1
|
Kamai EM, Ruiz BC, Van Horne YO, Barahona DD, Bejarano E, Olmedo L, Eckel SP, Johnston JE, Farzan SF. Agricultural burning in Imperial Valley, California and respiratory symptoms in children: A cross-sectional, repeated measures analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165854. [PMID: 37516194 PMCID: PMC10592232 DOI: 10.1016/j.scitotenv.2023.165854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/07/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Burning of agricultural fields is an understudied source of air pollution in rural communities in the United States. Smoke from agricultural burning contains air toxics that adversely impact respiratory health. Imperial County in southeastern California is a highly productive agricultural valley that heavily employs agricultural burning to clear post-harvest crop remnants. We related individual-level exposure to agricultural burns to parent-reported respiratory symptoms in children. We leveraged the Children's Assessing Imperial Valley Respiratory Health and the Environment (AIRE) cohort of 735 predominantly Hispanic low-income elementary school students in Imperial County. Parents reported children's respiratory health symptoms and family demographic characteristics in questionnaires collected at enrollment and in annual follow-up assessments from 2017 to 2019. Permitted agricultural burns in Imperial County from 2016 to 2019 were spatially linked to children's geocoded residential addresses. We used generalized estimating equations to evaluate prevalence differences (PDs) in respiratory symptoms with increasing exposure to agricultural burning within 3 km in the 12 months prior to each assessment. Nearly half of children (346, 49 %) lived within 3 km of at least one agricultural burn in the year prior to study enrollment. In adjusted models, each additional day of agricultural burning in the prior year was associated with a one percentage point higher prevalence of wheezing (PD 1.1 %; 95 % CI 0.2 %, 2.0 %) and higher bronchitic symptoms (PD 1.0 %; 95 % CI -0.2 %, 2.1 %). Children exposed to four or more days of burning had an absolute increased prevalence of wheezing and bronchitic symptoms of 5.9 % (95 % CI -0.3 %, 12 %) and 5.6 % (95 % CI -1.8 %, 13 %), respectively, compared to no burn exposure. Associations with wheezing were stronger among children with asthma (PD 14 %; 95 % CI -1.4 %, 29 %). To our knowledge, this is the first U.S. study of agricultural burning and children's respiratory health. This work suggests that reducing agricultural burning could improve children's respiratory health.
Collapse
Affiliation(s)
- Elizabeth M Kamai
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Brandyn C Ruiz
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yoshira Ornelas Van Horne
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Dayane Duenas Barahona
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | - Sandrah P Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jill E Johnston
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shohreh F Farzan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
2
|
He Y, Lan X, Zhou Z, Wang F. Analyzing the spatial network structure of agricultural greenhouse gases in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7929-7944. [PMID: 33043424 DOI: 10.1007/s11356-020-10945-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Investigating the regional correlation and factors affecting agricultural greenhouse gas (GHG) emissions can help establish a regional mechanism for the synergistic reduction of emissions and produce chain-like reductions. Different from the traditional geographical relationship analysis framework, linear analysis ideas, we use social network analysis to discern the regional correlations in agricultural GHG emissions from a relational network viewpoint, clarify the network functions of each node, and explain agricultural GHG correlation from a spatial, economic, and technological viewpoint by nonparametric regression. The results indicate that (1) the emission network is stable and there is a relationship of control between regions, (2) Central China is the most important region in agricultural GHG networks; however, the importance of the northwest and southwest has increased; the northeast has remained relatively independent, (3) influencers are mainly concentrated in the middle of the Yangtze River and the northwest, while dependentors are concentrated in municipalities such as Beijing and Tianjin, and the coastal regions in the southeast, and (4) the interprovincial agricultural GHG correlation can be enhanced by shortening the spatial distance, strengthening economic ties, and increasing the diffusion of technology. Implementing a "leader-follower" strategy according to the role of each region and enhancing the intermediator's "conduit" role will ultimately lead to the formation of an interprovincial interactive and cooperative emission reduction mechanism.
Collapse
Affiliation(s)
- Yanqiu He
- College of Management, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xiang Lan
- Sichuan Provincial Bureau of Statistics, Sichuan, China
| | - Zuoang Zhou
- Sichuan Provincial Bureau of Statistics, Sichuan, China
| | - Fang Wang
- College of Management, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
3
|
Estimation of Field-Level NOx Emissions from Crop Residue Burning Using Remote Sensing Data: A Case Study in Hubei, China. REMOTE SENSING 2021. [DOI: 10.3390/rs13030404] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Crop residue burning is the major biomass burning activity in China, strongly influencing the regional air quality and climate. As the cultivation pattern in China is rather scattered and intricate, it is a challenge to derive an accurate emission inventory for crop residue burning. In this study, we proposed a remote sensing-based method to estimate nitrogen oxide (NOx) emissions related to crop residue burning at the field level over Hubei, China. The new method considers differences in emission factors and the spatial distribution for different crop types. Fire radiative power (FRP) derived from moderate-resolution imaging spectroradiometer (MODIS) was used to quantify NOx emissions related to agricultural biomass combustion. The spatial distribution of different crops classified by multisource remote sensing data was used as an a priori constraint. We derived a new NOx emission database for Hubei from 2014 to 2016 with spatial resolution of 1 × 1 km. Significant seasonal patterns were observed from the NOx emission database. Peak NOx emission occurring in October was related to the residue burning in late autumn harvesting. Another peak was observed between January and April, which was due to the frequent burning of stubble before spring sowing. Our results were validated by comparing our emission inventory with geostationary satellite observations, previous studies, global fire emission database (GFED), NO2 vertical column densities (VCDs) from ozone monitoring instrument (OMI) satellite observations, and measurements from environmental monitoring stations. The comparisons showed NOx emission from GFED database was 47% lower than ours, while the evaluations from most of the statistical studies were significantly higher than our results. The discrepancies were likely related to the differences of methodology and data sources. The spatiotemporal variations of NOx emission in this study showed strong correlations with NO2 VCDs, which agreed well with geostationary satellite observations. A reasonable correlation between in situ NO2 observations and our results in agricultural regions demonstrated that our method is reliable. We believe that the new NOx emission database for crop residue burning derived in this study can potentially improve the understanding of pollution sources and can provide additional information for the design of pollution control measures.
Collapse
|
5
|
Net Greenhouse Gas Emissions from Agriculture in China: Estimation, Spatial Correlation and Convergence. SUSTAINABILITY 2019. [DOI: 10.3390/su11184817] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The agricultural ecosystem has dual attributes of greenhouse gas (GHG) emission and absorption, which both influence the net amount of GHG. To have a clearer understanding of the net GHG effect, we linked up the emission and absorption of the agricultural ecosystem, estimated the net emissions of 30 provinces in China from 2007 to 2016, then explored the spatial correlation from global and local perspectives by Moran’s I, and finally tested the convergence of the net emissions by α convergence test, conditional β convergence test and spatial econometric methods. The results were: (1) The average of provincial agricultural net GHG emissions was around 4999.916 × 104 t, showing a fluctuating trend in the 10 years. Meanwhile, the gaps among provinces were gradually widening, as the provinces with high emissions were mainly agglomerated in the middle reaches of the Yangtze River, while those with less emissions mainly sat in the northwest. (2) The net emissions correlated spatially in close provinces. The agglomeration centers were located in the middle reaches of the Yangtze River and the northern coastal region, showing “high–high” and “low–low” agglomeration, respectively. (3) The net emissions did not achieve α convergence or conditional β convergence in the whole country, but the growth rate had a significant positive spillover effect among adjacent provinces, and two factors, the quantity of the labor force and the level of agricultural economy, had a negative impact on the rate. It is suggested that all provinces could strengthen regional cooperation to reduce agricultural net GHG emissions.
Collapse
|
6
|
Cross-Comparison of Vegetation Indices Derived from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Landsat-8 Operational Land Imager (OLI) Sensors. REMOTE SENSING 2013. [DOI: 10.3390/rs6010310] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Randerson JT, Chen Y, van der Werf GR, Rogers BM, Morton DC. Global burned area and biomass burning emissions from small fires. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jg002128] [Citation(s) in RCA: 472] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|