1
|
Banerjee R, Patel D, Farooque K, Gupta D, Seth A, Kochhar KP, Garg B, Jain S, Kumar N, Jain S. Cortical intermittent theta burst stimulation on gait pathomechanics and urinary tract dysfunction in incomplete spinal cord injury patients: Protocol for a randomized controlled trial. MethodsX 2024; 13:102826. [PMID: 39049927 PMCID: PMC11268124 DOI: 10.1016/j.mex.2024.102826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Gait impairment and neurogenic bladder are co-existing common findings in incomplete spinal cord injury (iSCI). Repetitive transcranial magnetic stimulation (rTMS), evident to be a promising strategy adjunct to physical rehabilitation to regain normal ambulation in SCI. However, there is a need to evaluate the role of Intermittent theta burst stimulation (iTBS), a type of patterned rTMS in restoring gait and neurogenic bladder in SCI patients. The aim of the present study is to quantify the effect of iTBS on spatiotemporal, kinetic, and kinematic parameters of gait and neurogenic bladder dyssynergia in iSCI. After maturing all exclusion and inclusion criteria, thirty iSCI patients will be randomly divided into three groups: Group-A (sham), Group-B (active rTMS) and Group-C (active iTBS). Each group will receive stimulation adjunct to physical rehabilitation for 2 weeks. All patients will undergo gait analysis, as well assessment of bladder, electrophysiological, neurological, functional, and psychosocial parameters. All parameters will be assessed at baseline and 6th week (1st follow-up). Parameters except urodynamics and gait analysis will also be assessed after the end of the 2 weeks of the intervention (post-intervention) and at 12th week (2nd follow-up). Appropriate statistical analysis will be done using various parametric and non-parametric tests based on results.
Collapse
Affiliation(s)
- Rohit Banerjee
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Deeksha Patel
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Kamran Farooque
- Department of Orthopaedics, All India Institute of Medical Sciences, New Delhi, India
| | - Deepak Gupta
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Amlesh Seth
- Department of Urology, All India Institute of Medical Sciences, New Delhi, India
| | - Kanwal Preet Kochhar
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Bhavuk Garg
- Department of Orthopaedics, All India Institute of Medical Sciences, New Delhi, India
| | - Siddharth Jain
- Department of Urology, All India Institute of Medical Sciences, New Delhi, India
| | - Nand Kumar
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Suman Jain
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
2
|
Hofmeijer J, Ham F, Kwakkel G. Evidence of rTMS for Motor or Cognitive Stroke Recovery: Hype or Hope? Stroke 2023; 54:2500-2511. [PMID: 37747964 DOI: 10.1161/strokeaha.123.043159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/15/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Evidence of efficacy of repetitive transcranial magnetic stimulation (rTMS) for stroke recovery is hampered by an unexplained variability of reported effect sizes and an insufficient understanding of mechanisms of action. We aimed to (1) briefly summarize evidence of efficacy, (2) identify critical factors to explain the reported variation in effects, and (3) provide mechanism-based recommendations for future trials. METHODS We performed a systematic review of the literature according to Cochrane and PRISMA Protocols. We included trials with ≥10 patients per treatment group. We classified outcome measures according to the International Classification of Functioning, Disability, and Health. Meta-analysis was done when at least 3 trials were reported on the same construct. In case of significant summary effect sizes with significant heterogeneity, we used sensitivity analyses to test for correlations and differences between found individual effect sizes and possible effect modifiers such as patient-, repetitive transcranial magnetic stimulation-, and trial characteristics. RESULTS We included 57 articles (N=2595). Funnel plots showed no publication bias. We found significant effect sizes at the level of body function (upper limb synergies, muscle strength, language functioning, global cognitive functioning, visual/spatial inattention) with repetitive transcranial magnetic stimulation within or beyond 3 months after stroke. We also found significant effect sizes at the level of activities. We found no subgroup differences or significant correlations between individual summary effect sizes and any tested possible effect modifier. CONCLUSIONS Repetitive transcranial magnetic stimulation holds the potential to benefit a range of motor and cognitive outcomes after stroke, but the evidence of efficacy is challenged by unexplained heterogeneity across many small sampled trials. We propose large trials with the collection of individual patient data on baseline severity and brain network integrity with sufficiently powered subgroup analyses, as well as protocolized time-locked training of the target behavior. Additional neurophysiological and biomechanical data may help in understanding mechanisms and identifying biomarkers of treatment efficacy. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: CRD42022300330.
Collapse
Affiliation(s)
- Jeannette Hofmeijer
- Department of Clinical Neurophysiology, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands (J.H.)
- Department of Neurology, Rijnstate Hospital, Arnhem, the Netherlands (J.H.)
| | - Florien Ham
- Department of Neurology, Rijnstate Hospital, Arnhem, the Netherlands (J.H.)
| | - Gert Kwakkel
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam Neuroscience, the Netherlands (G.K.)
- Department of Acquired Brain Injuries, Neurorehabilitation, Amsterdam Rehabilitation Research Centre, Reade, the Netherlands (G.K.)
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL (G.K.)
| |
Collapse
|
3
|
Bateni H, Soltani E, Ali K, Zhou H, Shad MU. Effect of transcranial magnetic stimulation on postural control of individuals with major depressive disorder: A case report. SAGE Open Med Case Rep 2023; 11:2050313X231153757. [PMID: 36816824 PMCID: PMC9932753 DOI: 10.1177/2050313x231153757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/09/2023] [Indexed: 02/16/2023] Open
Abstract
Accidental falls and major depressive disorder (MDD) are two common conditions associated with aging. Initial treatment of MDD often starts with administering antidepressants, followed by transcranial magnetic stimulation (TMS) for treatment-resistant individuals. The purpose of this case study was to determine the effect of repetitive TMS (rTMS) on postural control of an individual with MDD. A 44-year-old male with recurrent severe MDD was assessed for postural balance during eyes closed and eyes open conditions, pre and post three consecutive sessions receiving high-frequency rTMS (NeuroStar). Total excursion and velocity of sway significantly decreased following rTMS treatment when eyes were closed (p < 0.05). Power of the sway changed, but the changes were not statistically significant. The fractal dimension confidence circle area decreased significantly in eyes closed trials (p < 0.05). It appears that rTMS application can potentially impact postural steadiness in individuals with MDD. Our results warrant further studies with larger study samples.
Collapse
Affiliation(s)
- Hamid Bateni
- Physical Therapy Program, Northern
Illinois University, DeKalb, IL, USA
| | - Elham Soltani
- Psychiatry Program, The Valley Health
System, Las Vegas, NV, USA
| | - Kishwar Ali
- General Psychiatry Services, Aurora,
IL, USA
| | - Haiming Zhou
- Department of Statistics and Actuarial
Science, Northern Illinois University, DeKalb, IL, USA
| | - Mujeeb U Shad
- The Valley Health System, Las Vegas,
NV, USA
- University of Nevada Las Vegas, Las
Vegas, NV, USA
- Touro University Nevada College of
Osteopathic Medicine, Las Vegas, NV, USA
| |
Collapse
|
4
|
Shima A, Tanaka K, Ogawa A, Omae E, Miyake T, Nagamori Y, Miyata Y, Ohata K, Ono Y, Mima T, Takahashi R, Koganemaru S. Case report: Backward gait training combined with gait-synchronized cerebellar transcranial alternating current stimulation in progressive supranuclear palsy. Front Hum Neurosci 2023; 17:1082555. [PMID: 36908713 PMCID: PMC9992165 DOI: 10.3389/fnhum.2023.1082555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Progressive supranuclear palsy (PSP) is characterized by recurrent falls caused by postural instability, and a backward gait is considered beneficial for postural instability. Furthermore, a recent approach for rehabilitation combined with gait-oriented synchronized stimulation using non-invasive transcranial patterned stimulation could be promising for balance function. Here, we present a case of PSP with backward gait training combined with gait-synchronized transcranial alternating current stimulation (tACS). A 70-year-old woman with PSP-Richardson's syndrome underwent backward gait training combined with synchronized cerebellar tACS. Initially, she underwent short-term intervention with combined training of backward gait with synchronized cerebellar tACS, asynchronized, or sham stimulation according to the N-of-1 study design. Synchronized tACS training demonstrated a decrease in postural instability, whereas asynchronized or sham stimulation did not. The additional long-term interventions of combined backward gait training with synchronized cerebellar tACS demonstrated further decrease in postural instability with improvements in gait speed, balance function, and fall-related self-efficacy in daily life. The present case describes a novel approach for motor symptoms in a patient with PSP. Backward gait training with synchronized cerebellar tACS may be a promising therapeutic approach.
Collapse
Affiliation(s)
- Atsushi Shima
- Department of Regenerative Systems Neuroscience, Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuki Tanaka
- Department of Regenerative Systems Neuroscience, Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akari Ogawa
- Department of Regenerative Systems Neuroscience, Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Erika Omae
- Division of Neurobiology and Physiology, Department of Neuroscience, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoaki Miyake
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yui Nagamori
- Department of Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yusuke Miyata
- Department of Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koji Ohata
- Department of Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yumie Ono
- Department of Electronics and Bioinformatics, Meiji University, Tokyo, Kanagawa, Japan
| | - Tatsuya Mima
- The Graduate School of Core Ethics and Frontier Sciences, Ritsumeikan University, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Satoko Koganemaru
- Department of Regenerative Systems Neuroscience, Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Rehabilitation and Physical Medicine, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
5
|
Parikh V, Medley A, Chung YC, Goh HT. Optimal timing and neural loci: a scoping review on the effect of non-invasive brain stimulation on post-stroke gait and balance recovery. Top Stroke Rehabil 2023; 30:84-100. [PMID: 34859744 DOI: 10.1080/10749357.2021.1990467] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Little is known about the optimal timing and neural loci for applying noninvasive brain stimulation (NIBS) to promote gait and balance recovery after stroke. OBJECTIVE To identify the optimal timing and neural loci of NIBS for gait and balance recovery after stroke. METHODS We performed a PubMed search using keywords of stroke, transcranial magnetic stimulation, transcranial direct current stimulation, NIBS, balance, and gait. Interventional trials with various designs published in English were selected. Both flowcharts and tables were used for the result presentation. RESULTS The majority of selected 31 studies included individuals with chronic stroke and primary motor cortex (M1) stimulation. Studies' quality ranged from 4 to 10 (max = 10) on the Pedro scale. NIBS led to improvements in gait and balance in individuals with chronic and subacute stroke, yet the evidence for the acute phase of stroke is limited. Further, stimulation over the ipsilesional M1 resulted in improvement in gait and balanced performance. Stimulation over non-motor regions such as the cerebellum has been limitedly explored. CONCLUSION Current evidence supports the use of NIBS to the M1 in conjunction with behavioral training to improve gait and balance performance in individuals with subacute and chronic stroke. Future research is recommended to evaluate the effect of NIBS during acute stroke and over neural loci other than M1, and to implement a more rigorous method.
Collapse
Affiliation(s)
- Vyoma Parikh
- School of Physical Therapy, Texas Woman's University, Dallas, Texas
| | - Ann Medley
- School of Physical Therapy, Texas Woman's University, Dallas, Texas
| | - Yu-Chen Chung
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hui-Ting Goh
- School of Physical Therapy, Texas Woman's University, Dallas, Texas
| |
Collapse
|
6
|
Zhou J, Chen Y, Gin T, Bao D, Zhou J. The effects of repetitive transcranial magnetic stimulation on standing balance and walking in older adults with age-related neurological disorders: a systematic review and meta-analysis. J Gerontol A Biol Sci Med Sci 2022; 78:842-852. [PMID: 35921153 PMCID: PMC10172986 DOI: 10.1093/gerona/glac158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Considerable evidence showed that repetitive transcranial magnetic stimulation (rTMS) can improve standing balance and walking performance in older adults with age-related neurological disorders. We here thus completed a systematic review and meta-analysis to quantitatively examine such benefits of rTMS. METHODS A search strategy based on the PICOS principle was used to obtain the literature in four databases. The screening and assessments of quality and risk of bias in the included studies were independently completed by two researchers. Outcomes included scales related to standing balance, Timed Up and Go (TUG) time, and walking speed/time/distance. RESULTS Twenty-three studies consisting of 532 participants were included, and the meta-analysis was completed on 21 of these studies. The study quality was good. Compared to control, rTMS induced both short-term (≤3 days after last intervention session) and long-term (≥1 month following last intervention session) significant improvements in balance scales (e.g., Berg Balance Scale), TUG time, and walking speed/time/distance (short-term: standardized mean difference [SMD]=0.26~0.34, 95% confidence interval [CI]=0.05~0.62; long-term: SMD=0.40~0.44, 95% CI=0.04~0.79) for both PD and stroke cohorts. Subgroup analyses suggested that greater than nine sessions of high-frequency rTMS targeting primary motor cortex with greater than 3000 pulses per week can maximize such benefits. Only few mild-to-moderate adverse events/side effects were reported, which were similar between rTMS and control group. CONCLUSION The results suggest that rTMS holds promise to improve balance and walking performance in older adults with age-related neurological disorders. Future studies with more rigorous design are needed to confirm the observations in this work.
Collapse
Affiliation(s)
- Jun Zhou
- China Athletics College, Beijing Sport University, Beijing, China
| | - Yan Chen
- Sports Coaching College, Beijing Sport University, Beijing, China
| | - Trenton Gin
- Cornell University, Ithaca, New York, NY, United States
| | - Dapeng Bao
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Junhong Zhou
- Hebrew SeniorLife Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Krogh S, Jønsson AB, Aagaard P, Kasch H. Efficacy of repetitive transcranial magnetic stimulation for improving lower limb function in individuals with neurological disorders: A systematic review and meta-analysis of randomized sham-controlled trials. J Rehabil Med 2022; 54:jrm00256. [PMID: 34913062 PMCID: PMC8862648 DOI: 10.2340/jrm.v53.1097] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVE To determine the efficacy of repetitive transcranial magnetic stimulation vs sham stimulation on improving lower-limb functional outcomes in individuals with neurological disorders. DATA SOURCES PubMed, CINAHL, Embase and Scopus databases were searched from inception to 31 March 2020 to identify papers (n = 1,198). Two researchers independently reviewed studies for eligibility. Randomized clinical trials with parallel-group design, involving individuals with neurological disorders, including lower-limb functional outcome measures and published in scientific peer-reviewed journals were included. DATA EXTRACTION Two researchers independently screened eligible papers (n = 27) for study design, clinical population characteristics, stimulation protocol and relevant outcome measures, and assessed study quality. DATA SYNTHESIS Studies presented a moderate risk of selection, attrition and reporting bias. An overall effect of repetitive transcranial magnetic stimulation was found for outcomes: gait (effect size [95% confidence interval; 95% CI]: 0.51 [0.29; 0.74], p = 0.003) and muscle strength (0.99 [0.40; 1.58], p = 0.001) and disorders: stroke (0.20 [0.00; 0.39], p = 0.05), Parkinson's disease (1.01 [0.65; 1.37], p = 0.02) and spinal cord injury (0.50 [0.14; 0.85], p = 0.006), compared with sham. No effect was found for outcomes: mobility and balance. CONCLUSION Supplementary repetitive transcranial magnetic stimulation may promote rehabilitation focused on ambulation and muscle strength and overall lower-limb functional recovery in individuals with stroke, Parkinson's disease and spinal cord injury. Further evidence is needed to extrapolate these findings.
Collapse
Affiliation(s)
- Søren Krogh
- Department of Neurology, Regional Hospital Viborg, Department of Clinical Medicine, Aarhus University, Denmark.
| | | | | | | |
Collapse
|
8
|
Castillo-Escario Y, Kumru H, Valls-Solé J, García-Alen L, Jané R, Vidal J. Quantitative evaluation of trunk function and the StartReact effect during reaching in patients with cervical and thoracic spinal cord injury. J Neural Eng 2021; 18. [PMID: 34340222 DOI: 10.1088/1741-2552/ac19d3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/02/2021] [Indexed: 11/12/2022]
Abstract
Objective.Impaired trunk stability is frequent in spinal cord injury (SCI), but there is a lack of quantitative measures for assessing trunk function. Our objectives were to: (a) evaluate trunk muscle activity and movement patterns during a reaching task in SCI patients, (b) compare the impact of cervical (cSCI) and thoracic (tSCI) injuries in trunk function, and (c) investigate the effects of a startling acoustic stimulus (SAS) in these patients.Approach.Electromyographic (EMG) and smartphone accelerometer data were recorded from 15 cSCI patients, nine tSCI patients, and 24 healthy controls, during a reaching task requiring trunk tilting. We calculated the response time (RespT) until pressing a target button, EMG onset latencies and amplitudes, and trunk tilt, lateral deviation, and other movement features from accelerometry. Statistical analysis was applied to analyze the effects of group (cSCI, tSCI, control) and condition (SAS, non-SAS) in each outcome measure.Main results.SCI patients, especially those with cSCI, presented significantly longer RespT and EMG onset latencies than controls. Moreover, in SCI patients, forward trunk tilt was accompanied by significant lateral deviation. RespT and EMG latencies were remarkably shortened by the SAS (the so-called StartReact effect) in tSCI patients and controls, but not in cSCI patients, who also showed higher variability.Significance. The combination of EMG and smartphone accelerometer data can provide quantitative measures for the assessment of trunk function in SCI. Our results show deficits in postural control and compensatory strategies employed by SCI patients, including delayed responses and higher lateral deviations, possibly to improve sitting balance. This is the first study investigating the StartReact responses in trunk muscles in SCI patients and shows that the SAS significantly accelerates RespT in tSCI, but not in cSCI, suggesting an increased cortical control exerted by these patients.
Collapse
Affiliation(s)
- Yolanda Castillo-Escario
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.,Department of Automatic Control, Universitat Politècnica de Catalunya-Barcelona Tech (UPC), 08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Hatice Kumru
- Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, 08916 Badalona, Spain.,Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, 08916 Badalona, Spain
| | - Josep Valls-Solé
- Institut d'Investigació August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Loreto García-Alen
- Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, 08916 Badalona, Spain.,Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, 08916 Badalona, Spain
| | - Raimon Jané
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.,Department of Automatic Control, Universitat Politècnica de Catalunya-Barcelona Tech (UPC), 08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Joan Vidal
- Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, 08916 Badalona, Spain.,Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, 08916 Badalona, Spain
| |
Collapse
|
9
|
Assessment of trunk flexion in arm reaching tasks with electromyography and smartphone accelerometry in healthy human subjects. Sci Rep 2021; 11:5363. [PMID: 33686167 PMCID: PMC7940612 DOI: 10.1038/s41598-021-84789-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/18/2021] [Indexed: 11/08/2022] Open
Abstract
Trunk stability is essential to maintain upright posture and support functional movements. In this study, we aimed to characterize the muscle activity and movement patterns of trunk flexion during an arm reaching task in sitting healthy subjects and investigate whether trunk stability is affected by a startling acoustic stimulus (SAS). For these purposes, we calculated the electromyographic (EMG) onset latencies and amplitude parameters in 8 trunk, neck, and shoulder muscles, and the tilt angle and movement features from smartphone accelerometer signals recorded during trunk bending in 33 healthy volunteers. Two-way repeated measures ANOVAs were applied to examine the effects of SAS and target distance (15 cm vs 30 cm). We found that SAS markedly reduced the response time and EMG onset latencies of all muscles, without changing neither movement duration nor muscle recruitment pattern. Longer durations, higher tilt angles, and higher EMG amplitudes were observed at 30 cm compared to 15 cm. The accelerometer signals had a higher frequency content in SAS trials, suggesting reduced movement control. The proposed measures have helped to establish the trunk flexion pattern in arm reaching in healthy subjects, which could be useful for future objective assessment of trunk stability in patients with neurological affections.
Collapse
|
10
|
Xie YJ, Chen Y, Tan HX, Guo QF, Lau BWM, Gao Q. Repetitive transcranial magnetic stimulation for lower extremity motor function in patients with stroke: a systematic review and network meta-analysis. Neural Regen Res 2021; 16:1168-1176. [PMID: 33269766 PMCID: PMC8224108 DOI: 10.4103/1673-5374.300341] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transcranial magnetic stimulation, a type of noninvasive brain stimulation, has become an ancillary therapy for motor function rehabilitation. Most previous studies have focused on the effects of repetitive transcranial magnetic stimulation (rTMS) on motor function in stroke patients. There have been relatively few studies on the effects of different modalities of rTMS on lower extremity motor function and corticospinal excitability in patients with stroke. The MEDLINE, Embase, Cochrane Library, ISI Science Citation Index, Physiotherapy Evidence Database, China National Knowledge Infrastructure Library, and ClinicalTrials.gov databases were searched. Parallel or crossover randomized controlled trials that addressed the effectiveness of rTMS in patients with stroke, published from inception to November 28, 2019, were included. Standard pairwise meta-analysis was conducted using R version 3.6.1 with the “meta” package. Bayesian network analysis using the Markov chain Monte Carlo algorithm was conducted to investigate the effectiveness of different rTMS protocol interventions. Network meta-analysis results of 18 randomized controlled trials regarding lower extremity motor function recovery revealed that low-frequency rTMS had better efficacy in promoting lower extremity motor function recovery than sham stimulation. Network meta-analysis results of five randomized controlled trials demonstrated that high-frequency rTMS led to higher amplitudes of motor evoked potentials than low-frequency rTMS or sham stimulation. These findings suggest that rTMS can improve motor function in patients with stroke, and that low-frequency rTMS mainly affects motor function, whereas high-frequency rTMS increases the amplitudes of motor evoked potentials. More high-quality randomized controlled trials are needed to validate this conclusion. The work was registered in PROSPERO (registration No. CRD42020147055) on April 28, 2020.
Collapse
Affiliation(s)
- Yun-Juan Xie
- Department of Rehabilitation Medicine; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yi Chen
- Department of Rehabilitation Medicine; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hui-Xin Tan
- Department of Rehabilitation Medicine; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qi-Fan Guo
- Department of Rehabilitation Medicine; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Benson Wui-Man Lau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Qiang Gao
- Department of Rehabilitation Medicine; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
11
|
Liang JN, Ubalde L, Jacklin J, Hobson P, Wright-Avila S, Lee YJ. Immediate Effects of Anodal Transcranial Direct Current Stimulation on Postural Stability Using Computerized Dynamic Posturography in People With Chronic Post-stroke Hemiparesis. Front Hum Neurosci 2020; 14:341. [PMID: 33192377 PMCID: PMC7482582 DOI: 10.3389/fnhum.2020.00341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/03/2020] [Indexed: 11/13/2022] Open
Abstract
Postural stability is commonly decreased in individuals with chronic post-stroke hemiparesis due to multisystemic deficits. Transcranial direct current stimulation (tDCS) is a non-invasive method to modulate cortical excitability, inducing neuroplastic changes to the targeted cortical areas and has been suggested to potentially improve motor functions in individuals with neurological impairments. The purpose of this double-blinded, sham-controlled study was to examine the acute effects of anodal tDCS over the lesioned motor cortex leg area with concurrent limits of stability training on postural control in individuals with chronic post-stroke hemiparesis. Ten individuals with chronic post-stroke hemiparesis received either anodal or sham tDCS stimulation over the lesioned leg region of the motor cortex while undergoing 20 min of postural training. The type of stimulation to receive during the first session was pseudorandomized, and the two sessions were separated by 14 days. Before and immediately after 20 min of tDCS, the 10 m walk test, the Berg Balance Scale, and dynamic posturography assessments were performed. After a single session of anodal tDCS with concurrent postural training, we observed no changes in clinical measures of balance and walking, assessed using the Berg Balance Scale and 10 m walk test. For dynamic posturography assessments, participants demonstrated improvements in adaptation responses to toes-up and toes-down perturbations, regardless of the type of tDCS received. Additionally, improved performance in the shifting center of gravity was observed during anodal tDCS. Taken together, these preliminary findings suggest that tDCS can potentially be used as a feasible approach be incorporated into the rehabilitation of chronic post-stroke individuals with issues related to postural control and fear of falling, and that multiple sessions of tDCS stimulation may be needed to improve functional measures of postural control and walking.
Collapse
Affiliation(s)
- Jing Nong Liang
- Department of Physical Therapy, University of Nevada, Las Vegas, Las Vegas, NV, United States.,Interdisciplinary Doctoral Program in Neuroscience, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Leonard Ubalde
- Department of Physical Therapy, University of Nevada, Las Vegas, Las Vegas, NV, United States.,Interdisciplinary Doctoral Program in Neuroscience, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Jordon Jacklin
- Department of Physical Therapy, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Peyton Hobson
- Department of Physical Therapy, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Sara Wright-Avila
- Department of Physical Therapy, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Yun-Ju Lee
- Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
12
|
Dadashi F, Shahroki A, Nourian R, Irani A, Molavi M, Rafieenazari Z, Mirbagheri MM, Mirbagheri A. The Effects of Repetitive Transcranial Magnetic Stimulation (rTMS) on Balance Control in Children with Cerebral Palsy. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:5241-5244. [PMID: 31947040 DOI: 10.1109/embc.2019.8857361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cerebral palsy (CP) is a neurological disorder which can result in balance and mobility impairments. Four children with spastic CP participated and randomly assigned to experimental and control groups. The experimental group received 1-Hz repetitive Transcranial Magnetic Stimulation (rTMS) four times a week for 3 weeks, and the control group received sham rTMS using the similar experimental protocol. Each rTMS session lasted for 20 minutes. Postural balance was quantified by analyzing the center of pressure (COP) signal of a force plate according to the Romberg test. The balance was also evaluated using the Berg Balance Scale (BBS). The evaluations were done before and after the treatment. COP signal features showed up to 70% improvement following rTMS treatment, whereas there was no notable improvements in the control group. Similarly the BBS assessment presented balance enhancement only in the experimental group. These results, particularly under closed eye foam condition may imply an improvement in proprioception system.Our findings suggested that rTMS has a potential to be used as a therapeutic method to improve postural balance in children with CP.
Collapse
|
13
|
Lefaucheur JP, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V, Filipović SR, Grefkes C, Hasan A, Hummel FC, Jääskeläinen SK, Langguth B, Leocani L, Londero A, Nardone R, Nguyen JP, Nyffeler T, Oliveira-Maia AJ, Oliviero A, Padberg F, Palm U, Paulus W, Poulet E, Quartarone A, Rachid F, Rektorová I, Rossi S, Sahlsten H, Schecklmann M, Szekely D, Ziemann U. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014-2018). Clin Neurophysiol 2020; 131:474-528. [PMID: 31901449 DOI: 10.1016/j.clinph.2019.11.002] [Citation(s) in RCA: 1082] [Impact Index Per Article: 216.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/21/2019] [Accepted: 11/02/2019] [Indexed: 02/08/2023]
Abstract
A group of European experts reappraised the guidelines on the therapeutic efficacy of repetitive transcranial magnetic stimulation (rTMS) previously published in 2014 [Lefaucheur et al., Clin Neurophysiol 2014;125:2150-206]. These updated recommendations take into account all rTMS publications, including data prior to 2014, as well as currently reviewed literature until the end of 2018. Level A evidence (definite efficacy) was reached for: high-frequency (HF) rTMS of the primary motor cortex (M1) contralateral to the painful side for neuropathic pain; HF-rTMS of the left dorsolateral prefrontal cortex (DLPFC) using a figure-of-8 or a H1-coil for depression; low-frequency (LF) rTMS of contralesional M1 for hand motor recovery in the post-acute stage of stroke. Level B evidence (probable efficacy) was reached for: HF-rTMS of the left M1 or DLPFC for improving quality of life or pain, respectively, in fibromyalgia; HF-rTMS of bilateral M1 regions or the left DLPFC for improving motor impairment or depression, respectively, in Parkinson's disease; HF-rTMS of ipsilesional M1 for promoting motor recovery at the post-acute stage of stroke; intermittent theta burst stimulation targeted to the leg motor cortex for lower limb spasticity in multiple sclerosis; HF-rTMS of the right DLPFC in posttraumatic stress disorder; LF-rTMS of the right inferior frontal gyrus in chronic post-stroke non-fluent aphasia; LF-rTMS of the right DLPFC in depression; and bihemispheric stimulation of the DLPFC combining right-sided LF-rTMS (or continuous theta burst stimulation) and left-sided HF-rTMS (or intermittent theta burst stimulation) in depression. Level A/B evidence is not reached concerning efficacy of rTMS in any other condition. The current recommendations are based on the differences reached in therapeutic efficacy of real vs. sham rTMS protocols, replicated in a sufficient number of independent studies. This does not mean that the benefit produced by rTMS inevitably reaches a level of clinical relevance.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- ENT Team, EA4391, Faculty of Medicine, Paris Est Créteil University, Créteil, France; Clinical Neurophysiology Unit, Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France.
| | - André Aleman
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Chris Baeken
- Department of Psychiatry and Medical Psychology, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium; Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - David H Benninger
- Neurology Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Jérôme Brunelin
- PsyR2 Team, U1028, INSERM and UMR5292, CNRS, Center for Neuroscience Research of Lyon (CRNL), Centre Hospitalier Le Vinatier, Lyon-1 University, Bron, France
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Saša R Filipović
- Department of Human Neuroscience, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Christian Grefkes
- Department of Neurology, Cologne University Hospital, Cologne, Germany; Institute of Neurosciences and Medicine (INM3), Jülich Research Centre, Jülich, Germany
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Friedhelm C Hummel
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Defitech Chair in Clinical Neuroengineering, Swiss Federal Institute of Technology (EPFL) Valais and Clinique Romande de Réadaptation, Sion, Switzerland; Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Satu K Jääskeläinen
- Department of Clinical Neurophysiology, Turku University Hospital and University of Turku, Turku, Finland
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Letizia Leocani
- Department of Neurorehabilitation and Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele, University Vita-Salute San Raffaele, Milan, Italy
| | - Alain Londero
- Department of Otorhinolaryngology - Head and Neck Surgery, Université Paris Descartes Sorbonne Paris Cité, Hôpital Européen Georges Pompidou, Paris, France
| | - Raffaele Nardone
- Department of Neurology, Franz Tappeiner Hospital, Merano, Italy; Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria; Karl Landsteiner Institut für Neurorehabilitation und Raumfahrtneurologie, Salzburg, Austria
| | - Jean-Paul Nguyen
- Multidisciplinary Pain Center, Clinique Bretéché, ELSAN, Nantes, France; Multidisciplinary Pain, Palliative and Supportive Care Center, UIC22-CAT2-EA3826, University Hospital, CHU Nord-Laënnec, Nantes, France
| | - Thomas Nyffeler
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland; Perception and Eye Movement Laboratory, Department of Neurology, University of Bern, Bern, Switzerland; Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Albino J Oliveira-Maia
- Champalimaud Research & Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal; Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal; NOVA Medical School
- Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Antonio Oliviero
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Ulrich Palm
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany; Medical Park Chiemseeblick, Bernau, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Emmanuel Poulet
- PsyR2 Team, U1028, INSERM and UMR5292, CNRS, Center for Neuroscience Research of Lyon (CRNL), Centre Hospitalier Le Vinatier, Lyon-1 University, Bron, France; Department of Emergency Psychiatry, Edouard Herriot Hospital, Groupement Hospitalier Centre, Hospices Civils de Lyon, Lyon, France
| | - Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | - Irena Rektorová
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic; First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Simone Rossi
- Department of Medicine, Surgery and Neuroscience, Si-BIN Lab Human Physiology Section, Neurology and Clinical Neurophysiology Unit, University of Siena, Siena, Italy
| | - Hanna Sahlsten
- ENT Clinic, Mehiläinen and University of Turku, Turku, Finland
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - David Szekely
- Department of Psychiatry, Princess Grace Hospital, Monaco
| | - Ulf Ziemann
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
14
|
Tscherpel C, Grefkes C. [Brain stimulation for treating stroke-related motor deficits]. DER NERVENARZT 2019; 90:1005-1012. [PMID: 31538210 DOI: 10.1007/s00115-019-00799-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Functional recovery of stroke-related deficits is mainly achieved through neural reorganization. Neurorehabilitative approaches, therefore, aim at supporting positive processes while suppressing maladaptive neuronal processes. This review summarizes the main findings of studies using non-invasive and invasive brain stimulation with respect to the benefits of the treatment for motor deficits after stroke. In addition, the article discusses possible approaches to enhance the effectiveness of neuromodulatory approaches and thus improve the outcome of patients.
Collapse
Affiliation(s)
- Caroline Tscherpel
- Klinik und Poliklinik für Neurologie, Universitätsklinik Köln, Kerpener Str. 62, 50937, Köln, Deutschland.,Institut für Neurowissenschaften und Medizin (INM-3), Forschungszentrum Jülich, 52425, Jülich, Deutschland
| | - Christian Grefkes
- Klinik und Poliklinik für Neurologie, Universitätsklinik Köln, Kerpener Str. 62, 50937, Köln, Deutschland. .,Institut für Neurowissenschaften und Medizin (INM-3), Forschungszentrum Jülich, 52425, Jülich, Deutschland.
| |
Collapse
|
15
|
Ghayour-Najafabadi M, Memari AH, Hosseini L, Shariat A, Cleland JA. Repetitive Transcranial Magnetic Stimulation for the Treatment of Lower Limb Dysfunction in Patients Poststroke: A Systematic Review with Meta-Analysis. J Stroke Cerebrovasc Dis 2019; 28:104412. [PMID: 31585773 DOI: 10.1016/j.jstrokecerebrovasdis.2019.104412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/29/2019] [Accepted: 09/10/2019] [Indexed: 10/25/2022] Open
Abstract
PURPOSE To investigate the effectiveness of repetitive transcranial magnetic stimulation (rTMS) in recovery of lower limb dysfunction in patients poststroke. PARTICIPANTS AND METHODS Cochrane Central Register of Controlled Trials, Medline, ISI web of knowledge, EBSCO, Embase, Cumulative Index to Nursing and Allied Health Literature and Scopus. RESULTS Fifteen trials with 385 patients were included. Results showed that rTMS had a significant effect on balance (standard mean difference [SMD] = .38; 95% confidence interval [CI], .07: .69; I2 = 51%) and mobility (SMD: -.67; 95% CI, -1.08: -.26; I2 = 72%). However, rTMS had no significant immediate effects on the lower limb subscale of the Fugl-Meyer Assessment (FMA-L) (SMD = .01; 95% CI, -.29: .31; I2 = 0%). Continued effects of rTMS was also found to be significant during the follow-up period (SMD = .46; 95% CI, .09: .84; I2 = 14%). CONCLUSION rTMS was found to result in positive effects on mobility, balance and long-term prognosis of FMA-L. However data indicated that there is insufficient evidence for the effectiveness of rTMS in improving lower limb function.
Collapse
Affiliation(s)
- Mahboubeh Ghayour-Najafabadi
- Department of Motor Behavior, Faculty of Physical Education and Sport Science, University of Tehran, Tehran, Iran.
| | - Amir-Hossein Memari
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Lida Hosseini
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardalan Shariat
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
16
|
Kang N, Lee RD, Lee JH, Hwang MH. Functional Balance and Postural Control Improvements in Patients With Stroke After Noninvasive Brain Stimulation: A Meta-analysis. Arch Phys Med Rehabil 2019; 101:141-153. [PMID: 31568760 DOI: 10.1016/j.apmr.2019.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/22/2019] [Accepted: 09/05/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVES The postural imbalance poststroke limits individuals' walking abilities as well as increase the risk of falling. We investigated the short-term treatment effects of noninvasive brain stimulation (NIBS) on functional balance and postural control in patients with stroke. DATA SOURCES We started the search via PubMed and the Institute for Scientific Information's Web of Science on March 1, 2019 and concluded the search on April 30, 2019. STUDY SELECTION The meta-analysis included studies that used either repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS) for the recovery of functional balance and postural control poststroke. All included studies used either randomized controlled trial or crossover designs with a sham control group. DATA EXTRACTION Three researchers independently performed data extraction and assessing methodological quality and publication bias. We calculated overall and individual effect sizes using random effects meta-analysis models. DATA SYNTHESIS The random effects meta-analysis model on the 18 qualified studies identified the significant positive effects relating to NIBS in terms of functional balance and postural control poststroke. The moderator-variable analyses revealed that these treatment effects were only significant in rTMS across patients with acute, subacute, and chronic stroke whereas tDCS did not show any significant therapeutic effects. The meta-regression analysis showed that a higher number of rTMS sessions was significantly associated with more improvements in functional balance and postural control poststroke. CONCLUSIONS Our systematic review and meta-analysis confirmed that NIBS may be an effective option for restoring functional balance and postural control for patients with stroke.
Collapse
Affiliation(s)
- Nyeonju Kang
- From the Division of Sport Science & Sport Science Institute, Incheon National University, Incheon, South Korea; Department of Human Movement Science, Incheon National University, Incheon, South Korea.
| | - Ru Da Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
| | - Joon Ho Lee
- From the Division of Sport Science & Sport Science Institute, Incheon National University, Incheon, South Korea; Department of Human Movement Science, Incheon National University, Incheon, South Korea
| | - Moon Hyon Hwang
- Department of Human Movement Science, Incheon National University, Incheon, South Korea; Division of Health and Kinesiology, Incheon National University, Incheon, South Korea
| |
Collapse
|
17
|
Repetitive Transcranial Magnetic Stimulation on Motor Recovery for Patients With Stroke. Am J Phys Med Rehabil 2019; 99:99-108. [DOI: 10.1097/phm.0000000000001277] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Effect of Short Term Use of Repetitive Transcranial Stimulation as an Adjuvant Therapy for Bell’s Palsy. ARCHIVES OF NEUROSCIENCE 2018. [DOI: 10.5812/ans.81557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|