suppose in order to develop an ideal anticancer drug.
Collapse
Affiliation(s)
- Jiang Jiang
- Department of Pharmacology, Dalian Medical University, 9 west section, south road of Lvshun, Dalian, 116044, China
| | - Hailong Li
- Department of Pharmacology, Dalian Medical University, 9 west section, south road of Lvshun, Dalian, 116044, China
| | - Eskandar Qaed
- Department of Pharmacology, Dalian Medical University, 9 west section, south road of Lvshun, Dalian, 116044, China
| | - Jing Zhang
- Department of Pharmacology, Dalian Medical University, 9 west section, south road of Lvshun, Dalian, 116044, China
| | - Yushu Song
- Department of Pharmacology, Dalian Medical University, 9 west section, south road of Lvshun, Dalian, 116044, China
| | - Rong Wu
- Department of Pharmacology, Dalian Medical University, 9 west section, south road of Lvshun, Dalian, 116044, China
| | - Xinmiao Bu
- Department of Pharmacology, Dalian Medical University, 9 west section, south road of Lvshun, Dalian, 116044, China
| | - Qinyan Wang
- Department of Pharmacology, Dalian Medical University, 9 west section, south road of Lvshun, Dalian, 116044, China
| | - Zeyao Tang
- Department of Pharmacology, Dalian Medical University, 9 west section, south road of Lvshun, Dalian, 116044, China
| |
Collapse
|
20
|
Klose J, Guerlevik E, Trostel T, Kühnel F, Schmidt T, Schneider M, Ulrich A. Salinomycin inhibits cholangiocarcinoma growth by inhibition of autophagic flux. Oncotarget 2017; 9:3619-3630. [PMID: 29423070 PMCID: PMC5790487 DOI: 10.18632/oncotarget.23339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/26/2017] [Indexed: 12/21/2022] Open
Abstract
Introduction Cholangiocarcinoma is characterized by aggressive tumor growth, high recurrence rates, and resistance against common chemotherapeutical regimes. The polyether-antibiotic Salinomycin is a promising drug in cancer therapy because of its ability to overcome apoptosis resistance of cancer cells and its selectivity against cancer stem cells. Here, we investigated the effectiveness of Salinomycin against cholangiocarcinoma in vivo, and analyzed interference of Salinomycin with autophagic flux in human cholangiocarcinoma cells. Results Salinomycin reduces tumor cell viability, proliferation, migration, invasion, and induced apoptosis in vitro. Subcutaneous and intrahepatic cholangiocarcinoma growth in vivo was inhibited upon Salinomycin treatment. Analysis of autophagy reveals inhibition of autophagic activity. This was accompanied by accumulation of mitochondrial mass and increased generation of reactive oxygen species. Conclusions This study demonstrates the effectiveness of Salinomycin against cholangiocarcinoma in vivo. Inhibition of autophagic flux represents an underlying molecular mechanism of Salinomycin against cholangiocarcinoma. Methods The two murine cholangiocarcinoma cell lines p246 and p254 were used to analyze tumor cell proliferation, viability, migration, invasion, and apoptosis in vitro. For in vivo studies, murine cholangiocarcinoma cells were injected into syngeneic C57-BL/6-mice to initiate subcutaneous cholangiocarcinoma growth. Intrahepatic tumor growth was induced by electroporation of oncogenic transposon-plasmids into the left liver lobe. For mechanistic studies in human cells, TFK-1 and EGI-1 were used, and activation of autophagy was analyzed after exposure to Salinomycin.
Collapse
Affiliation(s)
- Johannes Klose
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg 69120, Germany
| | - Engin Guerlevik
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover 30625, Germany
| | - Tina Trostel
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg 69120, Germany
| | - Florian Kühnel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover 30625, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg 69120, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg 69120, Germany
| | - Alexis Ulrich
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg 69120, Germany
| |
Collapse
|
21
|
Norton KA, Wallace T, Pandey NB, Popel AS. An agent-based model of triple-negative breast cancer: the interplay between chemokine receptor CCR5 expression, cancer stem cells, and hypoxia. BMC SYSTEMS BIOLOGY 2017; 11:68. [PMID: 28693495 PMCID: PMC5504656 DOI: 10.1186/s12918-017-0445-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 06/30/2017] [Indexed: 12/19/2022]
Abstract
Background Triple-negative breast cancer lacks estrogen, progesterone, and HER2 receptors and is thus not possible to treat with targeted therapies for these receptors. Therefore, a greater understanding of triple-negative breast cancer is necessary for the treatment of this cancer type. In previous work from our laboratory, we found that chemokine ligand-receptor CCL5-CCR5 axis is important for the metastasis of human triple-negative breast cancer cell MDA-MB-231 to the lymph nodes and lungs, in a mouse xenograft model. We collected relevant experimental data from our and other laboratories for numbers of cancer stem cells, numbers of CCR5+ cells, and cell migration rates for different breast cancer cell lines and different experimental conditions. Results Using these experimental data we developed an in silico agent-based model of triple-negative breast cancer that considers surface receptor CCR5-high and CCR5-low cells and breast cancer stem cells, to predict the tumor growth rate and spatio-temporal distribution of cells in primary tumors. We find that high cancer stem cell percentages greatly increase tumor growth. We find that anti-stem cell treatment decreases tumor growth but may not lead to dormancy unless all stem cells get eliminated. We further find that hypoxia increases overall tumor growth and treatment with a CCR5 inhibitor maraviroc slightly decreases overall tumor growth. We also characterize 3D shapes of solid and invasive tumors using several shape metrics. Conclusions Breast cancer stem cells and CCR5+ cells affect the overall growth and morphology of breast tumors. In silico drug treatments demonstrate limited efficacy of incomplete inhibition of cancer stem cells after which tumor growth recurs, and CCR5 inhibition causes only a slight reduction in tumor growth. Electronic supplementary material The online version of this article (doi:10.1186/s12918-017-0445-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kerri-Ann Norton
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Travis Wallace
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Niranjan B Pandey
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.,Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
22
|
Ran X, Zhou P, Zhang K. Autophagy plays an important role in stemness mediation and the novel dual function of EIG121 in both autophagy and stemness regulation of endometrial carcinoma JEC cells. Int J Oncol 2017; 51:644-656. [PMID: 28656197 DOI: 10.3892/ijo.2017.4047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/16/2017] [Indexed: 11/06/2022] Open
Abstract
Endometrial cancer (EC) is the third most common gynecologic malignancy in the world, and is considered a chemotherapy poor responding cancer. There are two underlying mechanisms on chemoresistance: the stemness of cancer stem cells (CSCs) and activation of pro-survival autophagy. It was found that autophagy is one of the main factors of cancer stem cell survival, multidrug resistance and maintenance of the homeostasis of cancer stem cells and normal cancer cells. However, the relationship between CSCs and autophagy of EC cells is still unknown. In this study, higher autophagy level was found in endometrial cancer stem cells (ECSCs) and stemness kept in line with autophagy in successive cultured JEC spheres. Autophagy inhibition decreased the properties of CSCs in JEC spheres and enhanced sensitivity of ECSCs to paclitaxel. Besides, it was found that EIG121 exerted dual functions in the regulation of autophagy and stemness not only in normal JEC cells but also JEC obtained CSCs. These findings could be useful for developing targeted therapies for endometrial carcinoma.
Collapse
Affiliation(s)
- Xiaomin Ran
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Ping Zhou
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Keqiang Zhang
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
23
|
Dumas JF, Brisson L, Chevalier S, Mahéo K, Fromont G, Moussata D, Besson P, Roger S. Metabolic reprogramming in cancer cells, consequences on pH and tumour progression: Integrated therapeutic perspectives with dietary lipids as adjuvant to anticancer treatment. Semin Cancer Biol 2017; 43:90-110. [DOI: 10.1016/j.semcancer.2017.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 02/07/2023]
|
24
|
Harguindey S, Stanciu D, Devesa J, Alfarouk K, Cardone RA, Polo Orozco JD, Devesa P, Rauch C, Orive G, Anitua E, Roger S, Reshkin SJ. Cellular acidification as a new approach to cancer treatment and to the understanding and therapeutics of neurodegenerative diseases. Semin Cancer Biol 2017; 43:157-179. [PMID: 28193528 DOI: 10.1016/j.semcancer.2017.02.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/06/2017] [Indexed: 12/27/2022]
Abstract
During the last few years, the understanding of the dysregulated hydrogen ion dynamics and reversed proton gradient of cancer cells has resulted in a new and integral pH-centric paradigm in oncology, a translational model embracing from cancer etiopathogenesis to treatment. The abnormalities of intracellular alkalinization along with extracellular acidification of all types of solid tumors and leukemic cells have never been described in any other disease and now appear to be a specific hallmark of malignancy. As a consequence of this intracellular acid-base homeostatic failure, the attempt to induce cellular acidification using proton transport inhibitors and other intracellular acidifiers of different origins is becoming a new therapeutic concept and selective target of cancer treatment, both as a metabolic mediator of apoptosis and in the overcoming of multiple drug resistance (MDR). Importantly, there is increasing data showing that different ion channels contribute to mediate significant aspects of cancer pH regulation and etiopathogenesis. Finally, we discuss the extension of this new pH-centric oncological paradigm into the opposite metabolic and homeostatic acid-base situation found in human neurodegenerative diseases (HNDDs), which opens novel concepts in the prevention and treatment of HNDDs through the utilization of a cohort of neural and non-neural derived hormones and human growth factors.
Collapse
Affiliation(s)
- Salvador Harguindey
- Institute of Clinical Biology and Metabolism, c) Postas 13, 01004 Vitoria, Spain.
| | - Daniel Stanciu
- Institute of Clinical Biology and Metabolism, c) Postas 13, 01004 Vitoria, Spain
| | - Jesús Devesa
- Department of Physiology, School of Medicine, University of Santiago de Compostela, Spain and Scientific Director of Foltra Medical Centre, Teo, Spain
| | - Khalid Alfarouk
- Al-Ghad International Colleges for Applied Medical Sciences, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | | | - Pablo Devesa
- Research and Development, Medical Centre Foltra, Teo, Spain
| | - Cyril Rauch
- School of Veterinary Medicine and Science, University of Nottingham,College Road, Sutton Bonington, LE12 5RD, UK
| | - Gorka Orive
- Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country, Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, SLFPB-EHU, 01006 Vitoria, Spain
| | - Eduardo Anitua
- BTI Biotechnology Institute ImasD, S.L. C/Jacinto Quincoces, 39, 01007 Vitoria, Spain
| | - Sébastien Roger
- Inserm UMR1069, University François-Rabelais of Tours,10 Boulevard Tonnellé, 37032 Tours, France; Institut Universitaire de France, 1 Rue Descartes, Paris 75231, France
| | - Stephan J Reshkin
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
25
|
Kolosenko I, Avnet S, Baldini N, Viklund J, De Milito A. Therapeutic implications of tumor interstitial acidification. Semin Cancer Biol 2017; 43:119-133. [PMID: 28188829 DOI: 10.1016/j.semcancer.2017.01.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 12/12/2022]
Abstract
Interstitial acidification is a hallmark of solid tumor tissues resulting from the combination of different factors, including cellular buffering systems, defective tissue perfusion and high rates of cellular metabolism. Besides contributing to tumor pathogenesis and promoting tumor progression, tumor acidosis constitutes an important intrinsic and extrinsic mechanism modulating therapy sensitivity and drug resistance. In fact, pharmacological properties of anticancer drugs can be affected not only by tissue structure and organization but also by the distribution of the interstitial tumor pH. The acidic tumor environment is believed to create a chemical barrier that limits the effects and activity of many anticancer drugs. In this review article we will discuss the general protumorigenic effects of acidosis, the role of tumor acidosis in the modulation of therapeutic efficacy and potential strategies to overcome pH-dependent therapy-resistance.
Collapse
Affiliation(s)
- Iryna Kolosenko
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Angelo De Milito
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
26
|
Stock C, Pedersen SF. Roles of pH and the Na +/H + exchanger NHE1 in cancer: From cell biology and animal models to an emerging translational perspective? Semin Cancer Biol 2016; 43:5-16. [PMID: 28007556 DOI: 10.1016/j.semcancer.2016.12.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/10/2016] [Indexed: 01/30/2023]
Abstract
Acidosis is characteristic of the solid tumor microenvironment. Tumor cells, because they are highly proliferative and anabolic, have greatly elevated metabolic acid production. To sustain a normal cytosolic pH homeostasis they therefore need to either extrude excess protons or to neutralize them by importing HCO3-, in both cases causing extracellular acidification in the poorly perfused tissue microenvironment. The Na+/H+ exchanger isoform 1 (NHE1) is a ubiquitously expressed acid-extruding membrane transport protein, and upregulation of its expression and/or activity is commonly correlated with tumor malignancy. The present review discusses current evidence on how altered pH homeostasis, and in particular NHE1, contributes to tumor cell motility, invasion, proliferation, and growth and facilitates evasion of chemotherapeutic cell death. We summarize data from in vitro studies, 2D-, 3D- and organotypic cell culture, animal models and human tissue, which collectively point to pH-regulation in general, and NHE1 in particular, as potential targets in combination chemotherapy. Finally, we discuss the possible pitfalls, side effects and cellular escape mechanisms that need to be considered in the process of translating the plethora of basic research data into a clinical setting.
Collapse
Affiliation(s)
- Christian Stock
- Department of Gastroenterology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Stine Falsig Pedersen
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Universitetsparken 13, 2100 Copenhagen, Denmark.
| |
Collapse
|