1
|
Linder S, Jarrett BJM, Fanning P, Isaacs R, Szűcs M. Limited gains in native parasitoid performance on an invasive host beyond three generations of selection. Evol Appl 2022; 15:2113-2124. [PMID: 36540639 PMCID: PMC9753813 DOI: 10.1111/eva.13504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/16/2022] [Accepted: 10/14/2022] [Indexed: 12/01/2023] Open
Abstract
Co-evolved natural enemies provide sustainable and long-term control of numerous invasive insect pests, but the introduction of such enemies has declined sharply due to increasing regulations. In the absence of co-evolved natural enemies, native species may attack exotic invasive pests; however, they usually lack adaptations to control novel hosts effectively. We investigated the potential of two native pupal parasitoids, Pachycrepoideus vindemmiae and Trichopria drosophilae, to increase their developmental success on the invasive Drosophila suzukii. Replicated populations of the two parasitoids were subjected to 10 generations of laboratory selection on D. suzukii with Drosophila melanogaster serving as the co-evolved host. We assessed developmental success of selected and control lines in generations 0, 3, and 10. Changes in host preference, sex ratio, development time, and body size were measured to evaluate correlated responses with adaptation. Both parasitoid species responded rapidly to selection by significantly increasing their developmental success on the novel host within three generations, which remained constant for seven additional generations without further improvement. The generalist parasitoid species P. vindemmiae was able to reach similar developmental success as the control populations, while the performance of the more specialized parasitoid T. drosophilae remained lower on the novel than on the co-evolved host. There was no increase in preference towards the novel host over 10 generations of selection nor were there changes in development time or body size associated with adaptation in either parasitoid species. The sex ratio became less female-biased for both parasitoids after three generations of selection but rebounded in P. vindemmiae by generation 10. These results suggest that a few generations of selection may be sufficient to improve the performance of native parasitoids on invasive hosts, but with limits to the degree of improvement for managing invasive pests when exotic co-evolved natural enemies are not available.
Collapse
Affiliation(s)
- Shelley Linder
- Department of EntomologyMichigan State UniversityEast LansingMichiganUSA
| | - Benjamin J. M. Jarrett
- Department of EntomologyMichigan State UniversityEast LansingMichiganUSA
- Department of BiologyLund UniversityLundSweden
| | - Philip Fanning
- Department of EntomologyMichigan State UniversityEast LansingMichiganUSA
- School of Biology and EcologyUniversity of MaineOronoMaineUSA
| | - Rufus Isaacs
- Department of EntomologyMichigan State UniversityEast LansingMichiganUSA
| | - Marianna Szűcs
- Department of EntomologyMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
2
|
Wang J, Li S, Yang J, Guo M, Dai H, Ramirez-Romero R, Jin Z, Wang S. The Fitness of Mass Rearing Food on the Establishment of Chrysopa pallens in a Banker Plant System under Fluctuating Temperature Conditions. INSECTS 2021; 12:1014. [PMID: 34821814 PMCID: PMC8619634 DOI: 10.3390/insects12111014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022]
Abstract
Banker plant systems can be used to sustain a reproducing population of biological control agents (BCAs) within a crop, thus providing long-term pest suppression. The founder population of natural enemies in banker plant systems is usually mass-reared on factitious hosts. Thus, a better understanding of the population fitness and pest control performance of mass-reared BCAs in the field is crucial when developing integrated pest management (IPM) strategies. In this study, we determined the fitness of the generalist predator, Chrysopa pallens (Hemiptera: Chrysopidae) ever cultured on different food sources (i.e., mass rearing food, Corcyra cephalonica eggs, and aphid food, Megoura japonica) preying on Aphis craccivora in a banker plant system in a greenhouse based on Chi's age-stage, two-sex life table analysis method. The life tables and predation rate parameters of C. pallens were not significantly different between both treatments under fluctuating temperature conditions. Corcyracephalonica eggs did not significantly weaken the performances of C. pallens in a Vicia faba-A. craccivora banker plant system compared to aphids. In conclusion, C. cephalonica eggs can be used for the mass production of C. pallens as the founder population in a banker plant system. Moreover, linking the life table data with the predation rate is an effective strategy for evaluating mass rearing programs in establishing banker plant systems.
Collapse
Affiliation(s)
- Jie Wang
- Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434020, China;
- Institute of Plant & Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Shu Li
- Institute of Plant & Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Jun Yang
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; (J.Y.); (M.G.)
| | - Mingcheng Guo
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; (J.Y.); (M.G.)
| | - Huijie Dai
- College of Agriculture and Environment, Weifang University of Science & Technology, Shouguang 262700, China;
| | - Ricardo Ramirez-Romero
- Biological Control Laboratory, Department of Agricultural Production, CUCBA, University of Guadalajara, Zapopan 317300, Mexico;
| | - Zhenyu Jin
- Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434020, China;
| | - Su Wang
- Institute of Plant & Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| |
Collapse
|
3
|
Alfaro-Tapia A, Alvarez-Baca JK, Figueroa CC, Fuentes-Contreras E. Sub-Lethal Effects of λ-Cyhalothrin on Behavior and Development of the Parasitoid Aphidius colemani (Hymenoptera: Braconidae) on kdr-Resistant and Susceptible Green Peach Aphid, Myzus persicae (Hemiptera: Aphididae). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:2032-2042. [PMID: 34313723 DOI: 10.1093/jee/toab147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Indexed: 06/13/2023]
Abstract
The green peach aphid, Myzus persicae (Sulzer), is a pest mainly controlled with insecticides, and it can acquire resistance through different mechanisms. Pyrethroids can select the knock down resistance (kdr) mutation in M. persicae and can also produce lethal and sub-lethal effects on its main parasitoid, Aphidius colemani Viereck. However, kdr-resistant M. persicae exhibits a reduced response to alarm pheromone and increased vulnerability to natural enemies. To study the effects of sub-lethal concentrations of a pyrethroid on the aphid-parasitoid interaction, kdr-resistant and susceptible M. persicae were confronted with A. colemani with residual sub-lethal concentrations of λ-cyhalothrin. The behavior, survival, and development of parasitoids were evaluated after exposure to λ-cyhalothrin LC20 for adult parasitoids (0.52 mg/liter) for susceptible (Mp-SS, 0.56 mg/liter) and kdr-resistant M. persicae (Mp-RR, 12.15 mg/liter). The foraging and oviposition behaviors of the parasitoids were not affected by the lower parasitoid or Mp-SS LC20. Conversely, the higher Mp-RR LC20 significantly reduced parasitoid walking, the frequency of sting attempts, and successful stings, as well as aphid defensive behaviors, such as walking, kicking, and jerking. Therefore, the higher vulnerability of kdr-resistant M. persicae could not be capitalized by A. colemani parasitoids under a high concentration of λ-cyhalothrin. Similarly, the parasitism rate, survival of progeny, productivity, sex ratio (proportion of females), longevity, and adult body mass were reduced, and the development time increased with a higher Mp-RR LC20. Our results suggest that A. colemani could efficiently control kdr-resistant and susceptible M. persicae only at lower λ-cyhalothrin concentrations.
Collapse
Affiliation(s)
- Armando Alfaro-Tapia
- Centre in Molecular and Functional Ecology, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Jeniffer K Alvarez-Baca
- Centre in Molecular and Functional Ecology, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Christian C Figueroa
- Centre in Molecular and Functional Ecology, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Eduardo Fuentes-Contreras
- Centre in Molecular and Functional Ecology, Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
| |
Collapse
|
4
|
Samková A, Raška J, Hadrava J, Skuhrovec J. Effect of host switching simulation on the fitness of the gregarious parasitoid Anaphes flavipes from a novel two-generation approach. Sci Rep 2021; 11:19473. [PMID: 34593852 PMCID: PMC8484349 DOI: 10.1038/s41598-021-98393-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Herbivorous insects can escape the strong pressure of parasitoids by switching to feeding on new host plants. Parasitoids can adapt to this change but at the cost of changing their preferences and performance. For gregarious parasitoids, fitness changes are not always observable in the F1 generation but only in the F2 generation. Here, with the model species and gregarious parasitoid Anaphes flavipes, we examined fitness changes in the F1 generation under pressure from the simulation of host switching, and by a new two-generation approach, we determined the impact of these changes on fitness in the F2 generation. We showed that the parasitoid preference for host plants depends on hatched or oviposited learning in relation to the possibility of parasitoid decisions between different host plants. Interestingly, we showed that after simulation of parasitoids following host switching, in the new environment of a fictitious host plant, parasitoids reduced the fictitious host. At the same time, parasitoids also reduced fertility because in fictitious hosts, they are not able to complete larval development. However, from a two-generation approach, the distribution of parasitoid offspring into both native and fictitious hosts caused lower parasitoid clutch size in native hosts and higher individual offspring fertility in the F2 generation.
Collapse
Affiliation(s)
- Alena Samková
- Department of Plant Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague 6-Suchdol, Czech Republic.
| | - Jan Raška
- Department of Plant Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague 6-Suchdol, Czech Republic
| | - Jiří Hadrava
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 43, Prague 2, Czech Republic.,Institute of Entomology, Biological Centre, Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Jiří Skuhrovec
- Crop Research Institute, Drnovská 507, 161 06, Praha 6-Ruzyně, Czech Republic
| |
Collapse
|
5
|
Kruitwagen A, Wertheim B, Beukeboom LW. Artificial selection for nonreproductive host killing in a native parasitoid on the invasive pest, Drosophila suzukii. Evol Appl 2021; 14:1993-2011. [PMID: 34429744 PMCID: PMC8372078 DOI: 10.1111/eva.13252] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 11/30/2022] Open
Abstract
Establishment and spread of invasive species can be facilitated by lack of natural enemies in the invaded area. Host-range evolution of natural enemies augments their ability to reduce the impact of the invader and could enhance their value for biological control. We assessed the potential of the Drosophila parasitoid, Leptopilina heterotoma (Hymenoptera: Figitidae), to exploit the invasive pest Drosophila suzukii by focusing on three performance indices: (i) attack rate; (ii) host killing, consisting of killing rate and lethal attack rate (killing efficiency); and (iii) successful offspring development (reproductive success). We found significant intraspecific variation in attack rate and killing rate and lethal attack rate among seven European populations, but offspring generally failed to successfully develop from the D. suzukii host. We crossed these European lines to create a genetically variable source population and performed a half-sib analysis to quantify genetic variation. Using a Bayesian animal model, we found that attack rate and killing rate had a heritability ofh 2 = 0.2 , lethal attack rateh 2 = 0.4 , and offspring developmenth 2 = 0 . We then artificially selected wasps with the highest killing rate of D. suzukii for seven generations to test whether host-killing could be improved. There was a small and inconsistent response to selection in the three selection lines. Realized heritability ( h r 2 ) after four generations of selection was 0.17 but near zero after seven generations of selection. The genetic response might have been masked by an increased D. suzukii fitness resulting from adaptation to laboratory conditions. Our study reveals that native, European, L. heterotoma can attack the invasive pest, D. suzukii and significantly reduce fly survival and that different steps of the parasitization process need to be considered in the evolution of host-range. It highlights how evolutionary principles can be applied to optimize performance of native species for biological control.
Collapse
Affiliation(s)
- Astrid Kruitwagen
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Bregje Wertheim
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Leo W. Beukeboom
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
6
|
Erb M, Züst T, Robert CAM. Using plant chemistry to improve interactions between plants, herbivores and their natural enemies: challenges and opportunities. Curr Opin Biotechnol 2021; 70:262-265. [PMID: 34242994 DOI: 10.1016/j.copbio.2021.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/31/2021] [Indexed: 11/15/2022]
Abstract
Plant secondary (or specialized) metabolites determine multitrophic interaction dynamics. Herbivore natural enemies exploit plant volatiles for host location and are negatively affected by plant defense chemicals that are transferred through herbivores. Recent work shows that herbivore natural enemies can evolve resistance to plant defense chemicals, and that generating plant defense resistance through forward evolution enhances their capacity to prey on herbivores. Here, we discuss how this knowledge can be used to engineer better biocontrol agents. We argue that herbivore natural enemies which are adapted to plant chemistry will likely enhance the efficacy of future pest control efforts. Detailed phenotyping and field experiments will be necessary to quantify costs and benefits of optimizing chemical links between plants and higher trophic levels.
Collapse
Affiliation(s)
- Matthias Erb
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland.
| | - Tobias Züst
- Department of Systematic and Evolutionary Botany, University of Zürich, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland
| | | |
Collapse
|
7
|
Pérez-Staples D, Díaz-Fleischer F, Montoya P. The Sterile Insect Technique: Success and Perspectives in the Neotropics. NEOTROPICAL ENTOMOLOGY 2021; 50:172-185. [PMID: 33113111 DOI: 10.1007/s13744-020-00817-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
The sterile insect technique (SIT), an environmentally friendly means of control, is currently used against plant, animal, and human pests under the area-wide integrated pest management. It consists in the mass production, sterilization, and release of insects in an affected area where sterile males mate with wild females leading to no reproduction. Here, we review SIT in the Neotropics and focus on particular recent successful cases of eradication of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), as well as effective programs used against the Mexican fruit fly Anastrepha ludens (Loew), the New World screwworm fly Cochliomyia hominivorax (Coquerel)), and the Cactus moth Cactoblastis cactorum (Berg). We examine when SIT does not work and innovations that have made SIT more efficient and also highlight complimentary techniques that can be used in conjunction. We address potential candidate species that could be controlled through SIT, for example Philornis downsi Dodge & Aitken. Finally, we consider the impact of climate change in the context of the use of the SIT against these pests. Given the recent dramatic decline in insect biodiversity, investing in environmentally friendly means of pest control should be a priority. We conclude that SIT should be promoted in the region, and leadership and political will is needed for continued success of SIT in the Neotropics.
Collapse
Affiliation(s)
| | | | - P Montoya
- Programa Moscafrut SENASICA-SADER, Metapa de Domínguez, Chiapas, Mexico
| |
Collapse
|
8
|
Monticelli LS, Desneux N, Heimpel GE. Parasitoid-mediated indirect interactions between unsuitable and suitable hosts generate apparent predation in microcosm and modeling studies. Ecol Evol 2021; 11:2449-2460. [PMID: 33767813 PMCID: PMC7981237 DOI: 10.1002/ece3.6896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 11/12/2022] Open
Abstract
Parasitoids used as biological control agents often parasitize more than a single host species and these hosts tend to vary in suitability for offspring development. The population dynamics of parasitoids and hosts may be altered by these interactions, with outcomes dependent on the levels of suitability and acceptance of both host species. Parasitism of individuals of an unsuitable host species may indirectly increase populations of a suitable host species if eggs laid into unsuitable hosts do not develop into adult parasitoids. In this case, the unsuitable host is acting as an egg sink for parasitoids and this can reduce parasitism of suitable hosts under conditions of egg limitation. We studied parasitoid-mediated indirect interactions between two aphid hosts, Aphis glycines (the soybean aphid) and A. nerii (the milkweed, or oleander aphid), sharing the parasitoid Aphelinus certus. While both of these aphid species are accepted by A. certus, soybean aphid is a much more suitable host than milkweed aphid is. We observed a drastic reduction of parasitoid offspring production (45%) on the suitable host in the presence of the unsuitable host in microcosm assays. Aphelinus certus females laid eggs into the unsuitable hosts (Aphis nerii) in the presence of the suitable host leading to egg and/or time limitation and reduced fitness. The impact of these interactions on the equilibrium population sizes of the three interacting species was analyzed using a consumer-resource modeling approach. Both the results from the laboratory experiment and the modeling approaches identified apparent predation between soybean aphid and milkweed aphid, in which milkweed aphid acts as a sink for parasitoid eggs leading to an increase in the soybean aphid population. The presence of soybean aphids had the opposite effect on milkweed aphid populations as it supported increases in parasitoid abundance and thus reduced the fitness and abundance of this aphid species.
Collapse
Affiliation(s)
- Lucie S. Monticelli
- Université Côte d’Azur, INRAE, CNRSUMR ISANiceFrance
- AgroécologieINRAEUniv. Bourgogne Franche‐ComtéDijonFrance
| | | | | |
Collapse
|
9
|
Influence of reproductive biology on establishment capacity in introduced Hymenoptera species. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02375-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Alvarez-Baca JK, Alfaro-Tapia A, Lavandero B, Le Lann C, Van Baaren J. Suitability and Profitability of a Cereal Aphid for the Parasitoid Aphidius platensis in the Context of Conservation Biological Control of Myzus persicae in Orchards. INSECTS 2020; 11:insects11060381. [PMID: 32575581 PMCID: PMC7349642 DOI: 10.3390/insects11060381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/10/2020] [Accepted: 06/17/2020] [Indexed: 11/16/2022]
Abstract
The use of cover crops can promote the abundance and early arrival of populations of natural enemies. Cereal cover crops between orchards rows could encourage the early arrival of the parasitoid Aphidius platensis, as they offer alternative winter hosts (e.g., Rhopalosiphum padi), enhancing the control of Myzus persicae in spring. However, the preference for and suitability of the alternative host must be addressed beforehand. To evaluate the potential of this strategy, we assessed host preference using behavioural choice tests, as well as no-choice tests measuring fitness traits, when developing on both host species. One source field for each aphid population from the above hosts was chosen. There was a clear choice for R. padi compared to M persicae, independently of the source, probably due to more defensive behaviours of M. persicae (i.e., kicks and escapes). Nevertheless, both aphid species were suitable for parasitoids’ development. The female progeny developed on R. padi were larger in size, irrespective of their origin. According to our results, in peach orchards with cereals sown between peach trees during the autumn, where we expect when R. padi populations will no longer be available during spring, A. platensis should be able to switch to M. persicae.
Collapse
Affiliation(s)
- Jeniffer K. Alvarez-Baca
- Laboratorio de Control Biológico, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile; (J.K.A.-B.); (A.A.-T.)
- UMR 6553 Ecobio, Centre National de la Recherche Scientifique, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes, France; (C.L.L.); (J.V.B.)
| | - Armando Alfaro-Tapia
- Laboratorio de Control Biológico, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile; (J.K.A.-B.); (A.A.-T.)
- UMR 6553 Ecobio, Centre National de la Recherche Scientifique, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes, France; (C.L.L.); (J.V.B.)
| | - Blas Lavandero
- Laboratorio de Control Biológico, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile; (J.K.A.-B.); (A.A.-T.)
- Correspondence: ; Tel.: +56-71-2200271
| | - Cécile Le Lann
- UMR 6553 Ecobio, Centre National de la Recherche Scientifique, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes, France; (C.L.L.); (J.V.B.)
| | - Joan Van Baaren
- UMR 6553 Ecobio, Centre National de la Recherche Scientifique, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes, France; (C.L.L.); (J.V.B.)
| |
Collapse
|
11
|
Identification and Expression Profiling of Peripheral Olfactory Genes in the Parasitoid Wasp Aphidius ervi (Hymenoptera: Braconidae) Reared on Different Aphid Hosts. INSECTS 2019; 10:insects10110397. [PMID: 31717299 PMCID: PMC6920860 DOI: 10.3390/insects10110397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 11/17/2022]
Abstract
Generalist parasitoids of aphids, such as the wasp Aphidius ervi, display significant differences in terms of host preference and host acceptance, depending on the host on which they developed (natal host), which is preferred over a non-natal host, a trait known as host fidelity. This trait allows females to quickly find hosts in heterogeneous environments, a process mediated by chemosensory/olfactory mechanisms, as parasitoids rely on olfaction and chemical cues during host selection. Thus, it is expected that proteins participating in chemosensory recognition, such as odorant-binding proteins (OBPs) and odorant receptors (ORs) would play a key role in host preference. In this study, we addressed the effect of parasitoid reciprocal host switching between two aphid hosts (Sitobion avenae and Acyrthosiphon pisum) on the expression patterns of chemosensory genes in the wasp A. ervi. First, by using a transcriptomic approach based on RNAseq of A. ervi females reared on S. avenae and A. pisum, we were able to annotate a total of 91 transcripts related to chemoperception. We also performed an in-silico expression analysis and found three OBPs and five ORs displaying different expression levels. Then, by using qRT-PCR amplification, we found significant differences in the expression levels of these eight genes when the parasitoids were reciprocally transplanted from S. avenae onto A. pisum and vice versa. This suggests that the expression levels of genes coding for odorant receptors and odorant-binding proteins would be regulated by the specific plant–aphid host complex where the parasitoids develop (maternal previous experience) and that chemosensory genes coding for olfactory mechanisms would play a crucial role on host preference and host acceptance, ultimately leading to the establishment of host fidelity in A. ervi parasitoids.
Collapse
|
12
|
Sanaei E, Husemann M, Seiedy M, Rethwisch M, Tuda M, Toshova TB, Kim MJ, Atanasova D, Kim I. Global genetic diversity, lineage distribution, and Wolbachia infection of the alfalfa weevil Hypera postica (Coleoptera: Curculionidae). Ecol Evol 2019; 9:9546-9563. [PMID: 31534674 PMCID: PMC6745856 DOI: 10.1002/ece3.5474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/06/2019] [Accepted: 07/04/2019] [Indexed: 02/06/2023] Open
Abstract
The alfalfa weevil (Hypera postica) is a well-known example of a worldwide-distributed pest with high genetic variation. Based on the mitochondrial genes, the alfalfa weevil clusters into two main mitochondrial lineages. However, there is no clear picture of the global diversity and distribution of these lineages; neither the drivers of its diversification are known. However, it appears likely that historic demographic events including founder effects played a role. In addition, Wolbachia, a widespread intracellular parasite/symbiont, likely played an important role in the evolution of the species. Wolbachia infection so far was only detected in the Western lineage of H. postica with no information on the infecting strain, its frequency, and its consequences on the genetic diversity of the host. We here used a combination of mitochondrial and nuclear sequences of the host and sequence information on Wolbachia to document the distribution of strains and the degree of infection. The Eastern lineage has a higher genetic diversity and is found in the Mediterranean, the Middle East, Eastern Europe, and eastern America, whereas the less diverse Western lineage is found in Central Europe and the western America. Both lineages are infected with the same common strain of Wolbachia belonging to Supergroup B. Based on neutrality tests, selection tests, and the current distribution and diversification of Wolbachia in H. postica, we suggested the Wolbachia infection did not shape genetic diversity of the host. The introduced populations in the United States are generally genetically less diverse, which is in line with founder effects.
Collapse
Affiliation(s)
- Ehsan Sanaei
- Department of Applied BiologyCollege of Agriculture and Life ScienceChonnam National UniversityGwnagjuKorea
- School of Biological ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| | | | - Marjan Seiedy
- School of Biology and Center of Excellence in Phylogeny of Living OrganismsCollege of ScienceUniversity of TehranTehranIran
| | | | - Midori Tuda
- Faculty of AgricultureInstitute of Biological ControlKyushu UniversityFukuokaJapan
- Laboratory of Insect Natural EnemiesDepartment of Bioresource SciencesFaculty of AgricultureKyushu UniversityFukuokaJapan
| | - Teodora B. Toshova
- Institute of Biodiversity and Ecosystem ResearchBulgarian Academy of SciencesSofiaBulgaria
| | - Min Jee Kim
- Department of Applied BiologyCollege of Agriculture and Life ScienceChonnam National UniversityGwnagjuKorea
| | - Daniela Atanasova
- Department of EntomologyFaculty of Plant Protection and AgroecologyAgricultural UniversityPlovdivBulgaria
| | - Iksoo Kim
- Department of Applied BiologyCollege of Agriculture and Life ScienceChonnam National UniversityGwnagjuKorea
| |
Collapse
|
13
|
Bertoldi V, Rondoni G, Brodeur J, Conti E. An Egg Parasitoid Efficiently Exploits Cues From a Coevolved Host But Not Those From a Novel Host. Front Physiol 2019; 10:746. [PMID: 31333475 PMCID: PMC6621923 DOI: 10.3389/fphys.2019.00746] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/31/2019] [Indexed: 11/13/2022] Open
Abstract
Egg parasitoids have evolved adaptations to exploit host-associated cues, especially oviposition-induced plant volatiles and odors of gravid females, when foraging for hosts. The entire host selection process is critical for successful parasitism and relevant in defining host specificity of parasitoids. We hypothesized that naïve egg parasitoid females reared on their coevolved host are able to exploit cues related to the coevolved host but not those from a novel host. We used the egg parasitoid Trissolcus japonicus, its coevolved host Halyomorpha halys, and the non-coevolved host Podisus maculiventris to evaluate this hypothesis. H. halys, a polyphagous pest native from Eastern Asia, has invaded North America and Europe, resulting in serious damage to crops. T. japonicus is the most effective egg parasitoid of H. halys in its native area and thus considered a major candidate for biological control. This parasitoid was detected in North America and Europe as a result of accidental introductions. Laboratory host range of T. japonicus includes P. maculiventris, an American predatory stink bug used as a biological control agent of several pests. Using T. japonicus reared on its natural host H. halys, we tested in a Y-tube olfactometer the responses of naïve parasitoid females to volatiles from tomato plants with a deposited egg mass and feeding punctures of either H. halys or P. maculiventris. Additionally, using two different olfactometer set-ups, we tested T. japonicus responses to volatiles emitted by eggs and mature males and females of H. halys or P. maculiventris. Tomato plants subjected to oviposition and feeding by H. halys were preferred by the wasp compared to clean plants, suggesting a possible activation of an indirect defense mechanism. Furthermore, T. japonicus females were attracted by cues from gravid females and mature males of H. halys but not from eggs. By contrast, naïve parasitoid females never responded to cues associated with P. maculiventris, although this non-target host is suitable for complete parasitoid development. Such lack of responses might reduce the probability of T. japonicus locating and parasitizing P. maculiventris under field conditions. Our experimental approach properly simulates the parasitoid host-location process and could be combined with the required host specificity tests for risk assessment in biological control programs.
Collapse
Affiliation(s)
- Valeria Bertoldi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università degli Studi di Perugia, Perugia, Italy.,Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC, Canada
| | - Gabriele Rondoni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università degli Studi di Perugia, Perugia, Italy.,Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC, Canada
| | - Jacques Brodeur
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC, Canada
| | - Eric Conti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università degli Studi di Perugia, Perugia, Italy.,Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
14
|
Boycheva Woltering S, Romeis J, Collatz J. Influence of the Rearing Host on Biological Parameters of Trichopria drosophilae, a Potential Biological Control Agent of Drosophila suzukii. INSECTS 2019; 10:insects10060183. [PMID: 31242634 PMCID: PMC6628421 DOI: 10.3390/insects10060183] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/20/2019] [Accepted: 06/22/2019] [Indexed: 01/06/2023]
Abstract
Trichopria drosophilae is a pupal parasitoid that can develop in a large number of drosophilid host species including the invasive pest Drosophila suzukii, and is considered a biological control agent. We investigated the influence of the rearing host on the preference and performance of the parasitoid, using two different strains of T. drosophilae, reared on D. melanogaster or D. suzukii for approximately 30 generations. Host switching was employed to assess the impact of host adaptation on T. drosophilae performance. In a no-choice experimental setup, T. drosophilae produced more and larger offspring on the D. suzukii host. When given a choice, T. drosophilae showed a preference towards D. suzukii, and an increased female ratio on this host compared to D. melanogaster and D. immigrans. The preference was independent from the rearing host and was confirmed in behavioral assays. However, the preference towards D. suzukii increased further after a host switch from D. melanogaster to D. suzukii in just one generation. Our data indicate that rearing T. drosophilae for several years on D. melanogaster does not compromise its performance on D. suzukii in the laboratory. However, producing a final generation on D. suzukii prior to release could increase its efficacy towards the pest.
Collapse
Affiliation(s)
- Svetlana Boycheva Woltering
- Research Division Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046 Zurich, Switzerland.
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany.
| | - Jörg Romeis
- Research Division Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046 Zurich, Switzerland.
| | - Jana Collatz
- Research Division Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046 Zurich, Switzerland.
| |
Collapse
|
15
|
Hopper KR, Oppenheim SJ, Kuhn KL, Lanier K, Hoelmer KA, Heimpel GE, Meikle WG, O’Neil RJ, Voegtlin DG, Wu K, Woolley JB, Heraty JM. Counties not countries: Variation in host specificity among populations of an aphid parasitoid. Evol Appl 2019; 12:815-829. [PMID: 30976312 PMCID: PMC6439487 DOI: 10.1111/eva.12759] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/20/2018] [Accepted: 12/06/2018] [Indexed: 11/28/2022] Open
Abstract
Parasitic wasps are among the most species-rich groups on Earth. A major cause of this diversity may be local adaptation to host species. However, little is known about variation in host specificity among populations within parasitoid species. Not only is such knowledge important for understanding host-driven speciation, but because parasitoids often control pest insects and narrow host ranges are critical for the safety of biological control introductions, understanding variation in specificity and how it arises are crucial applications in evolutionary biology. Here, we report experiments on variation in host specificity among 16 populations of an aphid parasitoid, Aphelinus certus. We addressed several questions about local adaptation: Do parasitoid populations differ in host ranges or in levels of parasitism of aphid species within their host range? Are differences in parasitism among parasitoid populations related to geographical distance, suggesting clinal variation in abundances of aphid species? Or do nearby parasitoid populations differ in host use, as would be expected if differences in aphid abundances, and thus selection, were mosaic? Are differences in parasitism among parasitoid populations related to genetic distances among them? To answer these questions, we measured parasitism of a taxonomically diverse group of aphid species in laboratory experiments. Host range was the same for all the parasitoid populations, but levels of parasitism varied among aphid species, suggesting adaptation to locally abundant aphids. Differences in host specificity did not correlate with geographical distances among parasitoid populations, suggesting that local adaption is mosaic rather than clinal, with a spatial scale of less than 50 kilometers. We sequenced and assembled the genome of A. certus, made reduced-representation libraries for each population, analyzed for single nucleotide polymorphisms, and used these polymorphisms to estimate genetic differentiation among populations. Differences in host specificity correlated with genetic distances among the parasitoid populations.
Collapse
Affiliation(s)
- Keith R. Hopper
- Beneficial Insect Introductions Research UnitUSDA‐ARSNewarkDelaware
| | | | - Kristen L. Kuhn
- Beneficial Insect Introductions Research UnitUSDA‐ARSNewarkDelaware
| | - Kathryn Lanier
- Beneficial Insect Introductions Research UnitUSDA‐ARSNewarkDelaware
| | - Kim A. Hoelmer
- Beneficial Insect Introductions Research UnitUSDA‐ARSNewarkDelaware
| | | | - William G. Meikle
- European Biological Control LaboratoryUSDA‐ARSSt. Gely du Fesc CEDEXFrance
| | | | | | - Kongming Wu
- Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - James B. Woolley
- Department of EntomologyTexas A&M UniversityCollege StationTexas
| | - John M. Heraty
- Department of EntomologyUniversity of CaliforniaRiversideCalifornia
| |
Collapse
|
16
|
Queiroz AP, Taguti EA, Bueno AF, Grande MLM, Costa CO. Host Preferences of Telenomus podisi (Hymenoptera: Scelionidae): Parasitism on Eggs of Dichelops melacanthus, Euschistus heros, and Podisus nigrispinus (Hemiptera: Pentatomidae). NEOTROPICAL ENTOMOLOGY 2018; 47:543-552. [PMID: 29159796 DOI: 10.1007/s13744-017-0564-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/24/2017] [Indexed: 05/26/2023]
Abstract
Successful biological control requires detailed knowledge about host preferences of the released parasitoid, because the presence of alternative hosts may affect the control of the target pest. The objective of this work was therefore to evaluate host preferences of Telenomus podisi Ashmead among the eggs of three stink bug species: Dichelops melacanthus Dallas, Euschistus heros Fabricius, and Podisus nigrispinus Dallas (Heteroptera: Pentatomidae). Three independent experiments were carried out to study host preferences among the following: (1) E. heros, D. melacanthus dallas, and P. nigrispinus (bioassay 1); (2) E. heros and D. melacanthus (bioassay 2); and (3) D. melacanthus and P. nigrispinus (bioassay 3). A single bioassay (bioassay 4) was carried out to evaluate the egg size of E. heros, D. melacanthus, and P. nigrispinus. Two more bioassays were carried out: bioassay 5 to study the biological characteristics of T. podisi reared on E. heros, D. melacanthus, and P. nigrispinus eggs, and bioassay 6 to study the morphological characters of T. podisi reared on those different host eggs. Overall, T. podisi consistently preferred eggs of D. melacanthus to those of the other studied hosts, due to probably their better nutritional value; hypothesis that is supported by the fast T. podisi development and bigger parasitoids when reared on D. melacanthus and P. nigrispinus eggs. This allows suggesting that neither pre-imaginal conditioning nor associative learning nor α-conditioning are relevant to T. podisi parasitism. Thus, E. heros eggs could be successfully used for mass rearing of this parasitoid for successive generations since it would not affect its parasitism on other species of the Pentatomidae family in the field.
Collapse
Affiliation(s)
- A P Queiroz
- Univ Federal do Paraná, Caixa Postal 19020, Curitiba, Paraná, Brasil, 81531-980.
| | - E A Taguti
- Univ Federal do Paraná, Caixa Postal 19020, Curitiba, Paraná, Brasil, 81531-980
| | - A F Bueno
- Empresa Brasileira de Pesquisa Agropecuária - Embrapa Soja, Londrina, Paraná, Brasil
| | - M L M Grande
- Univ Estadual de Londrina, Londrina, Paraná, Brasil
| | - C O Costa
- Centro Universitário Filadélfia, Londrina, Paraná, Brasil
| |
Collapse
|
17
|
Evans HC, Elliot SL, Barreto RW. Entomopathogenic fungi and their potential for the management of Aedes aegypti (Diptera: Culicidae) in the Americas. Mem Inst Oswaldo Cruz 2018; 113:206-214. [PMID: 29412361 PMCID: PMC5804314 DOI: 10.1590/0074-02760170369] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/30/2017] [Indexed: 12/17/2022] Open
Abstract
Classical biological control has been used extensively for the management of exotic weeds and agricultural pests, but never for alien insect vectors of medical importance. This simple but elegant control strategy involves the introduction of coevolved natural enemies from the centre of origin of the target alien species. Aedes aegypti - the primary vector of the dengue, yellow fever and Zika flaviviruses - is just such an invasive alien in the Americas where it arrived accidentally from its West African home during the slave trade. Here, we introduce the concept of exploiting entomopathogenic fungi from Africa for the classical biological control of Ae. aegypti in the Americas. Fungal pathogens attacking arthropods are ubiquitous in tropical forests and are important components in the natural balance of arthropod populations. They can produce a range of specialised spore forms, as well as inducing a variety of bizarre behaviours in their hosts, in order to maximise infection. The fungal groups recorded as specialised pathogens of mosquito hosts worldwide are described and discussed. We opine that similar fungal pathogens will be found attacking and manipulating Ae. aegypti in African forests and that these could be employed for an economic, environmentally-safe and long-term solution to the flavivirus pandemics in the Americas.
Collapse
Affiliation(s)
- Harry C Evans
- Centre for Agriculture and Biosciences International, Egham, Surrey, UK.,Universidade Federal de Viçosa, Departamento de Entomologia, Viçosa, MG, Brasil.,Universidade Federal de Viçosa, Departamento de Fitopatologia, Viçosa, MG, Brasil
| | - Simon L Elliot
- Universidade Federal de Viçosa, Departamento de Entomologia, Viçosa, MG, Brasil
| | - Robert W Barreto
- Universidade Federal de Viçosa, Departamento de Fitopatologia, Viçosa, MG, Brasil
| |
Collapse
|
18
|
Masry A, Furlong MJ, Clarke AR, Cunningham JP. An improved culturing method for opiine fruit fly parasitoids and its application to parasitoid monitoring in the field. INSECT SCIENCE 2018; 25:99-108. [PMID: 27650570 DOI: 10.1111/1744-7917.12403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/24/2016] [Accepted: 08/04/2016] [Indexed: 06/06/2023]
Abstract
Good culturing methods play an important role in the study of insect behavior and its application to pest management. Here, we describe and validate a new method for rearing the parasitoid wasp, Diachasmimorpha kraussii, which attacks some of the world's worst fruit fly pests and is an internationally used biological control agent. Our method differs from standard culturing approaches by presenting adult wasps with host-infested artificial media within a "culturing bag," which mimics a natural (fruit) oviposition substrate. In laboratory trials using wild collected D. kraussii, the culturing bag method was compared to the use of host-infested nectarines, and a commonly used laboratory method of presenting host-infested artificial media within Petri dishes. The culturing bag method proved to be a significant improvement on both methods, combining the advantages of high host survival in artificial media with parasitism levels that were the equivalent to those recorded using host-infested fruits. In our field study, culturing bags infested with the Queensland fruit fly, Bactrocera tryoni, and hung in a mixed peach and nectarine orchard proved to be effective "artificial fruits" attracting wild D. kraussii for oviposition. Significantly more adult wasps were reared from the culturing bags compared to field collected fruits. This was shown to be due to higher fruit fly larval density in the bags, as similar percentage parasitism rates were found between the culturing bags and ripe fruits. We discuss how this cheap, time-efficient method could be applied to collecting and monitoring wild D. kraussii populations in orchards, and assist in maintaining genetic variability in parasitoid laboratory cultures.
Collapse
Affiliation(s)
- Ayad Masry
- School of Earth, Environmental and Biological Sciences School, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Michael J Furlong
- School of Biological Sciences, the University of Queensland, St Lucia, Queensland, Australia
| | - Anthony R Clarke
- School of Earth, Environmental and Biological Sciences School, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- Plant Biosecurity Cooperative Research Centre, Bruce, ACT, Australia
| | - John Paul Cunningham
- School of Earth, Environmental and Biological Sciences School, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- Department of Economic Development, Jobs, Transport and Resources, AgriBio Centre, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
19
|
Ballesteros GI, Gadau J, Legeai F, Gonzalez-Gonzalez A, Lavandero B, Simon JC, Figueroa CC. Expression differences in Aphidius ervi (Hymenoptera: Braconidae) females reared on different aphid host species. PeerJ 2017; 5:e3640. [PMID: 28852588 PMCID: PMC5572533 DOI: 10.7717/peerj.3640] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/12/2017] [Indexed: 01/25/2023] Open
Abstract
The molecular mechanisms that allow generalist parasitoids to exploit many, often very distinct hosts are practically unknown. The wasp Aphidius ervi, a generalist koinobiont parasitoid of aphids, was introduced from Europe into Chile in the late 1970s to control agriculturally important aphid species. A recent study showed significant differences in host preference and host acceptance (infectivity) depending on the host A. ervi were reared on. In contrast, no genetic differentiation between A. ervi populations parasitizing different aphid species and aphids of the same species reared on different host plants was found in Chile. Additionally, the same study did not find any fitness effects in A. ervi if offspring were reared on a different host as their mothers. Here, we determined the effect of aphid host species (Sitobion avenae versus Acyrthosiphon pisum reared on two different host plants alfalfa and pea) on the transcriptome of adult A. ervi females. We found a large number of differentially expressed genes (between host species: head: 2,765; body: 1,216; within the same aphid host species reared on different host plants: alfalfa versus pea: head 593; body 222). As expected, the transcriptomes from parasitoids reared on the same host species (pea aphid) but originating from different host plants (pea versus alfalfa) were more similar to each other than the transcriptomes of parasitoids reared on a different aphid host and host plant (head: 648 and 1,524 transcripts; body: 566 and 428 transcripts). We found several differentially expressed odorant binding proteins and olfactory receptor proteins in particular, when we compared parasitoids from different host species. Additionally, we found differentially expressed genes involved in neuronal growth and development as well as signaling pathways. These results point towards a significant rewiring of the transcriptome of A. ervi depending on aphid-plant complex where parasitoids develop, even if different biotypes of a certain aphid host species (A. pisum) are reared on the same host plant. This difference seems to persist even after the different wasp populations were reared on the same aphid host in the laboratory for more than 50 generations. This indicates that either the imprinting process is very persistent or there is enough genetic/allelic variation between A. ervi populations. The role of distinct molecular mechanisms is discussed in terms of the formation of host fidelity.
Collapse
Affiliation(s)
- Gabriel I Ballesteros
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile.,Millennium Nucleus Centre in Molecular Ecology and Evolutionary Applications in the Agroecosystems, Universidad de Talca, Talca, Chile
| | - Jürgen Gadau
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America.,Institute for Evolution and Biodiversity, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Fabrice Legeai
- GenScale, INRIA Centre Rennes, Rennes, France.,Institute of Genetics, Environment and Plant Protection, INRA, Le Rheu, France
| | - Angelica Gonzalez-Gonzalez
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile.,Millennium Nucleus Centre in Molecular Ecology and Evolutionary Applications in the Agroecosystems, Universidad de Talca, Talca, Chile
| | - Blas Lavandero
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | | | - Christian C Figueroa
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile.,Millennium Nucleus Centre in Molecular Ecology and Evolutionary Applications in the Agroecosystems, Universidad de Talca, Talca, Chile
| |
Collapse
|
20
|
Gagic V, Petrović-Obradović O, Fründ J, Kavallieratos NG, Athanassiou CG, Starý P, Tomanović Ž. The Effects of Aphid Traits on Parasitoid Host Use and Specialist Advantage. PLoS One 2016; 11:e0157674. [PMID: 27309729 PMCID: PMC4910996 DOI: 10.1371/journal.pone.0157674] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 06/02/2016] [Indexed: 11/19/2022] Open
Abstract
Specialization is a central concept in ecology and one of the fundamental properties of parasitoids. Highly specialized parasitoids tend to be more efficient in host-use compared to generalized parasitoids, presumably owing to the trade-off between host range and host-use efficiency. However, it remains unknown how parasitoid host specificity and host-use depends on host traits related to susceptibility to parasitoid attack. To address this question, we used data from a 13-year survey of interactions among 142 aphid and 75 parasitoid species in nine European countries. We found that only aphid traits related to local resource characteristics seem to influence the trade-off between host-range and efficiency: more specialized parasitoids had an apparent advantage (higher abundance on shared hosts) on aphids with sparse colonies, ant-attendance and without concealment, and this was more evident when host relatedness was included in calculation of parasitoid specificity. More traits influenced average assemblage specialization, which was highest in aphids that are monophagous, monoecious, large, highly mobile (easily drop from a plant), without myrmecophily, habitat specialists, inhabit non-agricultural habitats and have sparse colonies. Differences in aphid wax production did not influence parasitoid host specificity and host-use. Our study is the first step in identifying host traits important for aphid parasitoid host specificity and host-use and improves our understanding of bottom-up effects of aphid traits on aphid-parasitoid food web structure.
Collapse
Affiliation(s)
- Vesna Gagic
- CSIRO, GPO Box 2583, Brisbane, QLD, 4001, Australia
- Institute of Zoology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
- * E-mail:
| | | | - Jochen Fründ
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- Agrarökologie, Georg-August-Universität, Göttingen, Germany
| | - Nickolas G. Kavallieratos
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, Athens, Attica, Greece
- Laboratory of Agricultural Entomology, Department of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, Attica, Greece
| | - Christos G. Athanassiou
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Magnissia, Greece
| | - Petr Starý
- Laboratory of Aphidology, Department of Experimental Ecology, Institute of Entomology, Biology Centre, Academy of Sciences of the Czech Republic, ČeskéBudějovice, Czech Republic
| | - Željko Tomanović
- Institute of Zoology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
21
|
Takemoto H, Takabayashi J. Parasitic Wasps Aphidius ervi are More Attracted to a Blend of Host-Induced Plant Volatiles than to the Independent Compounds. J Chem Ecol 2015; 41:801-7. [PMID: 26302986 DOI: 10.1007/s10886-015-0615-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/09/2015] [Accepted: 08/07/2015] [Indexed: 11/26/2022]
Abstract
Arthropodal natural enemies respond to volatiles from plants infested by their prey/host herbivores (herbivore-induced plant volatiles; HIPVs). However, the relative importance of HIPV blends vs. each compound in the blend in attracting natural enemies is not fully understood. In this study, we investigated the response of a parasitic wasp, Aphidius ervi, to HIPVs that were specific or nonspecific to infestations by its host aphid, Acyrthosiphon pisum. To select such compounds, we compared the volatiles emitted from broad bean plants infested by either A. pisum (host) or by Aphis craccivora (nonhost), and selected the host-specific HIPVs β-myrcene, n-octanal, and α-phellandrene, and host-nonspecific HIPVs (E)-β-ocimene, γ-terpinene, and linalool as test compounds. For each compound, we used a range that covered the amounts emitted from infested broad bean plants for bioassays. Female wasps preferred n-octanal and (E)-β-ocimene at 10-ng and 30-ng doses over clean air. Interestingly, the wasps preferred α-phellandrene at 0.1-ng and 30-ng doses, but not at 1-ng and 10-ng doses. The wasps repelled linalool over clean air at 1-ng and 0.1-ng doses. We then mixed the equivalent amounts of the six compounds to test the effect of the blend. The wasps responded to a blend of six HIPV components at all concentrations tested (0.001 ng each to 5 ng each). These results suggested that the blend provided more useful information for female wasps than the individual compounds. The possible use of the single component and the blend for the biological control of A. ervi is discussed.
Collapse
Affiliation(s)
- Hiroyuki Takemoto
- Center for Ecological Research, Kyoto University, Shiga, 520-2113, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Junji Takabayashi
- Center for Ecological Research, Kyoto University, Shiga, 520-2113, Japan.
| |
Collapse
|
22
|
Prado SG, Jandricic SE, Frank SD. Ecological Interactions Affecting the Efficacy of Aphidius colemani in Greenhouse Crops. INSECTS 2015; 6:538-75. [PMID: 26463203 PMCID: PMC4553498 DOI: 10.3390/insects6020538] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 12/11/2022]
Abstract
Aphidius colemani Viereck (Hymenoptera: Braconidae) is a solitary endoparasitoid used for biological control of many economically important pest aphids. Given its widespread use, a vast array of literature on this natural enemy exists. Though often highly effective for aphid suppression, the literature reveals that A. colemani efficacy within greenhouse production systems can be reduced by many stressors, both biotic (plants, aphid hosts, other natural enemies) and abiotic (climate and lighting). For example, effects from 3rd and 4th trophic levels (fungal-based control products, hyperparasitoids) can suddenly decimate A. colemani populations. But, the most chronic negative effects (reduced parasitoid foraging efficiency, fitness) seem to be from stressors at the first trophic level. Negative effects from the 1st trophic level are difficult to mediate since growers are usually constrained to particular plant varieties due to market demands. Major research gaps identified by our review include determining how plants, aphid hosts, and A. colemani interact to affect the net aphid population, and how production conditions such as temperature, humidity and lighting affect both the population growth rate of A. colemani and its target pest. Decades of research have made A. colemani an essential part of biological control programs in greenhouse crops. Future gains in A. colemani efficacy and aphid biological control will require an interdisciplinary, systems approach that considers plant production and climate effects at all trophic levels.
Collapse
Affiliation(s)
- Sara G Prado
- David Clark Labs, Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA.
| | - Sarah E Jandricic
- Ontario Ministry of Agriculture, Food and Rural Affairs, 4890 Victoria Avenue North, Vineland, ON L0R 2E0, Canada.
| | - Steven D Frank
- Gardner Hall, Department of Entomology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
23
|
Jones TS, Bilton AR, Mak L, Sait SM. Host switching in a generalist parasitoid: contrasting transient and transgenerational costs associated with novel and original host species. Ecol Evol 2015; 5:459-65. [PMID: 25691971 PMCID: PMC4314276 DOI: 10.1002/ece3.1333] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/22/2014] [Accepted: 11/07/2014] [Indexed: 11/08/2022] Open
Abstract
Parasitoids face challenges by switching between host species that influence survival and fitness, determine their role in structuring communities, influence species invasions, and affect their importance as biocontrol agents. In the generalist parasitoid, Venturia canescens (Gravenhorst) (Hymenoptera: Ichneumonidae), we investigated the costs in encapsulation, survival, and body size on juveniles when adult parasitoids switched from their original host, Plodia interpunctella (Hübner) (Lepidotera, Pyralidae) to a novel host, Ephestia kuehniella (Zeller) (Lepidoptera, Pyralidae), over multiple generations. Switching had an initial survival cost for juvenile parasitoids in the novel host, but increased survival occurred within two generations. Conversely, mortality in the original host increased. Body size, a proxy for fecundity, also increased with the number of generations in the novel host species, reflecting adaptation or maternal effects due to the larger size of the novel host, and therefore greater resources available to the developing parasitoid. Switching to a novel host appears to have initial costs for a parasitoid, even when the novel host may be better quality, but the costs rapidly diminish. We predict that the net cost of switching to a novel host for parasitoids will be complex and will depend on the initial reduction in fitness from parasitizing a novel host versus local adaptations against parasitoids in the original host.
Collapse
Affiliation(s)
- Thomas S Jones
- School of Biology, L.C. Miall Building, University of Leeds Leeds, LS2 9JT, U.K
| | - Adam R Bilton
- School of Biology, L.C. Miall Building, University of Leeds Leeds, LS2 9JT, U.K
| | - Lorraine Mak
- School of Biology, L.C. Miall Building, University of Leeds Leeds, LS2 9JT, U.K
| | - Steven M Sait
- School of Biology, L.C. Miall Building, University of Leeds Leeds, LS2 9JT, U.K
| |
Collapse
|
24
|
Colinet D, Anselme C, Deleury E, Mancini D, Poulain J, Azéma-Dossat C, Belghazi M, Tares S, Pennacchio F, Poirié M, Gatti JL. Identification of the main venom protein components of Aphidius ervi, a parasitoid wasp of the aphid model Acyrthosiphon pisum. BMC Genomics 2014; 15:342. [PMID: 24884493 PMCID: PMC4035087 DOI: 10.1186/1471-2164-15-342] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/30/2014] [Indexed: 01/22/2023] Open
Abstract
Background Endoparasitoid wasps are important natural enemies of the widely distributed aphid pests and are mainly used as biological control agents. However, despite the increased interest on aphid interaction networks, only sparse information is available on the factors used by parasitoids to modulate the aphid physiology. Our aim was here to identify the major protein components of the venom injected at oviposition by Aphidius ervi to ensure successful development in its aphid host, Acyrthosiphon pisum. Results A combined large-scale transcriptomic and proteomic approach allowed us to identify 16 putative venom proteins among which three γ-glutamyl transpeptidases (γ-GTs) were by far the most abundant. Two of the γ-GTs most likely correspond to alleles of the same gene, with one of these alleles previously described as involved in host castration. The third γ-GT was only distantly related to the others and may not be functional owing to the presence of mutations in the active site. Among the other abundant proteins in the venom, several were unique to A. ervi such as the molecular chaperone endoplasmin possibly involved in protecting proteins during their secretion and transport in the host. Abundant transcripts encoding three secreted cystein-rich toxin-like peptides whose function remains to be explored were also identified. Conclusions Our data further support the role of γ-GTs as key players in A. ervi success on aphid hosts. However, they also evidence that this wasp venom is a complex fluid that contains diverse, more or less specific, protein components. Their characterization will undoubtedly help deciphering parasitoid-aphid and parasitoid-aphid-symbiont interactions. Finally, this study also shed light on the quick evolution of venom components through processes such as duplication and convergent recruitment of virulence factors between unrelated organisms. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-342) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jean-Luc Gatti
- INRA, ISA, UMR 1355, Evolution et Spécificité des Interactions Multitrophiques (ESIM), Sophia Antipolis, 06903, France.
| |
Collapse
|
25
|
Zepeda-Paulo FA, Ortiz-Martínez SA, Figueroa CC, Lavandero B. Adaptive evolution of a generalist parasitoid: implications for the effectiveness of biological control agents. Evol Appl 2013; 6:983-99. [PMID: 24062806 PMCID: PMC3779098 DOI: 10.1111/eva.12081] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/22/2013] [Indexed: 11/28/2022] Open
Abstract
The use of alternative hosts imposes divergent selection pressures on parasitoid populations. In response to selective pressures, these populations may follow different evolutionary trajectories. Divergent natural selection could promote local host adaptation in populations, translating into direct benefits for biological control, thereby increasing their effectiveness on the target host. Alternatively, adaptive phenotypic plasticity could be favored over local adaptation in temporal and spatially heterogeneous environments. We investigated the existence of local host adaptation in Aphidius ervi, an important biological control agent, by examining different traits related to infectivity (preference) and virulence (a proxy of parasitoid fitness) on different aphid-host species. The results showed significant differences in parasitoid infectivity on their natal host compared with the non-natal hosts. However, parasitoids showed a similar high fitness on both natal and non-natal hosts, thus supporting a lack of host adaptation in these introduced parasitoid populations. Our results highlight the role of phenotypic plasticity in fitness-related traits of parasitoids, enabling them to maximize fitness on alternative hosts. This could be used to increase the effectiveness of biological control. In addition, A. ervi females showed significant differences in infectivity and virulence across the tested host range, thus suggesting a possible host phylogeny effect for those traits.
Collapse
Affiliation(s)
- Francisca A Zepeda-Paulo
- Facultad de Ciencias, Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de ChileValdivia, Chile
- Laboratorio de Interacciones Insecto-Planta, Instituto de Biología Vegetal y Biotecnología, Universidad de TalcaTalca, Chile
| | - Sebastián A Ortiz-Martínez
- Laboratorio de Interacciones Insecto-Planta, Instituto de Biología Vegetal y Biotecnología, Universidad de TalcaTalca, Chile
| | - Christian C Figueroa
- Facultad de Ciencias, Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de ChileValdivia, Chile
- Laboratorio de Interacciones Insecto-Planta, Instituto de Biología Vegetal y Biotecnología, Universidad de TalcaTalca, Chile
| | - Blas Lavandero
- Laboratorio de Interacciones Insecto-Planta, Instituto de Biología Vegetal y Biotecnología, Universidad de TalcaTalca, Chile
| |
Collapse
|
26
|
Gilna B, Kuzma J, Otts SS. Governance of genetic biocontrol technologies for invasive fish. Biol Invasions 2013. [DOI: 10.1007/s10530-012-0367-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
McEvoy PB, Higgs KM, Coombs EM, Karaçetin E, Ann Starcevich L. Evolving while invading: rapid adaptive evolution in juvenile development time for a biological control organism colonizing a high-elevation environment. Evol Appl 2012; 5:524-36. [PMID: 22949927 PMCID: PMC3407870 DOI: 10.1111/j.1752-4571.2012.00278.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 05/07/2012] [Indexed: 11/28/2022] Open
Abstract
We report evidence of adaptive evolution in juvenile development time on a decadal timescale for the cinnabar moth Tyria jacobaeae (Lepidoptera: Arctiidae) colonizing new habitats and hosts from the Willamette Valley to the Coast Range and Cascades Mountains in Oregon. Four lines of evidence reveal shorter egg to pupa juvenile development times evolved in the mountains, where cooler temperatures shorten the growing season: (i) field observations showed that the mountain populations have shorter phenological development; (ii) a common garden experiment revealed genetic determination of phenotypic differences in juvenile development time between Willamette Valley and mountain populations correlated with the growing season; (iii) a laboratory experiment rearing offspring from parental crosses within and between Willamette Valley and Cascades populations demonstrated polygenic inheritance, high heritability, and genetic determination of phenotypic differences in development times; and (iv) statistical tests that exclude random processes (founder effect, genetic drift) in favor of natural selection as explanations for observed differences in phenology. These results support the hypothesis that rapid adaptation to the cooler mountain climate occurred in populations established from populations in the warmer valley climate. Our findings should motivate regulators to require evaluation of evolutionary potential of candidate biological control organisms prior to release.
Collapse
|
28
|
DION E, ZÉLÉ F, SIMON JC, OUTREMAN Y. Rapid evolution of parasitoids when faced with the symbiont-mediated resistance of their hosts. J Evol Biol 2011; 24:741-50. [DOI: 10.1111/j.1420-9101.2010.02207.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|