1
|
Sanderson S, Bolnick DI, Kinnison MT, O'Dea RE, Gorné LD, Hendry AP, Gotanda KM. Contemporary changes in phenotypic variation, and the potential consequences for eco-evolutionary dynamics. Ecol Lett 2023; 26 Suppl 1:S127-S139. [PMID: 37840026 DOI: 10.1111/ele.14186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 10/17/2023]
Abstract
Most studies assessing rates of phenotypic change focus on population mean trait values, whereas a largely overlooked additional component is changes in population trait variation. Theoretically, eco-evolutionary dynamics mediated by such changes in trait variation could be as important as those mediated by changes in trait means. To date, however, no study has comprehensively summarised how phenotypic variation is changing in contemporary populations. Here, we explore four questions using a large database: How do changes in trait variances compare to changes in trait means? Do different human disturbances have different effects on trait variance? Do different trait types have different effects on changes in trait variance? Do studies that established a genetic basis for trait change show different patterns from those that did not? We find that changes in variation are typically small; yet we also see some very large changes associated with particular disturbances or trait types. We close by interpreting and discussing the implications of our findings in the context of eco-evolutionary studies.
Collapse
Affiliation(s)
- Sarah Sanderson
- Department of Biology and Redpath Museum, McGill University, Montréal, Québec, Canada
| | - Daniel I Bolnick
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Michael T Kinnison
- School of Biology and Ecology and Maine Center for Genetics in the Environment, University of Maine, Orono, Maine, USA
| | | | - Lucas D Gorné
- Department of Biology and Redpath Museum, McGill University, Montréal, Québec, Canada
- Department of Biological Sciences, Brock University, St. Catharine's, Ontario, Canada
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrew P Hendry
- Department of Biology and Redpath Museum, McGill University, Montréal, Québec, Canada
| | - Kiyoko M Gotanda
- Department of Biological Sciences, Brock University, St. Catharine's, Ontario, Canada
| |
Collapse
|
2
|
Minnaar IA, Hui C, Clusella-Trullas S. Jack, master or both? The invasive ladybird Harmonia axyridis performs better than a native coccinellid despite divergent trait plasticity. NEOBIOTA 2022. [DOI: 10.3897/neobiota.77.91402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The plasticity of performance traits can promote the success of biological invasions and therefore, precisely estimating trait reaction norms can help to predict the establishment and persistence of introduced species in novel habitats. Most studies focus only on a reduced set of traits and rarely include trait variability that may be vital to predicting establishment success. Here, using a split-brood full-sib design, we acclimated the globally invasive ladybird Harmonia axyridis and a native co-occurring and competing species Cheilomenes lunata to cold, medium and warm temperature regimes, and measured critical thermal limits, life-history traits, and starvation resistance. We used the conceptual framework of “Jack, Master or both” to test predictions regarding performance differences of these two species. The native C. lunata had a higher thermal plasticity of starvation resistance and a higher upper thermal tolerance than H. axyridis. By contrast, H. axyridis had a higher performance than C. lunata for preoviposition period, fecundity and adult emergence from pupae. We combined trait responses, transport duration and propagule pressure to predict the size of the populations established in a novel site following cold, medium and warm scenarios. Although C. lunata initially had a higher performance than the invasive species during transport, more individuals of H. axyridis survived in all simulated environments due to the combined life-history responses, and in particular, higher fecundity. Despite an increased starvation mortality in the warm scenario, given a sufficient propagule size, H. axyridis successfully established. This study underscores how the combination and plasticity of multiple performance traits can strongly influence establishment potential of species introduced into novel environments.
Collapse
|
3
|
Nielsen ME, Papaj DR. Why study plasticity in multiple traits? New hypotheses for how phenotypically plastic traits interact during development and selection. Evolution 2022; 76:858-869. [PMID: 35274745 PMCID: PMC9313899 DOI: 10.1111/evo.14464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/12/2021] [Accepted: 12/29/2021] [Indexed: 01/21/2023]
Abstract
Organisms can often respond adaptively to a change in their environment through phenotypic plasticity in multiple traits, a phenomenon termed as multivariate plasticity. These different plastic responses could interact and affect each other's development as well as selection on each other, but the causes and consequences of these interactions have received relatively little attention. Here, we propose a new conceptual framework for understanding how different plastic responses can affect each other's development and why organisms should have multiple plastic responses. A plastic change in one trait could alter the phenotype of a second plastic trait by changing either the cue received by the organism (cue-mediated effect) or the response to that cue (response-mediated effect). Multivariate plasticity could benefit the organism either because the plastic responses work better when expressed together (synergy) or because each response is more effective under different environmental circumstances (complementarity). We illustrate these hypotheses with case studies, focusing on interactions between behavior and morphology, plastic traits that differ in their reversibility. Future empirical and theoretical research should investigate the consequences of these interactions for additional factors important for the evolution of plasticity, such as the limits and costs of plasticity.
Collapse
Affiliation(s)
- Matthew E. Nielsen
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizona85721,Zoology DepartmentStockholm UniversityStockholm11419Sweden
| | - Daniel R. Papaj
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizona85721
| |
Collapse
|
4
|
Rewicz A, Myśliwy M, Adamowski W, Podlasiński M, Bomanowska A. Seed morphology and sculpture of invasive Impatiens capensis Meerb. from different habitats. PeerJ 2020; 8:e10156. [PMID: 33240597 PMCID: PMC7680054 DOI: 10.7717/peerj.10156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 09/21/2020] [Indexed: 11/20/2022] Open
Abstract
Impatiens capensis is an annual plant native to eastern North America that is currently spreading across Europe. In Poland, due to this plant's rapid spread in the secondary range and high competitiveness in relation to native species, it is considered a locally invasive species. The microstructure of seeds is an important tool for solving various taxonomic problems and also provides data useful for determining the impact of various environmental factors on the phenotypic variability of species. This issue is particularly important in regard to invasive species which occupy a wide range of habitats in the invaded range. There are few reports on seed size and thus far no descriptions of the seed ultrastructure of I. capensis in the analyzed literature. We present new data on the seed morphology of I. capensis growing in different habitats and conditions in the secondary range of the species. The studied populations differed significantly in each of the investigated traits (seed length, width, circumference, area, roundness, and mass). Our findings showed that anthropogenic disturbances in habitats and some soil parameters (presence of carbonates, potassium, loose sand, and moisture) were statistically significant with various seed sizes and morphology in the studied populations of I. capensis. Moreover, our studies showed maximum seed length (5.74 mm) and width (3.21 mm) exceeding those values given in the available literature. For the first time, we also provide a detailed SEM study of the ultrastructure of the seed coat of I. capensis. There are two types of epidermal cells on the seeds: (a) between the ribs (elongated with straight anticlinal walls, slightly concave outer periclinal walls, and micropapillate secondary sculpture on the edges with anticyclic walls), and (b) on the ribs (isodiametric cells with straight anticlinal walls and concave outer periclinal walls). Unlike the variability of size and weight of seeds, the coat ornamentation has turned out to be a steady feature within the studied secondary range of I. capensis.
Collapse
Affiliation(s)
- Agnieszka Rewicz
- Department of Geobotany and Plant Ecology, University of Lodz, Lodz, Poland
| | - Monika Myśliwy
- Institute of Marine and Environmental Sciences, University of Szczecin, Szczecin, Poland
| | - Wojciech Adamowski
- Białowieża Geobotanical Station, Faculty of Biology, University of Warsaw, Białowieża, Poland
| | - Marek Podlasiński
- Department of Environmental Management, West Pomeranian University of Technology, Szczecin, Poland
| | - Anna Bomanowska
- Department of Geobotany and Plant Ecology, University of Lodz, Lodz, Poland
| |
Collapse
|
5
|
Jia Y, Kennard MJ, Liu Y, Sui X, Chen Y, Li K, Wang G, Chen Y. Understanding invasion success of Pseudorasbora parva in the Qinghai-Tibetan Plateau: Insights from life-history and environmental filters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133739. [PMID: 31756834 DOI: 10.1016/j.scitotenv.2019.133739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/20/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
Understanding mechanisms of fish invasion success is crucial to controlling existing invasions and preventing potential future spread. Despite considerable advances in explaining successful fish invasions, little is known about how non-native fish successfully invade alpine freshwater ecosystems. Here, we explore the role of fish life history and environmental factors in contributing to invasion success of Pseudorasbora parva on the Qinghai-Tibet Plateau. We compared life history trait differences between native populations in lowland China with introduced populations in lowland Europe and the high elevation Qinghai-Tibet Plateau. Linear mixed-effects models were used to analyse life-history trait variation across elevation gradients. A random forest model was developed to identify the key environmental filters influencing P. parva invasion success. Life history characteristics differed substantially between native and introduced populations. Compared with native Chinese populations, introduced populations in lowland Europe had smaller body size, higher fecundity, smaller oocytes and earlier maturation. Introduced populations in the Qinghai-Tibet Plateau had smaller body size, lower fecundity, smaller oocytes and later maturation compared with native populations. 1-Year-Length and fecundity in all age classes of females significantly increased with increasing elevation. 2-Year-Length and 3-Year-Length of male significantly increased while maximal longevity and length at first maturity were significantly decreased with the elevation gradient. Habitat type, annual mean temperature, elevation, annual precipitation and precipitation seasonality, were the 5 most important predictors for the occurrence of the P. parva. Our study indicates that invasive P. parva adopt different life history strategies on the plateau compared with invasive populations at low elevations, highlighting that more studies are required for a better understanding of biological invasion under extreme conditions. Considering the ongoing hydrologic alteration and climate change, our study also highlighted that P. parva may expand their distribution range in the future on the Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Yintao Jia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Mark J Kennard
- Australian Rivers Institute, Griffith University, Brisbane, Queensland, Australia
| | - Yuhan Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyun Sui
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yiyu Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kemao Li
- Qinghai Provincial Fishery Environmental Monitoring Center, Xining, China
| | - Guojie Wang
- Qinghai Provincial Fishery Environmental Monitoring Center, Xining, China
| | - Yifeng Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
6
|
Hock M, Hofmann RW, Müller C, Erfmeier A. Exotic plant species are locally adapted but not to high ultraviolet-B radiation: a reciprocal multispecies experiment. Ecology 2019; 100:e02665. [PMID: 30770567 DOI: 10.1002/ecy.2665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 12/21/2018] [Accepted: 01/16/2019] [Indexed: 02/02/2023]
Abstract
Ultraviolet (UV) radiation intensities differ among global regions, with significantly higher levels in the southern hemisphere. UV-B may act as an environmental filter during plant invasions, which might particularly apply to plant species from Europe introduced to New Zealand. Just like for any other abiotic or biotic filter, successful invaders can cope with novel environmental conditions via plastic responses and/or through rapid adaptation by natural selection in the exotic range. We conducted a multispecies experiment with herbaceous plants in two common gardens located in the species' native and exotic ranges, in Germany and New Zealand, respectively. We used plants of German and New Zealand origin of eight species to test for adaptation to higher UV-B radiation in their new range. In each common garden, all plants were exposed to three radiation treatments: (1) ambient sunlight, (2) exclusion of UV-B while transmitting ambient UV-A, and (3) combined exclusion of UV-B and UV-A. Linear mixed-effect models revealed significant effects of UV-B on growth and leaf traits and an indication for UV-B-induced biomass reduction in both common gardens pointing to an impact of natural, ambient UV radiation intensities experienced by plants in the northern and in the southern hemisphere. In both common gardens, the respective local plants (i.e., German origins in Germany, New Zealand origins in New Zealand) displayed enhanced productivity and aboveground biomass allocation, thus providing evidence for recent evolutionary processes in the exotic range. Genetic differentiation between different origins in consequence of divergent local selection pressures was found for specific leaf area. This differentiation particularly hints at different selective forces in both ranges while only little evidence was found for an immediate selective effect of high UV-B intensities in the exotic range. However, reaction norm slopes across ranges revealed higher plasticity of exotic individuals in functional leaf traits that might allow for a more sensitive regulation of photoprotection measures in response to UV-B. During the colonization, New Zealand populations might have been selected for the observed higher phenotypic plasticity and a consequently increased ability to successfully spread in the exotic range.
Collapse
Affiliation(s)
- Maria Hock
- Institute for Ecosystem Research/Geobotany, Kiel University, Olshausenstrasse 75, Kiel, 24118, Germany.,Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, Halle, 06108, Germany
| | - Rainer W Hofmann
- Faculty of Agriculture and Life Sciences, Lincoln University, Ellesmere Junction Road/Springs Road, Lincoln, 7647, New Zealand
| | - Caroline Müller
- Faculty of Biology/Chemical Ecology, Bielefeld University, Universitätsstraße 25, Bielefeld, 33615, Germany
| | - Alexandra Erfmeier
- Institute for Ecosystem Research/Geobotany, Kiel University, Olshausenstrasse 75, Kiel, 24118, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5E, Leipzig, 04103, Germany
| |
Collapse
|
7
|
Morphology and genetics of Lythrum salicaria from latitudinal gradients of the Northern Hemisphere grown in cold and hot common gardens. PLoS One 2019; 14:e0208300. [PMID: 30605466 PMCID: PMC6317810 DOI: 10.1371/journal.pone.0208300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 11/15/2018] [Indexed: 11/19/2022] Open
Abstract
The aim of this project was to compare the phenotypic responses of global populations of Lythrum salicaria in cold/dry and hot/humid environments to determine if phenotypic plasticity varied between the native and invasive ranges, and secondarily if this variation was linked to genetic diversity. Common garden studies were conducted in Třeboň, Czech Republic, and Lafayette, Louisiana, USA (cold/dry vs. hot/humid garden, respectively), using populations from latitudinal gradients in Eurasia and North America. Lythrum salicaria seeds collected from the same maternal plants across these latitudinal gradients were germinated and grown in Třeboň and Lafayette. Tissue masses (above-, below-ground, inflorescence and total) of these individuals were assessed at the end of each growing season (2006–2008). Worldwide field measurements of L. salicaria height were made by volunteers from 2004–2016. Biomass and height data were analyzed using the General Linear Model framework and multivariate techniques. Molecular markers (amplified fragment length polymorphisms) of individuals used in the common garden study were analyzed using traditional genetic diversity metrics and Bayesian clustering algorithms in STRUCTURE. Reaction norms were developed from differences in maternal plant responses in Třeboň versus Lafayette. In the common garden studies, stem/leaf, root and total biomass generally were highest for individuals grown from seeds collected in the southern part of the range in the cold garden, particularly by the third year of the study. In contrast, inflorescence biomass in the cold garden was higher by the third year in individuals from mid-latitude populations. As measured by volunteers, plants were taller in Eurasia than in North America moving from north to south with the pattern switching southward of 40°N latitude. Genetic diversity was similar between native and non-native invasive populations regardless of geographical origin of the seed and was not significantly different in the GLM Select model (p > 0.05). Reaction norm slopes showed that Eurasia had larger values than North America for reaction norms for above-ground and total biomass. Plants from the seeds of mother plants from Turkey had wide variation in total biomass when grown in Třeboň versus Lafayette; this variation in response within certain populations may have contributed to the lack of population-level differences in plasticity. These results indicate no loss of genetic diversity for L. salicaria during its North American invasion, nor reduction in plastic tissue allocation responses to a varying environment, which may help explain some of its invasive qualities and which could be of adaptive value under changing future environments.
Collapse
|
8
|
Shi J, Macel M, Tielbörger K, Verhoeven KJF. Effects of admixture in native and invasive populations of Lythrum salicaria. Biol Invasions 2018; 20:2381-2393. [PMID: 30956538 PMCID: PMC6417435 DOI: 10.1007/s10530-018-1707-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 03/13/2018] [Indexed: 11/30/2022]
Abstract
Intraspecific hybridization between diverged populations can enhance fitness via various genetic mechanisms. The benefits of such admixture have been proposed to be particularly relevant in biological invasions, when invasive populations originating from different source populations are found sympatrically. However, it remains poorly understood if admixture is an important contributor to plant invasive success and how admixture effects compare between invasive and native ranges. Here, we used experimental crosses in Lythrum salicaria, a species with well-established history of multiple introductions to Eastern North America, to quantify and compare admixture effects in native European and invasive North American populations. We observed heterosis in between-population crosses both in native and invasive ranges. However, invasive-range heterosis was restricted to crosses between two different Eastern and Western invasion fronts, whereas heterosis was absent in geographically distant crosses within a single large invasion front. Our results suggest that multiple introductions have led to already-admixed invasion fronts, such that experimental crosses do not further increase performance, but that contact between different invasion fronts further enhances fitness after admixture. Thus, intra-continental movement of invasive plants in their introduced range has the potential to boost invasiveness even in well-established and successfully spreading invasive species.
Collapse
Affiliation(s)
- Jun Shi
- 1Institute of Ecology and Evolution, Plant Ecology Group, University of Tübingen, 72076 Tübingen, Germany.,2Ningbo Academy of Agricultural Sciences, Ningbo, 315040 China
| | - Mirka Macel
- 1Institute of Ecology and Evolution, Plant Ecology Group, University of Tübingen, 72076 Tübingen, Germany.,3Department of Plant Science, Radboud University Nijmegen, P.O. Box 9010, 6500 NL Nijmegen, Netherlands
| | - Katja Tielbörger
- 1Institute of Ecology and Evolution, Plant Ecology Group, University of Tübingen, 72076 Tübingen, Germany
| | - Koen J F Verhoeven
- 4Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, Netherlands
| |
Collapse
|
9
|
Molina-Montenegro MA, Acuña-Rodríguez IS, Flores TSM, Hereme R, Lafon A, Atala C, Torres-Díaz C. Is the Success of Plant Invasions the Result of Rapid Adaptive Evolution in Seed Traits? Evidence from a Latitudinal Rainfall Gradient. FRONTIERS IN PLANT SCIENCE 2018; 9:208. [PMID: 29535741 PMCID: PMC5835042 DOI: 10.3389/fpls.2018.00208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 02/05/2018] [Indexed: 05/29/2023]
Abstract
It has been widely suggested that invasion success along broad environmental gradients may be partially due to phenotypic plasticity, but rapid evolution could also be a relevant factor for invasions. Seed and fruit traits can be relevant for plant invasiveness since they are related to dispersal, germination, and fitness. Some seed traits vary along environmental gradients and can be heritable, with the potential to evolve by means of natural selection. Utilizing cross-latitude and reciprocal-transplant experiments, we evaluated the adaptive value of seed thickness as assessed by survival and biomass accumulation in Taraxacum officinale plants. In addition, thickness of a seed and Endosperm to Seed Coat Proportion (ESCP) in a second generation (F2) was measured to evaluate the heritability of this seed trait. On the other hand, we characterized the genetic variability of the sampled individuals with amplified fragment length polymorphism (AFLP) markers, analyzing its spatial distribution and population structure. Overall, thickness of seed coat (plus wall achene) decreases with latitude, indicating that individuals of T. officinale from northern populations have a thicker seed coat than those from southern populations. Germination increased with greater addition of water and seeds from southern localities germinated significantly more than those from the north. Additionally, reciprocal transplants showed significant differences in survival percentage and biomass accumulation among individuals from different localities and moreover, the high correlation between maternal plants and their offspring can be suggesting a high grade of heritability of this trait. Although genetic differentiation was found when was considered all populations, there was no significant differentiation when only was compared the northernmost populations which inhabit in the driest climate conditions. Our results suggest that climatic conditions could affect both, the ESCP and the genetic variability in the invasive T. officinale, suggesting that this seed trait could be indicative of adaptive selection. Thus, colonization along broad geographical gradients in many cases may be the result -in part- for the presence of functional traits as shown in invasive plant species with rapid adaptive capacity.
Collapse
Affiliation(s)
- Marco A. Molina-Montenegro
- Centro de Estudios Avanzados en Ecología Molecular y Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Centro de Estudios Avanzados en Zonas Áridas, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
- Research Program “Adaptation of the Agriculture to Climate Change” PIEI A2C2, Universidad de Talca, Talca, Chile
| | - Ian S. Acuña-Rodríguez
- Centro de Estudios Avanzados en Ecología Molecular y Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Tomás S. M. Flores
- Centro de Estudios Avanzados en Zonas Áridas, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - Rasme Hereme
- Centro de Estudios Avanzados en Ecología Molecular y Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Alejandra Lafon
- Centro de Investigación en Ecosistemas de la Patagonia, Coyhaique, Chile
| | - Cristian Atala
- Laboratorio de Anatomía y Ecología Funcional de Plantas, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Cristian Torres-Díaz
- Grupo de Biodiversidad y Cambio Global, Departamento de Ciencias Básicas, Universidad del Bío-Bío, Chillan, Chile
| |
Collapse
|
10
|
Conservation Evo-Devo: Preserving Biodiversity by Understanding Its Origins. Trends Ecol Evol 2017; 32:746-759. [DOI: 10.1016/j.tree.2017.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/27/2017] [Accepted: 07/03/2017] [Indexed: 02/01/2023]
|
11
|
Lind MI, Yarlett K, Reger J, Carter MJ, Beckerman AP. The alignment between phenotypic plasticity, the major axis of genetic variation and the response to selection. Proc Biol Sci 2016; 282:20151651. [PMID: 26423845 PMCID: PMC4614775 DOI: 10.1098/rspb.2015.1651] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Phenotypic plasticity is the ability of a genotype to produce more than one phenotype in order to match the environment. Recent theory proposes that the major axis of genetic variation in a phenotypically plastic population can align with the direction of selection. Therefore, theory predicts that plasticity directly aids adaptation by increasing genetic variation in the direction favoured by selection and reflected in plasticity. We evaluated this theory in the freshwater crustacean Daphnia pulex, facing predation risk from two contrasting size-selective predators. We estimated plasticity in several life-history traits, the G matrix of these traits, the selection gradients on reproduction and survival, and the predicted responses to selection. Using these data, we tested whether the genetic lines of least resistance and the predicted response to selection aligned with plasticity. We found predator environment-specific G matrices, but shared genetic architecture across environments resulted in more constraint in the G matrix than in the plasticity of the traits, sometimes preventing alignment of the two. However, as the importance of survival selection increased, the difference between environments in their predicted response to selection increased and resulted in closer alignment between the plasticity and the predicted selection response. Therefore, plasticity may indeed aid adaptation to new environments.
Collapse
Affiliation(s)
- Martin I Lind
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala 752 36, Sweden
| | - Kylie Yarlett
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Julia Reger
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Mauricio J Carter
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK Centro Nacional del Medio Ambiente, Universidad de Chile, Avenida Larrain 9975, La Reina, Santiago, Chile
| | - Andrew P Beckerman
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
12
|
Buru JC, Dhileepan K, Osunkoya OO, Firn J. Comparison of growth traits between abundant and uncommon forms of a non-native vine, Dolichandra unguis-cati (Bignoniaceae) in Australia. NEOBIOTA 2016. [DOI: 10.3897/neobiota.30.8495] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Stoks R, Govaert L, Pauwels K, Jansen B, De Meester L. Resurrecting complexity: the interplay of plasticity and rapid evolution in the multiple trait response to strong changes in predation pressure in the water fleaDaphnia magna. Ecol Lett 2015; 19:180-190. [DOI: 10.1111/ele.12551] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 09/18/2015] [Accepted: 10/30/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Robby Stoks
- Laboratory of Aquatic Ecology, Evolution and Conservation; University of Leuven; Ch. Deberiotstraat 32 B-3000 Leuven Belgium
| | - Lynn Govaert
- Laboratory of Aquatic Ecology, Evolution and Conservation; University of Leuven; Ch. Deberiotstraat 32 B-3000 Leuven Belgium
| | - Kevin Pauwels
- Laboratory of Aquatic Ecology, Evolution and Conservation; University of Leuven; Ch. Deberiotstraat 32 B-3000 Leuven Belgium
| | - Bastiaan Jansen
- Laboratory of Aquatic Ecology, Evolution and Conservation; University of Leuven; Ch. Deberiotstraat 32 B-3000 Leuven Belgium
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and Conservation; University of Leuven; Ch. Deberiotstraat 32 B-3000 Leuven Belgium
| |
Collapse
|
14
|
Staehlin BM, Fant JB. Climate Change Impacts on Seedling Establishment for a Threatened Endemic Thistle, Cirsium pitcheri. AMERICAN MIDLAND NATURALIST 2015. [DOI: 10.1674/0003-0031-173.1.47] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Goyal N, Pardha-Saradhi P, Sharma GP. Can adaptive modulation of traits to urban environments facilitate Ricinus communis L. invasiveness? ENVIRONMENTAL MONITORING AND ASSESSMENT 2014; 186:7941-7948. [PMID: 25103212 DOI: 10.1007/s10661-014-3978-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 07/24/2014] [Indexed: 06/03/2023]
Abstract
This paper addresses the phenotypic variation among Ricinus communis L. populations in four urban habitat types (road verges, garbage dumps, construction debris, and natural area) in Delhi, India, by evaluating important traits such as plant height, basal circumference, seeds per plant, seed size, seed weight, specific leaf area, and reproductive index. An important biochemical marker, proline, considered as a good plant performance indicator under stress was also quantified in leaves of R. communis to evaluate its response in different habitats. Interestingly, the species showed significant variation in plant height, specific leaf area, seed size, seed weight, and leaf proline content in different habitat types. Leaf proline content was positively related to plant height, specific leaf area, and seed size while negatively related to the total number of seeds/plant. Interestingly, reproductive index, calculated as a ratio of the total number of seeds to the plant height also showed a negative relation with leaf proline content. Results indicated that R. communis exhibits adaptive modulation of growth, reproductive traits, and leaf proline content in various urban habitats which contributes to invasiveness, range expansion, and establishment of the species. The study also gives evidence of how morphological and physiological traits could directly affect invasiveness of R. communis.
Collapse
Affiliation(s)
- Neha Goyal
- Department of Environmental Studies, University of Delhi, Delhi, 110007, India
| | | | | |
Collapse
|
16
|
Invasion of Spartina alterniflora in China is greatly facilitated by increased growth and clonality: a comparative study of native and introduced populations. Biol Invasions 2014. [DOI: 10.1007/s10530-014-0796-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Genetic differentiation and phenotypic plasticity in life-history traits between native and introduced populations of invasive maple trees. Biol Invasions 2014. [DOI: 10.1007/s10530-014-0781-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Yang Q, Li B, Siemann E. Positive and negative biotic interactions and invasiveTriadica sebiferatolerance to salinity: a cross-continent comparative study. OIKOS 2014. [DOI: 10.1111/oik.01552] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qiang Yang
- Coastal Ecosystems Research Station of Yangtze River Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan Univ.; 220 Handan Road CN-200433 Shanghai PR China
| | - Bo Li
- Coastal Ecosystems Research Station of Yangtze River Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan Univ.; 220 Handan Road CN-200433 Shanghai PR China
| | - Evan Siemann
- Dept of Ecology and Evolutionary Biology; Rice Univ.; Houston TX 77005 USA
| |
Collapse
|
19
|
Plaistow SJ, Collin H. Phenotypic integration plasticity in Daphnia magna: an integral facet of G × E interactions. J Evol Biol 2014; 27:1913-20. [PMID: 25099216 DOI: 10.1111/jeb.12443] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/25/2014] [Accepted: 05/30/2014] [Indexed: 11/30/2022]
Abstract
Phenotypic integration can be defined as the network of multivariate relationships among behavioural, physiological and morphological traits that describe the organism. Phenotypic integration plasticity refers to the change in patterns of phenotypic integration across environments or ontogeny. Because studies of phenotypic plasticity have predominantly focussed on single traits, a G × E interaction is typically perceived as differences in the magnitude of trait expression across two or more environments. However, many plastic responses involve coordinated responses in multiple traits, raising the possibility that relative differences in trait expression in different environments are an important, but often overlooked, source of G × E interaction. Here, we use phenotypic change vectors to statistically compare the multivariate life-history plasticity of six Daphnia magna clones collected from four disparate European populations. Differences in the magnitude of plastic responses were statistically distinguishable for two of the six clones studied. However, differences in phenotypic integration plasticity were statistically distinguishable for all six of the clones studied, suggesting that phenotypic integration plasticity is an important component of G × E interactions that may be missed unless appropriate multivariate analyses are used.
Collapse
Affiliation(s)
- S J Plaistow
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
20
|
Billman EJ, Rasmussen JE, Creighton JC, Johnson JB, Belk MC. A multivariate approach to the analysis of within lifetime variation in life history. Methods Ecol Evol 2014. [DOI: 10.1111/2041-210x.12211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eric J. Billman
- Department of Biology; Brigham Young University; Provo UT 84602 USA
| | - Josh E. Rasmussen
- Klamath Falls Office; U. S. Fish and Wildlife Service; 1936 California Avenue Klamath Falls OR USA
| | - J. Curtis Creighton
- Department of Biological Sciences; Purdue University Calumet; 2200 169 Street Hammond IN 46323 USA
| | | | - Mark C. Belk
- Department of Biology; Brigham Young University; Provo UT 84602 USA
| |
Collapse
|
21
|
Variation in phenotypic plasticity for native and invasive populations of Bromus tectorum. Biol Invasions 2014. [DOI: 10.1007/s10530-014-0692-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Billman EJ, Belk MC. Effect of age-based and environment-based cues on reproductive investment in Gambusia affinis. Ecol Evol 2014; 4:1611-22. [PMID: 24967079 PMCID: PMC4063462 DOI: 10.1002/ece3.1055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 11/12/2022] Open
Abstract
We examined the multivariate life-history trajectories of age 0 and age 1 female Gambusia affinis to determine relative effects of age-based and environment-based cues on reproductive investment. Age 0 females decreased reproductive investment prior to the onset of fall and winter months, while age 1 females increased reproductive investment as the summer progressed. The reproductive restraint and terminal investment patterns exhibited by age 0 and age 1 females, respectively, were consistent with the predictions from the cost of reproduction hypothesis. Age 0 females responded to environment-based cues, decreasing reproductive investment to increase the probability of overwinter survival and subsequent reproductive opportunities in the following summer. Age 1 females responded to age-based cues, or the proximity of death, increasing investment to current reproduction as future reproductive opportunities decreased late in life. Thus, individuals use multiple cues to determine the level of reproductive investment, and the response to each cue is dependent on the age of an individual.
Collapse
Affiliation(s)
- Eric J Billman
- Department of Biology, Brigham Young University Provo, Utah, 84602
| | - Mark C Belk
- Department of Biology, Brigham Young University Provo, Utah, 84602
| |
Collapse
|
23
|
Moroney JR, Rundel PW, Sork VL. Phenotypic plasticity and differentiation in fitness-related traits in invasive populations of the Mediterranean forb Centaurea melitensis (Asteraceae). AMERICAN JOURNAL OF BOTANY 2013; 100:2040-2051. [PMID: 24107581 DOI: 10.3732/ajb.1200543] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
PREMISE OF THE STUDY Biological invasions threaten global biodiversity, resulting in severe ecological and economic costs. Phenotypic plasticity and differentiation in fitness-related traits after introduction can contribute to increased performance in invasive populations of plants. We determined whether postintroduction evolution in trait means or in their plasticity, or inherent species-wide phenotypic plasticity has promoted invasiveness in a European annual forb. • METHODS In a common greenhouse, we compared several fitness-related traits and the phenotypic plasticity of those traits under four levels of nutrients among native and invasive populations of Centaurea melitensis. We tested 18 populations from three regions of similar mediterranean climate type: the native range (southern Spain) and two invaded ranges (California and central Chile). • KEY RESULTS Centaurea melitensis possesses overall phenotypic plasticity, which is a trait that promotes invasiveness. Invasive populations were differentiated from native plants for several trait means and their levels of phenotypic plasticity in directions that enhance competitive ability and success. Invasive plants flowered earlier and grew faster in the early stages of growth phases, important features for invasiveness. • CONCLUSIONS Phenotypic plasticity, its evolution postinvasion, and the evolution of fitness-related trait means in invasive populations have potentially contributed to the invasion of C. melitensis in California and Chile. Along with an overall wide range of tolerance to growing conditions, C. meltiensis populations that have colonized habitats in California and Chile have undergone rapid evolution in several life history traits and the plasticities of those traits in directions that would promote invasiveness in mediterranean ecosystems.
Collapse
Affiliation(s)
- Jolene R Moroney
- Department of Ecology and Evolutionary Biology, University of California, Box 951606, Los Angeles, California 90095-1606 USA
| | | | | |
Collapse
|
24
|
Chen L, Tiu CJ, Peng S, Siemann E. Conspecific plasticity and invasion: invasive populations of Chinese tallow (Triadica sebifera) have performance advantage over native populations only in low soil salinity. PLoS One 2013; 8:e74961. [PMID: 24040366 PMCID: PMC3764045 DOI: 10.1371/journal.pone.0074961] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 08/09/2013] [Indexed: 11/21/2022] Open
Abstract
Global climate change may increase biological invasions in part because invasive species may have greater phenotypic plasticity than native species. This may be especially important for abiotic stresses such as salt inundation related to increased hurricane activity or sea level rise. If invasive species indeed have greater plasticity, this may reflect genetic differences between populations in the native and introduced ranges. Here, we examined plasticity of functional and fitness-related traits of Chinese tallow (Triadica sebifera) populations from the introduced and native ranges that were grown along a gradient of soil salinity (control: 0 ppt; Low: 5 ppt; Medium: 10 ppt; High: 15 ppt) in a greenhouse. We used both norm reaction and plasticity index (PIv) to estimate the conspecific phenotypic plasticity variation between invasive and native populations. Overall, invasive populations had higher phenotypic plasticity of height growth rate (HGR), aboveground biomass, stem biomass and specific leaf area (SLA). The plasticity Index (PIv) of height growth rate (HGR) and SLA each were higher for plants from invasive populations. Absolute performance was always comparable or greater for plants from invasive populations versus native populations with the greatest differences at low stress levels. Our results were consistent with the “Master-of-some” pattern for invasive plants in which the fitness of introduced populations was greater in more benign conditions. This suggests that the greater conspecific phenotypic plasticity of invasive populations compared to native populations may increase invasion success in benign conditions but would not provide a potential interspecific competitive advantage in higher salinity soils that may occur with global climate change in coastal areas.
Collapse
Affiliation(s)
- Leiyi Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas, United States of America
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Candice J. Tiu
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas, United States of America
- Department of Biological and Environmental Sciences, University of Tennessee at Chattanooga, Chattanooga, Tennessee, United States of America
| | - Shaolin Peng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- * E-mail: (SP); (ES)
| | - Evan Siemann
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas, United States of America
- * E-mail: (SP); (ES)
| |
Collapse
|
25
|
Lamarque LJ, Porté AJ, Eymeric C, Lasnier JB, Lortie CJ, Delzon S. A test for pre-adapted phenotypic plasticity in the invasive tree Acer negundo L. PLoS One 2013; 8:e74239. [PMID: 24040212 PMCID: PMC3767822 DOI: 10.1371/journal.pone.0074239] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/31/2013] [Indexed: 11/19/2022] Open
Abstract
Phenotypic plasticity is a key mechanism associated with the spread of exotic plants and previous studies have found that invasive species are generally more plastic than co-occurring species. Comparatively, the evolution of phenotypic plasticity in plant invasion has received less attention, and in particular, the genetic basis of plasticity is largely unexamined. Native from North America, Acer negundo L. is aggressively impacting the riparian forests of southern and eastern Europe thanks to higher plasticity relative to co-occurring native species. We therefore tested here whether invasive populations have evolved increased plasticity since introduction. The performance of 1152 seedlings from 8 native and 8 invasive populations was compared in response to nutrient availability. Irrespective of nutrients, invasive populations had higher growth and greater allocation to above-ground biomass relative to their native conspecifics. More importantly, invasive genotypes did not show increased plasticity in any of the 20 traits examined. This result suggests that the high magnitude of plasticity to nutrient variation of invasive seedlings might be pre-adapted in the native range. Invasiveness of A. negundo could be explained by higher mean values of traits due to genetic differentiation rather than by evolution of increased plasticity.
Collapse
Affiliation(s)
- Laurent J. Lamarque
- Department of Biology, York University, Toronto, Ontario, Canada
- University of Bordeaux, UMR 1202 BIOGECO, Talence, France
- INRA, UMR 1202 BIOGECO, Cestas, France
| | - Annabel J. Porté
- University of Bordeaux, UMR 1202 BIOGECO, Talence, France
- INRA, UMR 1202 BIOGECO, Cestas, France
| | - Camille Eymeric
- University of Bordeaux, UMR 1202 BIOGECO, Talence, France
- INRA, UMR 1202 BIOGECO, Cestas, France
| | - Jean-Baptiste Lasnier
- University of Bordeaux, UMR 1202 BIOGECO, Talence, France
- INRA, UMR 1202 BIOGECO, Cestas, France
| | | | - Sylvain Delzon
- University of Bordeaux, UMR 1202 BIOGECO, Talence, France
- INRA, UMR 1202 BIOGECO, Cestas, France
| |
Collapse
|
26
|
Niu H, Zhao L, Sun J. Phenotypic plasticity of reproductive traits in response to food availability in invasive and native species of nematode. Biol Invasions 2012. [DOI: 10.1007/s10530-012-0379-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Sardans J, Peñuelas J. The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant-soil system. PLANT PHYSIOLOGY 2012; 160:1741-61. [PMID: 23115250 PMCID: PMC3510107 DOI: 10.1104/pp.112.208785] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 10/29/2012] [Indexed: 05/21/2023]
Affiliation(s)
- Jordi Sardans
- Consejo Superior de Investigaciones Científicas, Global Ecology Unit, Centre de Recerca Ecològica i Aplicacions Forestats-Centre d'Estudis Avançats de Blanes-Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08913, Catalonia, Spain.
| | | |
Collapse
|
28
|
|
29
|
Chun YJ. Phenotypic plasticity of introduced versus native purple loosestrife: univariate and multivariate reaction norm approaches. Biol Invasions 2010. [DOI: 10.1007/s10530-010-9871-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
He WM, Thelen GC, Ridenour WM, Callaway RM. Is there a risk to living large? Large size correlates with reduced growth when stressed for knapweed populations. Biol Invasions 2010. [DOI: 10.1007/s10530-010-9753-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
|
32
|
González AL, Kominoski JS, Danger M, Ishida S, Iwai N, Rubach A. Can ecological stoichiometry help explain patterns of biological invasions? OIKOS 2010. [DOI: 10.1111/j.1600-0706.2009.18549.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Lande R. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. J Evol Biol 2009; 22:1435-46. [PMID: 19467134 DOI: 10.1111/j.1420-9101.2009.01754.x] [Citation(s) in RCA: 623] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adaptation to a sudden extreme change in environment, beyond the usual range of background environmental fluctuations, is analysed using a quantitative genetic model of phenotypic plasticity. Generations are discrete, with time lag tau between a critical period for environmental influence on individual development and natural selection on adult phenotypes. The optimum phenotype, and genotypic norms of reaction, are linear functions of the environment. Reaction norm elevation and slope (plasticity) vary among genotypes. Initially, in the average background environment, the character is canalized with minimum genetic and phenotypic variance, and no correlation between reaction norm elevation and slope. The optimal plasticity is proportional to the predictability of environmental fluctuations over time lag tau. During the first generation in the new environment the mean fitness suddenly drops and the mean phenotype jumps towards the new optimum phenotype by plasticity. Subsequent adaptation occurs in two phases. Rapid evolution of increased plasticity allows the mean phenotype to closely approach the new optimum. The new phenotype then undergoes slow genetic assimilation, with reduction in plasticity compensated by genetic evolution of reaction norm elevation in the original environment.
Collapse
Affiliation(s)
- Russell Lande
- Division of Biology, Imperial College London, Silwood Park, Ascot, Berkshire, UK.
| |
Collapse
|
34
|
Chen GQ, Guo SL, Yin LP. Applying DNA C-values to evaluate invasiveness of angiosperms: validity and limitation. Biol Invasions 2009. [DOI: 10.1007/s10530-009-9550-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
CHUN YOUNGJIN, NASON JOHND, MOLONEY KIRKA. Comparison of quantitative and molecular genetic variation of native vs. invasive populations of purple loosestrife (Lythrum salicariaL., Lythraceae). Mol Ecol 2009; 18:3020-35. [DOI: 10.1111/j.1365-294x.2009.04254.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
Adams DC, Collyer ML. A GENERAL FRAMEWORK FOR THE ANALYSIS OF PHENOTYPIC TRAJECTORIES IN EVOLUTIONARY STUDIES. Evolution 2009; 63:1143-54. [DOI: 10.1111/j.1558-5646.2009.00649.x] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Hull-Sanders HM, Johnson RH, Owen HA, Meyer GA. Effects of polyploidy on secondary chemistry, physiology, and performance of native and invasive genotypes of Solidago gigantea (Asteraceae). AMERICAN JOURNAL OF BOTANY 2009; 96:762-70. [PMID: 21628231 DOI: 10.3732/ajb.0800200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The role of polyploidy in facilitating invasiveness of introduced plants has not been well explored. Examination of traits of diploid and polyploid plants in both their native and introduced ranges can shed light on evolutionary processes occurring postintroduction in invasive plants. We determined the distribution and prevalence of cytotypes of Solidago gigantea in both its native range (USA) and introduced range (Europe), and measured a suite of biochemical, physiological, and reproductive characters for plants from both continents. Tetraploids were the most frequent cytotype encountered on both continents, while hexaploids were found only in the USA. Hexaploids were the most distinctive cytotype, with fewer differences observed between diploids and tetraploids. Comparison of diploids and tetraploids in the USA and Europe showed that traits changed in concert for both cytotypes. Both diploids and tetraploids in Europe had reduced concentrations of three classes of secondary chemical and invested relatively more into rhizomes than into flowers. The same changes occurring in both cytotypes in the introduced range show that altered phenotypes of European plants are not due to shifts in the proportions of cytotypes but instead occur within them. There was no evidence that polyploids evolve more quickly in the introduced range.
Collapse
Affiliation(s)
- Helen M Hull-Sanders
- University of Wisconsin-Milwaukee Field Station, 3095 Blue Goose Rd., Saukville, Wisconsin 53080 USA
| | | | | | | |
Collapse
|
38
|
Abstract
What factors shape the evolution of invasive populations? Recent theoretical and empirical studies suggest that an evolutionary history of disturbance might be an important factor. This perspective presents hypotheses regarding the impact of disturbance on the evolution of invasive populations, based on a synthesis of the existing literature. Disturbance might select for life-history traits that are favorable for colonizing novel habitats, such as rapid population growth and persistence. Theoretical results suggest that disturbance in the form of fluctuating environments might select for organismal flexibility, or alternatively, the evolution of evolvability. Rapidly fluctuating environments might favor organismal flexibility, such as broad tolerance or plasticity. Alternatively, longer fluctuations or environmental stress might lead to the evolution of evolvability by acting on features of the mutation matrix. Once genetic variance is generated via mutations, temporally fluctuating selection across generations might promote the accumulation and maintenance of genetic variation. Deeper insights into how disturbance in native habitats affects evolutionary and physiological responses of populations would give us greater capacity to predict the populations that are most likely to tolerate or adapt to novel environments during habitat invasions. Moreover, we would gain fundamental insights into the evolutionary origins of invasive populations.
Collapse
Affiliation(s)
- Carol Eunmi Lee
- Center of Rapid Evolution (CORE), Department of Zoology, University of Wisconsin Madison, WI, USA
| | | |
Collapse
|
39
|
Evidence for a shift in life-history strategy during the secondary phase of a plant invasion. Biol Invasions 2008. [DOI: 10.1007/s10530-008-9277-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|