1
|
Houston AI, Fromhage L, McNamara JM. A general framework for modelling trade-offs in adaptive behaviour. Biol Rev Camb Philos Soc 2024; 99:56-69. [PMID: 37609707 DOI: 10.1111/brv.13011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
An animal's behaviour can influence many variables, such as its energy reserves, its risk of injury or mortality, and its rate of reproduction. To identify the optimal action in a given situation, these various effects can be compared in the common currency of reproductive value. While this idea has been widely used to study trade-offs between pairs of variables, e.g. between energy gain versus survival, here we present a unified framework that makes explicit how these various trade-offs fit together. This unification covers a wide range of biological phenomena, highlighting similarities in their logical structure and helping to identify knowledge gaps. To fill one such gap, we present a new model of foraging under the risk of predation and damage accumulation. We conclude by discussing the use and limitations of state-dependent optimisation theory in predicting biological observations.
Collapse
Affiliation(s)
- Alasdair I Houston
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Lutz Fromhage
- University of Jyväskylä, PO Box 35, Jyväskylä, 40014, Finland
| | - John M McNamara
- School of Mathematics, University of Bristol, Fry Building, Woodland Road, Bristol, BS8 1UG, UK
| |
Collapse
|
2
|
Bierker SR, Brubaker F, Scheideman KE, Ciamacco M, Harris ME, Utz RM. Small Mammals Perceive Most Fruits of Invasive Plants as Low-Quality Forage in a Pennsylvanian Forest and Meadow. Northeast Nat (Steuben) 2023. [DOI: 10.1656/045.030.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Searrah R. Bierker
- Falk School of Sustainability, Chatham University, 6035 Ridge Road, Gibsonia, PA 15044
| | - Frances Brubaker
- Falk School of Sustainability, Chatham University, 6035 Ridge Road, Gibsonia, PA 15044
| | - Kendra E. Scheideman
- Falk School of Sustainability, Chatham University, 6035 Ridge Road, Gibsonia, PA 15044
| | - Mars Ciamacco
- Falk School of Sustainability, Chatham University, 6035 Ridge Road, Gibsonia, PA 15044
| | - Meghan E. Harris
- Falk School of Sustainability, Chatham University, 6035 Ridge Road, Gibsonia, PA 15044
| | - Ryan M. Utz
- Falk School of Sustainability, Chatham University, 6035 Ridge Road, Gibsonia, PA 15044
| |
Collapse
|
3
|
Suárez Cáceres GP, Adinolfi C, Sánchez Barrera FA. FOOD SELECTION AND USE OF SPACE BY DIDELPHIS PERNIGRA (DIDELPHIDAE: MAMMALIA) IN AN ANDEAN SUBURBAN ENVIRONMENT. ACTA BIOLÓGICA COLOMBIANA 2020. [DOI: 10.15446/abc.v25n3.77558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Cities have grown throughout the Andes and we know little about the ecology of those species that tolerate them, limiting our options to do conservation. We applied optimal foraging theory to examine the behavior of the Andean White-eared Opossum (Didelphis pernigra), in a suburban area in Bogotá, Colombia. We used the giving-up density technique, which uses the amount of food left in a feeding patch, to evaluate whether the opossum’s foraging costs were affected by the height of food from the ground, and the quality and quantity of food. We also evaluated whether the spatial heterogeneity of the study site affected the opossum’s foraging. We used an artificial feeding patch to test these ideas. When food was either concentrated and, in less amount, (concentrated food) or diluted and more amount (diluted food), the opossums preferred to forage at 2 m than at 0.5 m, but concentrated food at 0.5 m was not significantly different from diluted food at 2 m. The opossums’ habitat use was affected by the spatial heterogeneity at the study site and animals preferred foraging along metal fences than on live fences made of trees. When a cable allowed connection between the metallic and live fences, the value of food patches at the live fence appeared to increase. Thus, although the opossums need resources associated with natural environments, our results suggest that there are human modifications that can benefit them, such as those that reduce the risk of predation and favor their mobility in suburban environments.
Collapse
|
4
|
Kelt DA, Heske EJ, Lambin X, Oli MK, Orrock JL, Ozgul A, Pauli JN, Prugh LR, Sollmann R, Sommer S. Advances in population ecology and species interactions in mammals. J Mammal 2019. [DOI: 10.1093/jmammal/gyz017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
AbstractThe study of mammals has promoted the development and testing of many ideas in contemporary ecology. Here we address recent developments in foraging and habitat selection, source–sink dynamics, competition (both within and between species), population cycles, predation (including apparent competition), mutualism, and biological invasions. Because mammals are appealing to the public, ecological insight gleaned from the study of mammals has disproportionate potential in educating the public about ecological principles and their application to wise management. Mammals have been central to many computational and statistical developments in recent years, including refinements to traditional approaches and metrics (e.g., capture-recapture) as well as advancements of novel and developing fields (e.g., spatial capture-recapture, occupancy modeling, integrated population models). The study of mammals also poses challenges in terms of fully characterizing dynamics in natural conditions. Ongoing climate change threatens to affect global ecosystems, and mammals provide visible and charismatic subjects for research on local and regional effects of such change as well as predictive modeling of the long-term effects on ecosystem function and stability. Although much remains to be done, the population ecology of mammals continues to be a vibrant and rapidly developing field. We anticipate that the next quarter century will prove as exciting and productive for the study of mammals as has the recent one.
Collapse
Affiliation(s)
- Douglas A Kelt
- Department of Wildlife, Fish, & Conservation Biology, University of California, Davis, CA, USA
| | - Edward J Heske
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| | - Xavier Lambin
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Madan K Oli
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - John L Orrock
- Department of Integrative Biology, University of Wisconsin, Madison, WI, USA
| | - Arpat Ozgul
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Jonathan N Pauli
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI, USA
| | - Laura R Prugh
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA
| | - Rahel Sollmann
- Department of Wildlife, Fish, & Conservation Biology, University of California, Davis, CA, USA
| | - Stefan Sommer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Bernal-Páez C, Sánchez F. Harvest rates and foraging strategy of Carollia perspicillata (Chiroptera: Phyllostomidae) in an artificial food patch. Behav Processes 2018; 157:396-401. [DOI: 10.1016/j.beproc.2018.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 10/28/2022]
|
6
|
Cozzoli F, Ligetta G, Vignes F, Basset A. Revisiting GUD: An empirical test of the size-dependency of patch departure behaviour. PLoS One 2018; 13:e0204448. [PMID: 30260989 PMCID: PMC6160073 DOI: 10.1371/journal.pone.0204448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/08/2018] [Indexed: 12/11/2022] Open
Abstract
Behaviour related to patch resource exploitation is a major determinant of individual fitness. Assuming the size-dependency of patch departure behaviour, model-based approaches have shown size-mediated coexistence in systems of competing species. However, experimental evidence for the influence of body size on patch use behaviour is scarce. In this study, we explore whether allometric principles provide an underlying framework for interspecific patterns of resource use. To this end, we propose a meso-cosm approach using three species of gastropods differing in size as a model system and 32P radio-isotopic techniques as a measure of resource use. Foragers of different size were placed in an artificial patch, provided with a limited amount of labelled resource and let them free to move as resources decrease and scarcity is sensed. We investigated the extent to which individual body size affects the exploitation of resources by examining Giving Up Density (GUD), Giving Up Time (GUT), resource absorption rate and exploitation efficiency as components of individual exploitation behaviour. To compare positive, constant and negative individual size scaling of population energy requirements, experimental trials with an equal numbers and equal biomass of differently sized foragers were carried out, and an experimental trial with equal metabolic requirements was simulated. We observed clear size dependency in the patch departure behaviour of the experimental organisms. Even under conditions of equivalent overall population energy requirements, larger foragers decided to leave the resource patch earlier and at a higher density of resources than smaller ones. Smaller foragers were able to prolong their presence and make more use of the resources, resulting in an inverse body-size scaling of resource exploitation efficiency.
Collapse
Affiliation(s)
- Francesco Cozzoli
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of the Salento, S.P. Lecce-Monteroni, Lecce, Italy
| | - Giovanna Ligetta
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of the Salento, S.P. Lecce-Monteroni, Lecce, Italy
| | - Fabio Vignes
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of the Salento, S.P. Lecce-Monteroni, Lecce, Italy
| | - Alberto Basset
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of the Salento, S.P. Lecce-Monteroni, Lecce, Italy
| |
Collapse
|
7
|
Ozaki S, Fritsch C, Valot B, Mora F, Cornier T, Scheifler R, Raoul F. Does pollution influence small mammal diet in the field? A metabarcoding approach in a generalist consumer. Mol Ecol 2018; 27:3700-3713. [PMID: 30069953 DOI: 10.1111/mec.14823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 02/04/2023]
Abstract
Mammals are mainly exposed to trace metals (TMs) via consuming contaminated food. Several studies have demonstrated relationships between metal concentrations in food and in animal tissues. However, potential effects of TMs on feeding behaviour of wildlife have been poorly documented under field conditions, despite experimental evidence showing that food selection is impacted by resource contamination. Here, we test the hypothesis that the diet of a generalist rodent, the wood mouse (Apodemus sylvaticus), is altered by soil TM contamination in the field. Wood mice were sampled in spring and in autumn along a gradient of soil contamination in the surroundings of a former smelter located in northern France. Available resources in the field were inventoried, and the diet of the animals was analysed using DNA "metabarcoding." We demonstrated that (a) relationship between the resource richness in the diet and their richness in the field was altered by soil metal contamination. Wood mice specialized their diet along the gradient of soil metal contamination for both plant and invertebrate resources in spring. We also showed that (b) preference for Salicaceae, a plant family accumulating metals, decreased when soil contamination increased. These results suggest that environmental TM pollution could act as a force modulating trophic interactions in terrestrial food webs, thereby affecting wildlife exposure to contaminants by trophic route.
Collapse
Affiliation(s)
- Shinji Ozaki
- Laboratoire Chrono-Environnement, UMR CNRS 6249 UsC INRA, Université Bourgogne Franche-Comté, Besançon Cedex, France
| | - Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR CNRS 6249 UsC INRA, Université Bourgogne Franche-Comté, Besançon Cedex, France
| | - Benoit Valot
- Laboratoire Chrono-Environnement, UMR CNRS 6249 UsC INRA, Université Bourgogne Franche-Comté, Besançon Cedex, France
| | - Frédéric Mora
- Conservatoire Botanique National de Franche-Comté, Observatoire Régional des Invertébrés, Besançon, France
| | - Thierry Cornier
- Centre Régional de Phytosociologie Agréé Conservatoire Botanique National de Bailleul, Bailleul, France
| | - Renaud Scheifler
- Laboratoire Chrono-Environnement, UMR CNRS 6249 UsC INRA, Université Bourgogne Franche-Comté, Besançon Cedex, France
| | - Francis Raoul
- Laboratoire Chrono-Environnement, UMR CNRS 6249 UsC INRA, Université Bourgogne Franche-Comté, Besançon Cedex, France
| |
Collapse
|
8
|
López-Barragan CN, Sánchez F. Food selection and predation risk in the Andean white-eared opossum ( Didelphis pernigra Allen, 1900) in a suburban area of Bogotá, Colombia. Mamm Biol 2017. [DOI: 10.1016/j.mambio.2017.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Jung JF, Hayslette SE. Differences in foraging behavior in wild and pen-raised northern bobwhites. WILDLIFE SOC B 2016. [DOI: 10.1002/wsb.709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jacob F. Jung
- Department of Biology; Tennessee Tech University; Box 5063 Cookeville 38505 USA
| | - Steven E. Hayslette
- Department of Biology; Tennessee Tech University; Box 5063 Cookeville 38505 USA
| |
Collapse
|
10
|
Utz JL, Shipley LA, Rachlow JL, Johnstone-Yellin T, Camp M, Forbey JS. Understanding tradeoffs between food and predation risks in a specialist mammalian herbivore. WILDLIFE BIOLOGY 2016. [DOI: 10.2981/wlb.00121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Kiekebusch EM, Kotler BP. Effects of plant defenses and water availability on seasonal foraging preferences of the Nubian Ibex (Capra nubiana). Isr J Ecol Evol 2016. [DOI: 10.1080/15659801.2015.1112657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The study of herbivore patch use has implications for herbivore habitat quality assessment, foraging behaviors, species interactions, and coexistence in patchy environments. This research focuses on the comparison of the effects of two qualitatively different plant defenses, mechanical (thorns) and chemical (tannins), on ibex foraging preferences during different seasons of the year. The occurrence of both chemical and mechanical plant defenses were experimentally manipulated in artificial resource patches, in addition to water availability. Ibex foraging preferences were quantified using giving-up densities during four separate fieldwork sessions in each of the seasons of the year at cliff sites overlooking the Zin Valley of the Negev Highlands. Both mechanical and chemical plant defenses significantly hindered ibex food intake overall. Mechanical and chemical defenses acted as substitutable defenses, meaning that their combined effects were not greater than additive. There were strong seasonal patterns of the amount of food consumed by ibex, further corroborated by comparison to rainfall levels. Seasonality also interacted with the effectiveness of plant defenses. Thorns were especially ineffective in summer, whereas tannins were most effective in spring. Decreases in seasonal food availability and increased marginal value of energy for ibex may have resulted in thorn ineffectiveness, while seasonal changes in the emergence of young foliage may have resulted in the greater springtime tannin effectiveness. Water was not found to mitigate the detrimental effects of tannins through dilution. The implications for decreased constraints on selective pressures on ibex due to the substitutability of plant defenses are discussed.
Collapse
Affiliation(s)
- Elsita M. Kiekebusch
- Mitrani Department for Desert Ecology, Blaustein Institute for Desert Research, Ben-Gurion University of the Negev
| | - Burt P. Kotler
- Mitrani Department for Desert Ecology, Blaustein Institute for Desert Research, Ben-Gurion University of the Negev
| |
Collapse
|
12
|
Camp MJ, Shipley LA, Johnson TR, Forbey JS, Rachlow JL, Crowell MM. Modeling trade-offs between plant fiber and toxins: a framework for quantifying risks perceived by foraging herbivores. Ecology 2016; 96:3292-302. [PMID: 26909434 DOI: 10.1890/14-2412.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
When selecting habitats, herbivores must weigh multiple risks, such as predation, starvation, toxicity, and thermal stress, forcing them to make fitness trade-offs. Here, we applied the method of paired comparisons (PC) to investigate how herbivores make trade-offs between habitat features that influence selection of food patches. The method of PC measures utility and the inverse of utility, relative risk, and makes trade-offs and indifferences explicit by forcing animals to make choices between two patches with different types of risks. Using a series of paired-choice experiments to titrate the equivalence curve and find the marginal rate of substitution for one risk over the other, we evaluated how toxin-tolerant (pygmy rabbit Brachylagus idahoensis) and fiber-tolerant (mountain cottontail rabbit Sylviagus nuttallii) herbivores differed in their hypothesized perceived risk of fiber and toxins in food. Pygmy rabbits were willing to consume nearly five times more of the toxin 1,8-cineole in their diets to avoid consuming higher levels of fiber than were mountain cottontails. Fiber posed a greater relative risk for pygmy rabbits than cottontails and cineole a greater risk for cottontails than pygmy rabbits. Our flexible modeling approach can be used to (1) quantify how animals evaluate and trade off multiple habitat attributes when the benefits and risks are difficult to quantify, and (2) integrate diverse risks that influence fitness and habitat selection into a single index of habitat value. This index potentially could be applied to landscapes to predict habitat selection across several scales.
Collapse
|
13
|
Lichti NI, Steele MA, Swihart RK. Seed fate and decision‐making processes in scatter‐hoarding rodents. Biol Rev Camb Philos Soc 2015; 92:474-504. [PMID: 26587693 DOI: 10.1111/brv.12240] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 10/12/2015] [Accepted: 10/21/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Nathanael I. Lichti
- Department of Forestry and Natural Resources Purdue University West Lafayette IN 47907 U.S.A
| | | | - Robert K. Swihart
- Department of Forestry and Natural Resources Purdue University West Lafayette IN 47907 U.S.A
| |
Collapse
|
14
|
Emerson SE, Brown JS. The influence of food chemistry on food-safety tradeoffs in samango monkeys. J Mammal 2015. [DOI: 10.1093/jmammal/gyv003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Mella VSA, Ward AJW, Banks PB, McArthur C. Personality affects the foraging response of a mammalian herbivore to the dual costs of food and fear. Oecologia 2014; 177:293-303. [PMID: 25294220 DOI: 10.1007/s00442-014-3110-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 09/04/2014] [Indexed: 12/16/2022]
Abstract
Predators attack and plants defend, so herbivores face the dilemma of how to eat enough without being eaten. But do differences in the personality of herbivores affect the foraging choices of individuals? We explored the ecological impact of personality in a generalist herbivore, the brushtail possum (Trichosurus vulpecula). After quantifying personality traits in wild individuals brought temporarily into captivity, we tested how these traits altered foraging by individuals when free-ranging in their natural habitat. To measure their responses to the dual costs of predation risk and plant toxin, we varied the toxin concentration of food in safe foraging patches against paired, non-toxic risky patches, and used a novel synthesis of a manipulative Giving-Up-Density (GUD) experiment and video behavioural analysis. At the population level, the cost of safe patches pivoted around that of risky patches depending on food toxin concentration. At the individual level, boldness affected foraging at risky high-quality food patches (as behavioural differences between bold and shy), and at safe patches only when food toxin concentration was low (as differences in foraging outcome). Our results ecologically validate the personality trait of boldness, in brushtail possums. They also reveal, for the first time, a nuanced link between personality and the way in which individuals balance the costs of food and fear. Importantly, they suggest that high plant defence effectively attenuates differences in foraging behaviour arising from variation in personality, but poorly defended plants in safe areas should be differentially subject to herbivory depending on the personality of the herbivore.
Collapse
Affiliation(s)
- Valentina S A Mella
- School of Biological Sciences, The University of Sydney, Sydney, NSW, 2006, Australia,
| | | | | | | |
Collapse
|
16
|
The dilemma of foraging herbivores: dealing with food and fear. Oecologia 2014; 176:677-89. [DOI: 10.1007/s00442-014-3076-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 09/02/2014] [Indexed: 10/24/2022]
|
17
|
Quantifying the response of free-ranging mammalian herbivores to the interplay between plant defense and nutrient concentrations. Oecologia 2014; 175:1167-77. [DOI: 10.1007/s00442-014-2980-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 05/22/2014] [Indexed: 11/27/2022]
|
18
|
Steele MA, Contreras TA, Hadj-Chikh LZ, Agosta SJ, Smallwood PD, Tomlinson CN. Do scatter hoarders trade off increased predation risks for lower rates of cache pilferage? Behav Ecol 2013. [DOI: 10.1093/beheco/art107] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
|
20
|
van Gils JA, van der Geest M, Leyrer J, Oudman T, Lok T, Onrust J, de Fouw J, van der Heide T, van den Hout PJ, Spaans B, Dekinga A, Brugge M, Piersma T. Toxin constraint explains diet choice, survival and population dynamics in a molluscivore shorebird. Proc Biol Sci 2013; 280:20130861. [PMID: 23740782 PMCID: PMC3774237 DOI: 10.1098/rspb.2013.0861] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Recent insights suggest that predators should include (mildly) toxic prey when non-toxic food is scarce. However, the assumption that toxic prey is energetically as profitable as non-toxic prey misses the possibility that non-toxic prey have other ways to avoid being eaten, such as the formation of an indigestible armature. In that case, predators face a trade-off between avoiding toxins and minimizing indigestible ballast intake. Here, we report on the trophic interactions between a shorebird (red knot, Calidris canutus canutus) and its two main bivalve prey, one being mildly toxic but easily digestible, and the other being non-toxic but harder to digest. A novel toxin-based optimal diet model is developed and tested against an existing one that ignores toxin constraints on the basis of data on prey abundance, diet choice, local survival and numbers of red knots at Banc d'Arguin (Mauritania) over 8 years. Observed diet and annual survival rates closely fit the predictions of the toxin-based model, with survival and population size being highest in years when the non-toxic prey is abundant. In the 6 of 8 years when the non-toxic prey is not abundant enough to satisfy the energy requirements, red knots must rely on the toxic alternative.
Collapse
Affiliation(s)
- Jan A van Gils
- Department of Marine Ecology, Royal Netherlands Institute for Sea Research (NIOZ), PO Box 59, 1790 AB Den Burg (Texel), The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Morris DW, Mukherjee S. Is Density-Dependent Resource Harvest A Reliable Habitat Indicator for Conservation and Management? Isr J Ecol Evol 2013. [DOI: 10.1560/ijee.53.3.371] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Makin DF, Payne HFP, Kerley GIH, Shrader AM. Foraging in a 3-D world: how does predation risk affect space use of vervet monkeys? J Mammal 2012. [DOI: 10.1644/11-mamm-a-115.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
23
|
McArthur C, Orlando P, Banks PB, Brown JS. The foraging tightrope between predation risk and plant toxins: a matter of concentration. Funct Ecol 2011. [DOI: 10.1111/j.1365-2435.2011.01930.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Molokwu MN, Nilsson JÅ, Olsson O. Diet selection in birds: trade-off between energetic content and digestibility of seeds. Behav Ecol 2011. [DOI: 10.1093/beheco/arr025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Nersesian CL, Banks PB, McArthur C. Titrating the cost of plant toxins against predators: determining the tipping point for foraging herbivores. J Anim Ecol 2011; 80:753-60. [PMID: 21366564 DOI: 10.1111/j.1365-2656.2011.01822.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Foraging herbivores must deal with plant characteristics that inhibit feeding and they must avoid being eaten. Principally, toxins limit food intake, while predation risk alters how long animals are prepared to harvest resources. Each of these factors strongly affects how herbivores use food patches, and both constraints can pose immediate proximate costs and long-term consequences to fitness. 2. Using a generalist mammalian herbivore, the common brushtail possum (Trichosurus vulpecula), our aim was to quantitatively compare the influence of plant toxin and predation risk on foraging decisions. 3. We performed a titration experiment by offering animals a choice between non-toxic food at a risky patch paired with food with one of five toxin concentrations at a safe patch. This allowed us to identify the tipping point, where the cost of toxin in the safe food patch was equivalent to the perceived predation risk in the alternative patch. 4. At low toxin concentration, animals ate more from the safe than the risky patch. As toxin concentration increased at the safe patch, intake shifted until animals ate mainly from the risky patch. This shift was associated with behavioural changes: animals spent more time and fed longer at the risky patch, while vigilance increased at both risky and safe patches. 5. Our results demonstrate that the variation in toxin concentration, which occurs intraspecifically among plants, can critically influence the relative cost of predation risk on foraging. We show that herbivores quantify, compare and balance these two different but proximate costs, altering their foraging patterns in the process. This has potential ecological and evolutionary implications for the production of plant defence compounds in relation to spatial variation in predation risk to herbivores.
Collapse
Affiliation(s)
- Carolyn L Nersesian
- School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|
26
|
Fanson BG, Fanson KV, Brown JS. Ecological Factors Affecting the Foraging Behaviour ofXerus rutilus. AFRICAN ZOOLOGY 2010. [DOI: 10.3377/004.045.0205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Integrating the costs of plant toxins and predation risk in foraging decisions of a mammalian herbivore. Oecologia 2010; 164:349-56. [PMID: 20652597 DOI: 10.1007/s00442-010-1717-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 06/24/2010] [Indexed: 10/19/2022]
Abstract
Foraging herbivores must satisfy their nutrient requirements in a world of toxic plants while also avoiding predators. Plant toxins and perceived predation risk at food patches should both reduce patch residency time, but the relative strengths of these factors on feeding decisions has rarely been quantified. Using an arboreal generalist herbivore, the common brushtail possum Trichosurus vulpecula, we tested the effects on food intake of the plant toxin, cineole, and regurgitated pellets from one of its predators, the powerful owl Ninox strenua at the small spatial scale of the food patch. We used the giving-up density (GUD) framework, with animals harvesting food items (sultanas) in an inedible matrix (small pebbles). We ran two consecutive field experiments in a eucalypt woodland in eastern Australia, 1 month apart in the same location. In experiment 1, there was a significant interaction between cineole [at 17% of dry matter (DM)] and owl pellets. The GUD was lowest in the absence of both cineole and owl pellet, intermediate in the presence of owl pellet; and highest with cineole ± owl pellet. The effect of owl pellet diminished over time. In experiment 2, only cineole (at 10% DM) increased the GUD significantly. The difference in effect of owl pellet was probably due to both habituation and freshness of the cue. Our study demonstrates the importance of synthesising predator-prey and plant-herbivore ecology to better understand the complex set of constraints influencing foraging herbivores. The greater effect of toxin than fear on possums is likely to be due to its high, but ecologically relevant concentration. This highlights the need to explore the relative and net impacts of a range of concentrations of plant toxins and predation risks.
Collapse
|
28
|
Schmidt KA, Ostfeld RS. Eavesdropping squirrels reduce their future value of food under the perceived presence of cache robbers. Am Nat 2008; 171:386-93. [PMID: 18220481 DOI: 10.1086/527497] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Caching behavior frequently occurs within a social context that may include heterospecific cache pilferers. All else equal, the value of cacheable food should decline as the probability of cache recovering declines. We manipulated gray squirrels' (Sciurus carolinensis) estimate of the probability of cache recovery using experimental playbacks of the vocalizations of a potential cache robber, the blue jay (Cyanocitta cristata). We used giving-up densities (GUDs) to quantify relative changes in squirrels' valuation of cacheable and noncacheable foods. We collected GUDs during playback experiments to test whether squirrels (1) eavesdrop on vocalizations to detect jay presence, (2) devalue cacheable food in the (perceived) presence of jays (i.e., perceive jays as cache pilferers), and (3) are sensitive to distant effects (i.e., lower devaluation of cacheable food at sites far from the perceived location of jays). Consistent with our predictions, squirrels decreased the value of cacheable hazelnuts by two nuts, on average, during jay playbacks, but only at foraging stations near the jay playback sites. We conclude that through eavesdropping, squirrels assess site-specific risks of cache pilfering and alter their caching behavior to reduce the likelihood of pilferage. Evidence suggests that tree seed consumers in eastern deciduous forests exist within a complex communication network.
Collapse
Affiliation(s)
- Kenneth A Schmidt
- Department of Biological Sciences, Texas Tech University, MS 3131, Lubbock, Texas 79409, USA.
| | | |
Collapse
|
29
|
Beernaert J, Scheirs J, Van Den Brande G, Leirs H, Blust R, De Meulenaer B, Van Camp J, Verhagen R. Do wood mice (Apodemus sylvaticus L.) use food selection as a means to reduce heavy metal intake? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2008; 151:599-607. [PMID: 17555856 DOI: 10.1016/j.envpol.2007.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 03/27/2007] [Accepted: 04/08/2007] [Indexed: 05/15/2023]
Abstract
Food preference of wood mice from two with heavy metals polluted sites and two unpolluted sites was tested under laboratory and field conditions with two-way choice experiments. In the laboratory, wood mice preferred to eat acorns from unpolluted sites over acorns from polluted sites. Previous experience with polluted food had no influence on food choice. Preference was negatively related to acorn metal content. Furthermore, the nutrient content of the acorn endosperm was consistently lower in polluted sites. We therefore conclude that wood mice used absolute metal concentration in the acorn, nutrient content, or both as a food selection cue. The results of the laboratory experiment could not be confirmed under field conditions. We hypothesized that search time constraints due to the presence of predators, competitors and/or other stress factors in the field have prevented the mice to forage selectively.
Collapse
Affiliation(s)
- Joke Beernaert
- Evolutionary Biology Group, Department of Biology, University of Antwerp, Groenenborgerlaan 171, Antwerp, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
M. Shrader A, P. Kotler B, S. Brown J, I. H. Kerley G. Providing water for goats in arid landscapes: effects on feeding effort with regard to time period, herd size and secondary compounds. OIKOS 2007. [DOI: 10.1111/j.2007.0030-1299.16410.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Abstract
Dietary shifts are commonly exhibited by omnivorous consumers when foraging from variable food resources. One advantage of dietary shifts for a consumer is the ability to gain complementary resources from different foods. In addition, dietary shifts often affect food-web dynamics. Despite the importance of dietary shifts to organismal, community, and ecosystem ecology, empirical studies of the ecological mechanisms that control dietary shifts are limited in scope. In this study, we tested the effects of complementary resources on dietary shifts of an omnivorous mammal, the white-footed mouse Peromyscus leucopus, in the context of depletable food patches in the natural environment. We used two complementary resources: seeds that provide a higher energy gain per unit handling time and mealworms that provide a higher protein gain per unit handling time. Stable isotopes of carbon and nitrogen (delta13C, delta15N) in mouse plasma were used to quantify dietary shifts, and we determined giving-up density (GUD), the food density at which a forager leaves a food patch (for an optimal forager, it should correspond to the quitting harvest rate that balances net fitness gain with various costs of foraging). The results showed that GUD increased most significantly when a mixture of seeds and mealworms was added, compared to when only seeds or mealworms were added. This suggests that, given a similar level of food availability, a patch with a mixture of complementary foods is of higher quality than a patch with only one type of food. Moreover, GUD measured with seeds (GUDs) correlated positively with seed availability, and GUD measured with mealworms (GUDmw) correlated positively with mealworm availability, indicating that the marginal value of seeds or mealworms decreases with their relatively availability in the environment. As GUDs increased, P. leucopus shifted their diets toward higher trophic levels, and as GUDmw increased, P. leucopus shifted their diets toward lower trophic levels, suggesting dietary shifts driven by food complementarity. This study demonstrated that the combination of giving-up density and stable-isotope analysis holds great potential for testing ecological mechanisms underlying dietary shifts.
Collapse
Affiliation(s)
- Pei-Jen Shaner
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia 22904, USA.
| | | | | |
Collapse
|
32
|
|
33
|
Jørgensen SE, Fath BD. Application of thermodynamic principles in ecology. ECOLOGICAL COMPLEXITY 2004. [DOI: 10.1016/j.ecocom.2004.07.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
|
35
|
|