1
|
Eck JL, Hernández Hassan L, Comita LS. Intraspecific plant-soil feedback in four tropical tree species is inconsistent in a field experiment. AMERICAN JOURNAL OF BOTANY 2024; 111:e16331. [PMID: 38750661 PMCID: PMC11659945 DOI: 10.1002/ajb2.16331] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 12/21/2024]
Abstract
PREMISE Soil microbes can influence patterns of diversity in plant communities via plant-soil feedbacks. Intraspecific plant-soil feedbacks occur when plant genotype leads to variations in soil microbial composition, resulting in differences in the performance of seedlings growing near their maternal plants versus seedlings growing near nonmaternal conspecific plants. How consistently such intraspecific plant-soil feedbacks occur in natural plant communities is unclear, especially in variable field conditions. METHODS In an in situ experiment with four native tree species on Barro Colorado Island (BCI), Panama, seedlings of each species were transplanted beneath their maternal tree or another conspecific tree in the BCI forest. Mortality and growth were assessed at the end of the wet season (~4 months post-transplant) and at the end of the experiment (~7 months post-transplant). RESULTS Differences in seedling performance among field treatments were inconsistent among species and eroded over time. Effects of field environment were detected at the end of the wet season in two of the four species: Virola surinamensis seedlings had higher survival beneath their maternal tree than other conspecific trees, while seedling survival of Ormosia macrocalyx was higher under other conspecific trees. However, these differences were gone by the end of the experiment. CONCLUSIONS Our results suggest that intraspecific plant-soil feedbacks may not be consistent in the field for tropical tree species and may have a limited role in determining seedling performance in tropical tree communities. Future studies are needed to elucidate the environmental and genetic factors that determine the incidence and direction of intraspecific plant-soil feedbacks in plant communities.
Collapse
Affiliation(s)
- Jenalle L. Eck
- Yale School of the Environment195 Prospect St.New Haven06511CTUSA
- Smithsonian Tropical Research InstituteLuis Clement Ave., Bldg Tupper 401AnconPanamaRepublic of Panama
- Department of Evolution, Ecology and Organismal BiologyThe Ohio State University318 W. 12th Ave., 300 Aronoff LaboratoryColumbus43210OHUSA
- Department of BotanyUniversity of TartuJ. Liivi 2Tartu50409Estonia
| | - Lourdes Hernández Hassan
- Smithsonian Tropical Research InstituteLuis Clement Ave., Bldg Tupper 401AnconPanamaRepublic of Panama
| | - Liza S. Comita
- Yale School of the Environment195 Prospect St.New Haven06511CTUSA
- Smithsonian Tropical Research InstituteLuis Clement Ave., Bldg Tupper 401AnconPanamaRepublic of Panama
| |
Collapse
|
2
|
Zhong X, Li W, Li Z, Huang Y, Chen X, Huang L, Wang Y, Chen Y. Decadal Changes in Population Structures of Rare Oak Species Quercus chungii. Ecol Evol 2024; 14:e70479. [PMID: 39429802 PMCID: PMC11489618 DOI: 10.1002/ece3.70479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
Quercus chungii, a rare and endangered endemic tree species, is found exclusively in subtropical regions of China. Understanding the population structure and temporal dynamics of Q. chungii is pivotal for effective conservation and restoration of its populations and associated ecosystems. However, large knowledge gaps remain about its population structure and temporal change and its key demographic rates across size classes. In this study, we investigated the population structures of Q. chungii in 2013 and 2023 in a nature reserve specifically established to better conserve this species and its associated ecosystems. We found that Q. chungii increased in its overall abundance and tree size in the past decade, suggesting active regeneration and a rapid growth rate for this species and the effectiveness of past conservation efforts. The age structure in 2023 showed a pyramid shape, with a sharp decline in the numbers of individuals from germinated seeds to seedlings and from seedlings to saplings. These led to the low numbers of seedlings and saplings and high age-specific death probabilities at the early developmental stages. These results indicated potential risks of future population decline. These risks may have already manifested over the past decade, as a high mortality rate during the seedling-to-sapling transition could be one of the primary reasons contributing to the decreased proportion of saplings in 2023 compared to 2013. We propose that future studies may benefit from in-depth studies on the regeneration processes of Q. chungii by considering seed predation and germination under changing climate. This study improves the prediction of population development of Q. chungii, thereby offering theoretical guidance essential for its conservation.
Collapse
Affiliation(s)
- Xueer Zhong
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment & Ecology, Xiamen UniversityXiamenChina
| | - Wenbin Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment & Ecology, Xiamen UniversityXiamenChina
| | - Zhenji Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment & Ecology, Xiamen UniversityXiamenChina
| | - Yonghui Huang
- Administrative Office of Fujian Xiongjiang Huangchulin National Nature ReserveMinqingChina
| | - Xinfeng Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment & Ecology, Xiamen UniversityXiamenChina
| | - Lihan Huang
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment & Ecology, Xiamen UniversityXiamenChina
| | - Ya Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment & Ecology, Xiamen UniversityXiamenChina
| | - Yuxin Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment & Ecology, Xiamen UniversityXiamenChina
| |
Collapse
|
3
|
Clark KM, Gallagher MJ, Canam T, Meiners SJ. Genetic relatedness can alter the strength of plant-soil interactions. AMERICAN JOURNAL OF BOTANY 2024; 111:e16289. [PMID: 38374713 DOI: 10.1002/ajb2.16289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 02/21/2024]
Abstract
PREMISE Intraspecific variation may play a key role in shaping the relationships between plants and their interactions with soil microbial communities. The soil microbes of individual plants can generate intraspecific variation in the responsiveness of the plant offspring, yet have been much less studied. To address this need, we explored how the relatedness of seedlings from established clones of Solidago altissima altered the plant-soil interactions of the seedlings. METHODS Seedlings of known parentage were generated from a series of 24 clones grown in a common garden. Seedlings from these crosses were inoculated with soils from maternal, paternal, or unrelated clones and their performance compared to sterilized control inocula. RESULTS We found that soil inocula influenced by S. altissima clones had an overall negative effect on seedling biomass. Furthermore, seedlings inoculated with maternal or paternal soils tended to experience larger negative effects than seedlings inoculated with unrelated soils. However, there was much variation among individual crosses, with not all responding to relatedness. CONCLUSIONS Our data argue that genetic relatedness to the plant from which the soil microbial inoculum was obtained may cause differential impacts on establishing seedlings, encouraging the regeneration of non-kin adjacent to established clones. Such intraspecific variation represents a potentially important source of heterogeneity in plant-soil microbe interactions with implications for maintaining population genetic diversity.
Collapse
Affiliation(s)
- Kelly M Clark
- Department of Life Sciences, Ivy Tech Community College, Evansville, IN, 47710, USA
| | - Marci J Gallagher
- Department of Biological Sciences, Eastern Illinois University, Charleston, IL, 61920, USA
| | - Thomas Canam
- Department of Biological Sciences, Eastern Illinois University, Charleston, IL, 61920, USA
| | - Scott J Meiners
- Department of Biological Sciences, Eastern Illinois University, Charleston, IL, 61920, USA
| |
Collapse
|
4
|
Luo W, Wang Y, Cahill JF, Luan F, Zhong Y, Li Y, Li B, Chu C. Root-centric β diversity reveals functional homogeneity while phylogenetic heterogeneity in a subtropical forest. Ecology 2024; 105:e4189. [PMID: 37877169 DOI: 10.1002/ecy.4189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/25/2023] [Indexed: 10/26/2023]
Abstract
Root-centric studies have revealed fast taxonomic turnover across root neighborhoods, but how such turnover is accompanied by changes in species functions and phylogeny (i.e., β diversity) remains largely unknown. As β diversity can reflect the degree of community-wide biotic homogenization, such information is crucial for better inference of below-ground assembly rules, community structuring, and ecosystem processes. We collected 2480 root segments from 625 0-30 cm soil profiles in a subtropical forest in China. Root segments were identified into 138 species with DNA-barcoding with six root morphological and architectural traits measured per species. By using the mean pairwise (Dpw ) and mean nearest neighbor distance (Dnn ) to quantify species ecological differences, we first tested the non-random functional and phylogenetic turnover of root neighborhoods that would lend more support to deterministic over stochastic community assembly processes. Additionally, we examined the distance-decay pattern of β diversity, and finally partitioned β diversity into geographical and environmental components to infer their potential drivers of environmental filtering, dispersal limitation, and biotic interactions. We found that functional turnover was often lower than expected given the taxonomic turnover, whereas phylogenetic turnover was often higher than expected. Phylogenetic Dpw (e.g., interfamily species) turnover exhibited a distance-decay pattern, likely reflecting limited dispersal or abiotic filtering that leads to the spatial aggregation of specific plant lineages. Conversely, both functional and phylogenetic Dnn (e.g., intrageneric species) exhibited an inverted distance-decay pattern, likely reflecting strong biotic interactions among spatially and phylogenetically close species leading to phylogenetic and functional divergence. While the spatial distance was generally a better predictor of β diversity than environmental distance, the joint effect of environmental and spatial distance usually overrode their respective pure effects. These findings suggest that root neighborhood functional homogeneity may somewhat increase forest resilience after disturbance by exhibiting an insurance effect. Likewise, root neighborhood phylogenetic heterogeneity may enhance plant fitness by hindering the transmission of host-specific pathogens through root networks or by promoting interspecific niche complementarity not captured by species functions. Our study highlights the potential role of root-centric β diversity in mediating community structures and functions largely ignored in previous studies.
Collapse
Affiliation(s)
- Wenqi Luo
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Youshi Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - James F Cahill
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Fucheng Luan
- Guangdong Chebaling National Nature Reserve, Shaoguan, China
| | - Yonglin Zhong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuanzhi Li
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Buhang Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chengjin Chu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Wang F, Mi X, Chen L, Xu W, Durka W, Swenson NG, Johnson DJ, Worthy SJ, Xue J, Zhu Y, Schmid B, Liang Y, Ma K. Differential impacts of adult trees on offspring and non-offspring recruits in a subtropical forest. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1905-1913. [PMID: 36098896 DOI: 10.1007/s11427-021-2148-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
An important mechanism promoting species coexistence is conspecific negative density dependence (CNDD), which inhibits conspecific neighbors by accumulating host-specific enemies near adult trees. Natural enemies may be genotype-specific and regulate offspring dynamics more strongly than non-offspring, which is often neglected due to the difficulty in ascertaining genetic relatedness. Here, we investigated whether offspring and non-offspring of a dominant species, Castanopsis eyrei, suffered from different strength of CNDD based on parentage assignment in a subtropical forest. We found decreased recruitment efficiency (proxy of survival probability) of offspring compared with non-offspring near adult trees during the seedling-sapling transition, suggesting genotype-dependent interactions drive tree demographic dynamics. Furthermore, the genetic similarity between individuals of same cohort decreased in late life history stages, indicating genetic-relatedness-dependent tree mortality throughout ontogeny. Our results demonstrate that within-species genetic relatedness significantly affects the strength of CNDD, implying genotype-specific natural enemies may contribute to population dynamics in natural forests.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangcheng Mi
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Lei Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wubing Xu
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
| | - Walter Durka
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
- Department Community Ecology, Centre for Environmental Research-UFZ, Theodor-Lieser-Str. 4, Halle, 06120, Germany
| | - Nathan G Swenson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, 46556, USA
- University of Notre Dame Environmental Research Center, Land O'Lakes, Wisconsin, 54540, USA
| | - Daniel J Johnson
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, Florida, 32611, USA
| | - Samantha J Worthy
- Department of Biology, University of Maryland, College Park, Maryland, 20742, USA
| | - Jianhua Xue
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yan Zhu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Bernhard Schmid
- Department of Geography, Remote Sensing Laboratories, University of Zürich, Zürich, CH-8006, Switzerland
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100085, China
| | - Yu Liang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Bolin LG, Lau JA. Linking genetic diversity and species diversity through plant–soil feedback. Ecology 2022; 103:e3692. [DOI: 10.1002/ecy.3692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/14/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Lana G. Bolin
- Department of Biology Indiana University Jordan Hall, 1001 E. 3rd St Bloomington IN USA
| | - Jennifer A. Lau
- Department of Biology Indiana University Jordan Hall, 1001 E. 3rd St Bloomington IN USA
- Environmental Resilience Institute Indiana University Bloomington IN USA
| |
Collapse
|
7
|
|
8
|
Mi X, Feng G, Hu Y, Zhang J, Chen L, Corlett RT, Hughes AC, Pimm S, Schmid B, Shi S, Svenning JC, Ma K. The global significance of biodiversity science in China: an overview. Natl Sci Rev 2021; 8:nwab032. [PMID: 34694304 PMCID: PMC8310773 DOI: 10.1093/nsr/nwab032] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 01/03/2021] [Accepted: 02/14/2021] [Indexed: 01/13/2023] Open
Abstract
Biodiversity science in China has seen rapid growth over recent decades, ranging from baseline biodiversity studies to understanding the processes behind evolution across dynamic regions such as the Qinghai-Tibetan Plateau. We review research, including species catalogues; biodiversity monitoring; the origins, distributions, maintenance and threats to biodiversity; biodiversity-related ecosystem function and services; and species and ecosystems' responses to global change. Next, we identify priority topics and offer suggestions and priorities for future biodiversity research in China. These priorities include (i) the ecology and biogeography of the Qinghai-Tibetan Plateau and surrounding mountains, and that of subtropical and tropical forests across China; (ii) marine and inland aquatic biodiversity; and (iii) effective conservation and management to identify and maintain synergies between biodiversity and socio-economic development to fulfil China's vision for becoming an ecological civilization. In addition, we propose three future strategies: (i) translate advanced biodiversity science into practice for biodiversity conservation; (ii) strengthen capacity building and application of advanced technologies, including high-throughput sequencing, genomics and remote sensing; and (iii) strengthen and expand international collaborations. Based on the recent rapid progress of biodiversity research, China is well positioned to become a global leader in biodiversity research in the near future.
Collapse
Affiliation(s)
- Xiangcheng Mi
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Gang Feng
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yibo Hu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian Zhang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Lei Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Richard T Corlett
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun 666303, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, 666303, China
| | - Alice C Hughes
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun 666303, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, 666303, China
| | - Stuart Pimm
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Bernhard Schmid
- Department of Geography, Remote Sensing Laboratories, University of Zurich, Zurich 8057, Switzerland
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jens-Christian Svenning
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE) and Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Universityof Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Zhong Y, Chu C, Myers JA, Gilbert GS, Lutz JA, Stillhard J, Zhu K, Thompson J, Baltzer JL, He F, LaManna JA, Davies SJ, Aderson-Teixeira KJ, Burslem DF, Alonso A, Chao KJ, Wang X, Gao L, Orwig DA, Yin X, Sui X, Su Z, Abiem I, Bissiengou P, Bourg N, Butt N, Cao M, Chang-Yang CH, Chao WC, Chapman H, Chen YY, Coomes DA, Cordell S, de Oliveira AA, Du H, Fang S, Giardina CP, Hao Z, Hector A, Hubbell SP, Janík D, Jansen PA, Jiang M, Jin G, Kenfack D, Král K, Larson AJ, Li B, Li X, Li Y, Lian J, Lin L, Liu F, Liu Y, Liu Y, Luan F, Luo Y, Ma K, Malhi Y, McMahon SM, McShea W, Memiaghe H, Mi X, Morecroft M, Novotny V, O’Brien MJ, Ouden JD, Parker GG, Qiao X, Ren H, Reynolds G, Samonil P, Sang W, Shen G, Shen Z, Song GZM, Sun IF, Tang H, Tian S, Uowolo AL, Uriarte M, Wang B, Wang X, Wang Y, Weiblen GD, Wu Z, Xi N, Xiang W, Xu H, Xu K, Ye W, Yu M, Zeng F, Zhang M, Zhang Y, Zhu L, Zimmerman JK. Arbuscular mycorrhizal trees influence the latitudinal beta-diversity gradient of tree communities in forests worldwide. Nat Commun 2021; 12:3137. [PMID: 34035260 PMCID: PMC8149669 DOI: 10.1038/s41467-021-23236-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 04/16/2021] [Indexed: 02/04/2023] Open
Abstract
Arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) associations are critical for host-tree performance. However, how mycorrhizal associations correlate with the latitudinal tree beta-diversity remains untested. Using a global dataset of 45 forest plots representing 2,804,270 trees across 3840 species, we test how AM and EcM trees contribute to total beta-diversity and its components (turnover and nestedness) of all trees. We find AM rather than EcM trees predominantly contribute to decreasing total beta-diversity and turnover and increasing nestedness with increasing latitude, probably because wide distributions of EcM trees do not generate strong compositional differences among localities. Environmental variables, especially temperature and precipitation, are strongly correlated with beta-diversity patterns for both AM trees and all trees rather than EcM trees. Results support our hypotheses that latitudinal beta-diversity patterns and environmental effects on these patterns are highly dependent on mycorrhizal types. Our findings highlight the importance of AM-dominated forests for conserving global forest biodiversity.
Collapse
Affiliation(s)
- Yonglin Zhong
- grid.12981.330000 0001 2360 039XDepartment of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University,
| | - Chengjin Chu
- grid.12981.330000 0001 2360 039XDepartment of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University,
| | - Jonathan A. Myers
- grid.4367.60000 0001 2355 7002Department of Biology, Washington University in St. Louis, St. Louis, MO USA
| | - Gregory S. Gilbert
- grid.205975.c0000 0001 0740 6917Department of Environmental Studies, University of California, Santa Cruz, CA USA
| | - James A. Lutz
- grid.53857.3c0000 0001 2185 8768Wildland Resources Department, Utah State University, Logan, UT USA
| | - Jonas Stillhard
- grid.419754.a0000 0001 2259 5533Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Forest Resources and Management, Birmensdorf, Switzerland
| | - Kai Zhu
- grid.205975.c0000 0001 0740 6917Department of Environmental Studies, University of California, Santa Cruz, CA USA
| | - Jill Thompson
- grid.494924.6UK Centre for Ecology & Hydrology Bush Estate, Midlothian, UK
| | - Jennifer L. Baltzer
- grid.268252.90000 0001 1958 9263Biology Department, Wilfrid Laurier University, Waterloo, ON Canada
| | - Fangliang He
- grid.17089.37Department of Renewable Resources, University of Alberta, Edmonton, AB Canada ,grid.22069.3f0000 0004 0369 6365ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong National Station for Forest Ecosystem Research, East China Normal University, ,grid.22069.3f0000 0004 0369 6365Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal University,
| | - Joseph A. LaManna
- grid.259670.f0000 0001 2369 3143Department of Biological Sciences, Marquette University, Milwaukee, WI USA
| | - Stuart J. Davies
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, DC USA
| | - Kristina J. Aderson-Teixeira
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, DC USA ,grid.419531.bConservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA USA
| | - David F.R.P. Burslem
- grid.7107.10000 0004 1936 7291School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Alfonso Alonso
- grid.467700.20000 0001 2182 2028Center for Conservation and Sustainability, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC USA
| | - Kuo-Jung Chao
- International Master Program of Agriculture, National Chung Hsing University, https://www.nchu.edu.tw/en-index
| | - Xugao Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, http://english.iae.cas.cn/
| | - Lianming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, http://english.kib.cas.cn/
| | - David A. Orwig
- grid.38142.3c000000041936754XHarvard Forest, Harvard University, Petersham, MA USA
| | - Xue Yin
- grid.12981.330000 0001 2360 039XDepartment of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University,
| | - Xinghua Sui
- grid.12981.330000 0001 2360 039XDepartment of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University,
| | - Zhiyao Su
- College of Forestry and Landscape Architecture, South China Agricultural University, https://english.scau.edu.cn/
| | - Iveren Abiem
- grid.412989.f0000 0000 8510 4538Department of Plant Science and Technology, University of Jos, Jos, Nigeria ,The Nigerian Montane Forest Project, Taraba State, Nigeria ,grid.21006.350000 0001 2179 4063School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Pulchérie Bissiengou
- Institut de Recherche en Ecologie Tropicale/Centre National de la Recherche Scientifique et Technologique, Libreville, Gabon
| | - Norm Bourg
- grid.419531.bConservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA USA
| | - Nathalie Butt
- grid.1003.20000 0000 9320 7537School of Biological Sciences, The University of Queensland, St. Lucia, QLD Australia ,grid.1003.20000 0000 9320 7537Centre for Biodiversity and Conservation Science, The University of Queensland, St. Lucia, QLD Australia
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, http://english.xtbg.cas.cn/
| | - Chia-Hao Chang-Yang
- grid.412036.20000 0004 0531 9758Department of Biological Sciences, National Sun Yat-sen University,
| | - Wei-Chun Chao
- grid.412046.50000 0001 0305 650XDepartment of Forestry and Natural Resources, National Chiayi University,
| | - Hazel Chapman
- grid.21006.350000 0001 2179 4063School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Yu-Yun Chen
- grid.260567.00000 0000 8964 3950Department of Natural Resources and Environmental Studies, National Dong Hwa University,
| | - David A. Coomes
- grid.5335.00000000121885934Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Susan Cordell
- grid.497404.a0000 0001 0662 4365Institute of Pacific Islands Forestry, Pacific Southwest Research Station, USDA Forest Service, Hilo, Hawaii USA
| | - Alexandre A. de Oliveira
- grid.11899.380000 0004 1937 0722Departamento Ecologia, Universidade de São Paulo, Instituto de Biociências, Cidade Universitária, São Paulo, SP Brazil
| | - Hu Du
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, http://english.isa.cas.cn/
| | - Suqin Fang
- grid.12981.330000 0001 2360 039XDepartment of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University,
| | - Christian P. Giardina
- grid.497404.a0000 0001 0662 4365Institute of Pacific Islands Forestry, Pacific Southwest Research Station, USDA Forest Service, Hilo, Hawaii USA
| | - Zhanqing Hao
- School of Ecology and Environment, Northwestern Polytechnical University, http://en.nwpu.edu.cn/
| | - Andrew Hector
- grid.4991.50000 0004 1936 8948Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Stephen P. Hubbell
- grid.19006.3e0000 0000 9632 6718Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA USA
| | - David Janík
- Department of Forest Ecology, Silva Tarouca Research Institute, Brno, Czech Republic
| | - Patrick A. Jansen
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, DC USA ,grid.4818.50000 0001 0791 5666Wildlife Ecology and Conservation Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Mingxi Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, http://english.wbg.cas.cn/
| | - Guangze Jin
- Center for Ecological Research, Northeast Forestry University, http://en.nefu.edu.cn/
| | - David Kenfack
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, DC USA ,grid.453560.10000 0001 2192 7591Department of Botany, National Museum of Natural History, Washington, DC USA
| | - Kamil Král
- Department of Forest Ecology, Silva Tarouca Research Institute, Brno, Czech Republic
| | - Andrew J. Larson
- grid.253613.00000 0001 2192 5772Wilderness Institute and Department of Forest Management, University of Montana, Missoula, MT USA
| | - Buhang Li
- grid.12981.330000 0001 2360 039XDepartment of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University,
| | - Xiankun Li
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, http://english.gxib.cn/
| | - Yide Li
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, http://ritf.caf.ac.cn/
| | - Juyu Lian
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, http://english.scbg.ac.cn/
| | - Luxiang Lin
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, http://english.xtbg.cas.cn/
| | - Feng Liu
- The Administrative Bureau of Naban River Watershed National Nature Reserve, http://www.xsbn.gov.cn/nbhbhq/nbhbhq.dhtml
| | - Yankun Liu
- Heilongjiang Key Laboratory of Forest Ecology and Forestry Ecological Engineering, Heilongjiang Forestry Engineering and Environment Institute, http://www.hljifee.org.cn/
| | - Yu Liu
- grid.22069.3f0000 0004 0369 6365ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong National Station for Forest Ecosystem Research, East China Normal University, ,grid.22069.3f0000 0004 0369 6365Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal University,
| | - Fuchen Luan
- Guangdong Chebaling National Nature Reserve, https://cbl.elab.cnic.cn/
| | - Yahuang Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, http://english.kib.cas.cn/
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, http://english.ib.cas.cn/
| | - Yadvinder Malhi
- grid.4991.50000 0004 1936 8948Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Sean M. McMahon
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, DC USA ,grid.419533.90000 0000 8612 0361Smithsonian Environmental Research Center, Edgewater, MD USA
| | - William McShea
- grid.419531.bConservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA USA
| | - Hervé Memiaghe
- Institut de Recherche en Ecologie Tropicale/Centre National de la Recherche Scientifique et Technologique, Libreville, Gabon
| | - Xiangcheng Mi
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, http://english.ib.cas.cn/
| | - Mike Morecroft
- grid.238406.b0000 0001 2331 9653Natural England, York, UK
| | - Vojtech Novotny
- grid.447761.70000 0004 0396 9503Biology Center of the Czech Academy of Sciences, Institute of Entomology and the University of South Bohemia, Ceske Budejovicve, Czech Republic
| | - Michael J. O’Brien
- grid.28479.300000 0001 2206 5938Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain
| | - Jan den Ouden
- grid.4818.50000 0001 0791 5666Forest Ecology and Management Group, Wageningen University, Wageningen, The Netherlands
| | - Geoffrey G. Parker
- grid.419533.90000 0000 8612 0361Forest Ecology Group, Smithsonian Environmental Research Center, Edgewater, MD USA
| | - Xiujuan Qiao
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, http://english.wbg.cas.cn/
| | - Haibao Ren
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, http://english.ib.cas.cn/
| | - Glen Reynolds
- Southeast Asia Rainforest Research Partnership, Danum Valley Field Centre, Lahad Datu, Sabah Malaysia
| | - Pavel Samonil
- Department of Forest Ecology, Silva Tarouca Research Institute, Brno, Czech Republic
| | - Weiguo Sang
- grid.411077.40000 0004 0369 0529College of Life and Environmental Science, Minzu University of China,
| | - Guochun Shen
- grid.22069.3f0000 0004 0369 6365Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal University,
| | - Zhiqiang Shen
- grid.12981.330000 0001 2360 039XDepartment of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University,
| | - Guo-Zhang Michael Song
- grid.260542.70000 0004 0532 3749Department of Soil and Water Conservation, National Chung Hsing University,
| | - I-Fang Sun
- grid.260567.00000 0000 8964 3950Department of Natural Resources and Environmental Studies, National Dong Hwa University,
| | - Hui Tang
- grid.12981.330000 0001 2360 039XDepartment of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University,
| | - Songyan Tian
- Heilongjiang Key Laboratory of Forest Ecology and Forestry Ecological Engineering, Heilongjiang Forestry Engineering and Environment Institute, http://www.hljifee.org.cn/
| | - Amanda L. Uowolo
- grid.497404.a0000 0001 0662 4365Institute of Pacific Islands Forestry, Pacific Southwest Research Station, USDA Forest Service, Hilo, Hawaii USA
| | - María Uriarte
- grid.21729.3f0000000419368729Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY USA
| | - Bin Wang
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, http://english.gxib.cn/
| | - Xihua Wang
- grid.22069.3f0000 0004 0369 6365Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal University,
| | - Youshi Wang
- grid.12981.330000 0001 2360 039XDepartment of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University,
| | - George D. Weiblen
- grid.17635.360000000419368657Department of Plant & Microbial Biology, University of Minnesota, St. Paul, MN USA
| | - Zhihong Wu
- Guangdong Chebaling National Nature Reserve, https://cbl.elab.cnic.cn/
| | - Nianxun Xi
- grid.12981.330000 0001 2360 039XDepartment of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University,
| | - Wusheng Xiang
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, http://english.gxib.cn/
| | - Han Xu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, http://ritf.caf.ac.cn/
| | - Kun Xu
- Yunnan Lijiang Forest Ecosystem National Observation and Research Station, Kunming Instituted of Botany, Chinese Academy of Sciences, http://english.kib.cas.cn/
| | - Wanhui Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, http://english.scbg.ac.cn/
| | - Mingjian Yu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, http://www.zju.edu.cn/english/
| | - Fuping Zeng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, http://english.isa.cas.cn/
| | - Minhua Zhang
- grid.22069.3f0000 0004 0369 6365ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong National Station for Forest Ecosystem Research, East China Normal University, ,grid.22069.3f0000 0004 0369 6365Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal University,
| | - Yingming Zhang
- Guangdong Chebaling National Nature Reserve, https://cbl.elab.cnic.cn/
| | - Li Zhu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, http://english.ib.cas.cn/
| | - Jess K. Zimmerman
- grid.267033.30000 0004 0462 1680Department of Environmental Sciences, University of Puerto Rico, San Juan, PR USA
| |
Collapse
|
10
|
Stump SM, Marden JH, Beckman NG, Mangan SA, Comita LS. Resistance Genes Affect How Pathogens Maintain Plant Abundance and Diversity. Am Nat 2020; 196:472-486. [PMID: 32970465 DOI: 10.1086/710486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractSpecialized pathogens are thought to maintain plant community diversity; however, most ecological studies treat pathogens as a black box. Here we develop a theoretical model to test how the impact of specialized pathogens changes when plant resistance genes (R-genes) mediate susceptibility. This work synthesizes two major hypotheses: the gene-for-gene model of pathogen resistance and the Janzen-Connell hypothesis of pathogen-mediated coexistence. We examine three scenarios. First, R-genes do not affect seedling survival; in this case, pathogens promote diversity. Second, seedlings are protected from pathogens when their R-gene alleles and susceptibility differ from those of nearby conspecific adults, thereby reducing transmission. If resistance is not costly, pathogens are less able to promote diversity because populations with low R-gene diversity suffer higher mortality, putting those populations at a disadvantage and potentially causing their exclusion. R-gene diversity may also be reduced during population bottlenecks, creating a priority effect. Third, when R-genes affect survival but resistance is costly, populations can avoid extinction by losing resistance alleles, as they cease paying a cost that is unneeded. Thus, the impact pathogens can have on tree diversity depends on the mechanism of plant-pathogen interactions. Future empirical studies should examine which of these scenarios most closely reflects the real world.
Collapse
|
11
|
Aldorfová A, Knobová P, Münzbergová Z. Plant–soil feedback contributes to predicting plant invasiveness of 68 alien plant species differing in invasive status. OIKOS 2020. [DOI: 10.1111/oik.07186] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Anna Aldorfová
- Dept of Botany, Faculty of Science, Charles Univ Benátská 2 CZ‐128 01 Prague 2 Czech Republic
- Inst. of Botany, Czech Academy of Sciences Průhonice Czech Republic
| | - Pavlína Knobová
- Dept of Botany, Faculty of Science, Charles Univ Benátská 2 CZ‐128 01 Prague 2 Czech Republic
| | - Zuzana Münzbergová
- Dept of Botany, Faculty of Science, Charles Univ Benátská 2 CZ‐128 01 Prague 2 Czech Republic
- Inst. of Botany, Czech Academy of Sciences Průhonice Czech Republic
| |
Collapse
|
12
|
Cheng K, Yu S. Neighboring trees regulate the root-associated pathogenic fungi on the host plant in a subtropical forest. Ecol Evol 2020; 10:3932-3943. [PMID: 32489621 PMCID: PMC7244890 DOI: 10.1002/ece3.6094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 01/05/2023] Open
Abstract
Root-associated fungi and host-specific pathogens are major determinants of species coexistence in forests. Phylogenetically related neighboring trees can strongly affect the fungal community structure of the host plant, which, in turn, will affect the ecological processes. Unfortunately, our understanding of the factors influencing fungal community composition in forests is still limited. In particular, investigation of the relationship between the phytopathogenic fungal community and neighboring trees is incomplete. In the current study, we tested the host specificity of members of the root-associated fungal community collected from seven tree species and determined the influence of neighboring trees and habitat variation on the composition of the phytopathogenic fungal community of the focal plant in a subtropical evergreen forest. Using high-throughput sequencing data with respect to the internal transcribed spacer (ITS) region, we characterized the community composition of the root-associated fungi and found significant differences with respect to fungal groups among the seven tree species. The density of conspecific neighboring trees had a significantly positive influence on the relative abundance of phytopathogens, especially host-specific pathogens, while the heterospecific neighbor density had a significant negative impact on the species richness of host-specific pathogens, as well as phytopathogens. Our work provides evidence that the root-associated phytopathogenic fungi of a host plant depend greatly on the tree neighbors of the host plant.
Collapse
Affiliation(s)
- Keke Cheng
- Department of EcologySchool of Life Sciences/State Key Laboratory of BiocontrolSun Yat‐sen UniversityGuangzhouChina
| | - Shixiao Yu
- Department of EcologySchool of Life Sciences/State Key Laboratory of BiocontrolSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
13
|
Maternal microbes complicate coexistence for tropical trees. Proc Natl Acad Sci U S A 2019; 116:7166-7168. [PMID: 30936305 DOI: 10.1073/pnas.1902736116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Evidence of within-species specialization by soil microbes and the implications for plant community diversity. Proc Natl Acad Sci U S A 2019; 116:7371-7376. [PMID: 30842279 DOI: 10.1073/pnas.1810767116] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Microbes are thought to maintain diversity in plant communities by specializing on particular species, but it is not known whether microbes that specialize within species (i.e., on genotypes) affect diversity or dynamics in plant communities. Here we show that soil microbes can specialize at the within-population level in a wild plant species, and that such specialization could promote species diversity and seed dispersal in plant communities. In a shadehouse experiment in Panama, we found that seedlings of the native tree species, Virola surinamensis (Myristicaceae), had reduced performance in the soil microbial community of their maternal tree compared with in the soil microbial community of a nonmaternal tree from the same population. Performance differences were unrelated to soil nutrients or to colonization by mycorrhizal fungi, suggesting that highly specialized pathogens were the mechanism reducing seedling performance in maternal soils. We then constructed a simulation model to explore the ecological and evolutionary consequences of genotype-specific pathogens in multispecies plant communities. Model results indicated that genotype-specific pathogens promote plant species coexistence-albeit less strongly than species-specific pathogens-and are most effective at maintaining species richness when genetic diversity is relatively low. Simulations also revealed that genotype-specific pathogens select for increased seed dispersal relative to species-specific pathogens, potentially helping to create seed dispersal landscapes that allow pathogens to more effectively promote diversity. Combined, our results reveal that soil microbes can specialize within wild plant populations, affecting seedling performance near conspecific adults and influencing plant community dynamics on ecological and evolutionary time scales.
Collapse
|
15
|
Olanrewaju OS, Ayangbenro AS, Glick BR, Babalola OO. Plant health: feedback effect of root exudates-rhizobiome interactions. Appl Microbiol Biotechnol 2019; 103:1155-1166. [PMID: 30570692 PMCID: PMC6394481 DOI: 10.1007/s00253-018-9556-6] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/01/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022]
Abstract
The well-being of the microbial community that densely populates the rhizosphere is aided by a plant's root exudates. Maintaining a plant's health is a key factor in its continued existence. As minute as rhizospheric microbes are, their importance in plant growth cannot be overemphasized. They depend on plants for nutrients and other necessary requirements. The relationship between the rhizosphere-microbiome (rhizobiome) and plant hosts can be beneficial, non-effectual, or pathogenic depending on the microbes and the plant involved. This relationship, to a large extent, determines the fate of the host plant's survival. Modern molecular techniques have been used to unravel rhizobiome species' composition, but the interplay between the rhizobiome root exudates and other factors in the maintenance of a healthy plant have not as yet been thoroughly investigated. Many functional proteins are activated in plants upon contact with external factors. These proteins may elicit growth promoting or growth suppressing responses from the plants. To optimize the growth and productivity of host plants, rhizobiome microbial diversity and modulatory techniques need to be clearly understood for improved plant health.
Collapse
Affiliation(s)
- Oluwaseyi Samuel Olanrewaju
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, 2735, South Africa
| | - Ayansina Segun Ayangbenro
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, 2735, South Africa
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, 2735, South Africa.
| |
Collapse
|
16
|
Browne L, Karubian J. Rare genotype advantage promotes survival and genetic diversity of a tropical palm. THE NEW PHYTOLOGIST 2018; 218:1658-1667. [PMID: 29603256 DOI: 10.1111/nph.15107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
Negative density dependence, where survival decreases as density increases, is a well-established driver of species diversity at the community level, but the degree to which a similar process might act on the density or frequency of genotypes within a single plant species to maintain genetic diversity has not been well studied in natural systems. In this study, we determined the maternal genotype of naturally dispersed seeds of the palm Oenocarpus bataua within a tropical forest in northwest Ecuador, tracked the recruitment of each seed, and assessed the role of individual-level genotypic rarity on survival. We demonstrate that negative frequency-dependent selection within this species conferred a survival advantage to rare maternal genotypes and promoted population-level genetic diversity. The strength of the observed rare genotype survival advantage was comparable to the effect of conspecific density regardless of genotype. These findings corroborate an earlier, experimental study and implicate negative frequency-dependent selection of genotypes as an important, but currently underappreciated, determinant of plant recruitment and within-species genetic diversity. Incorporating intraspecific genetic variation into studies and theory of forest dynamics may improve our ability to understand and manage forests, and the processes that maintain their diversity.
Collapse
Affiliation(s)
- Luke Browne
- Department of Ecology and Evolutionary Biology, Tulane University, 400 Lindy Boggs, New Orleans, LA, 70118, USA
- Foundation for the Conservation of the Tropical Andes, Quito, Ecuador
- UCLA La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Jordan Karubian
- Department of Ecology and Evolutionary Biology, Tulane University, 400 Lindy Boggs, New Orleans, LA, 70118, USA
- Foundation for the Conservation of the Tropical Andes, Quito, Ecuador
| |
Collapse
|
17
|
Bennett JA, Klironomos J. Climate, but not trait, effects on plant-soil feedback depend on mycorrhizal type in temperate forests. Ecosphere 2018. [DOI: 10.1002/ecs2.2132] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Jonathan A. Bennett
- Department of Biology; University of British Columbia - Okanagan Campus; Kelowna British Columbia V1V 1V7 Canada
| | - John Klironomos
- Department of Biology; University of British Columbia - Okanagan Campus; Kelowna British Columbia V1V 1V7 Canada
| |
Collapse
|
18
|
Bukowski AR, Schittko C, Petermann JS. The strength of negative plant-soil feedback increases from the intraspecific to the interspecific and the functional group level. Ecol Evol 2018; 8:2280-2289. [PMID: 29468043 PMCID: PMC5817124 DOI: 10.1002/ece3.3755] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 01/26/2023] Open
Abstract
One of the processes that may play a key role in plant species coexistence and ecosystem functioning is plant-soil feedback, the effect of plants on associated soil communities and the resulting feedback on plant performance. Plant-soil feedback at the interspecific level (comparing growth on own soil with growth on soil from different species) has been studied extensively, while plant-soil feedback at the intraspecific level (comparing growth on own soil with growth on soil from different accessions within a species) has only recently gained attention. Very few studies have investigated the direction and strength of feedback among different taxonomic levels, and initial results have been inconclusive, discussing phylogeny, and morphology as possible determinants. To test our hypotheses that the strength of negative feedback on plant performance increases with increasing taxonomic level and that this relationship is explained by morphological similarities, we conducted a greenhouse experiment using species assigned to three taxonomic levels (intraspecific, interspecific, and functional group level). We measured certain fitness-related aboveground traits and used them along literature-derived traits to determine the influence of morphological similarities on the strength and direction of the feedback. We found that the average strength of negative feedback increased from the intraspecific over the interspecific to the functional group level. However, individual accessions and species differed in the direction and strength of the feedback. None of our results could be explained by morphological dissimilarities or individual traits. Synthesis. Our results indicate that negative plant-soil feedback is stronger if the involved plants belong to more distantly related species. We conclude that the taxonomic level is an important factor in the maintenance of plant coexistence with plant-soil feedback as a potential stabilizing mechanism and should be addressed explicitly in coexistence research, while the traits considered here seem to play a minor role.
Collapse
Affiliation(s)
| | - Conrad Schittko
- Institute of Biochemistry and BiologyBiodiversity Research/Systematic BotanyUniversity of PotsdamPotsdamGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| | - Jana S. Petermann
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
- Department of Ecology and EvolutionUniversity of SalzburgSalzburgAustria
| |
Collapse
|
19
|
Soilborne fungi have host affinity and host-specific effects on seed germination and survival in a lowland tropical forest. Proc Natl Acad Sci U S A 2017; 114:11458-11463. [PMID: 28973927 DOI: 10.1073/pnas.1706324114] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Janzen-Connell (JC) hypothesis provides a conceptual framework for explaining the maintenance of tree diversity in tropical forests. Its central tenet-that recruits experience high mortality near conspecifics and at high densities-assumes a degree of host specialization in interactions between plants and natural enemies. Studies confirming JC effects have focused primarily on spatial distributions of seedlings and saplings, leaving major knowledge gaps regarding the fate of seeds in soil and the specificity of the soilborne fungi that are their most important antagonists. Here we use a common garden experiment in a lowland tropical forest in Panama to show that communities of seed-infecting fungi are structured predominantly by plant species, with only minor influences of factors such as local soil type, forest characteristics, or time in soil (1-12 months). Inoculation experiments confirmed that fungi affected seed viability and germination in a host-specific manner and that effects on seed viability preceded seedling emergence. Seeds are critical components of reproduction for tropical trees, and the factors influencing their persistence, survival, and germination shape the populations of seedlings and saplings on which current perspectives regarding forest dynamics are based. Together these findings bring seed dynamics to light in the context of the JC hypothesis, implicating them directly in the processes that have emerged as critical for diversity maintenance in species-rich tropical forests.
Collapse
|
20
|
Semchenko M, Saar S, Lepik A. Intraspecific genetic diversity modulates plant-soil feedback and nutrient cycling. THE NEW PHYTOLOGIST 2017; 216:90-98. [PMID: 28608591 DOI: 10.1111/nph.14653] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/07/2017] [Indexed: 06/07/2023]
Abstract
Plant genetic diversity can affect ecosystem functioning by enhancing productivity, litter decomposition and resistance to natural enemies. However, the mechanisms underlying these effects remain poorly understood. We hypothesized that genetic diversity may influence ecosystem processes by eliciting functional plasticity among individuals encountering kin or genetically diverse neighbourhoods. We used soil conditioned by groups of closely related (siblings) and diverse genotypes of Deschampsia cespitosa - a species known to exhibit kin recognition via root exudation - to investigate the consequences of kin interactions for root litter decomposition and negative feedback between plants and soil biota. Genetically diverse groups produced root litter that had higher nitrogen (N) content, decomposed faster and resulted in greater N uptake by the next generation of seedlings compared with litter produced by sibling groups. However, a similar degree of negative soil feedback on plant productivity was observed in soil conditioned by siblings and genetically diverse groups. This suggests that characteristics of roots produced by sibling groups slow down N cycling but moderate the expected negative impact of soil pathogens in low-diversity stands. These findings highlight interactions between neighbouring genotypes as an overlooked mechanism by which genetic diversity can affect biotic soil feedback and nutrient cycling.
Collapse
Affiliation(s)
- Marina Semchenko
- School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Sirgi Saar
- School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Anu Lepik
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| |
Collapse
|
21
|
Browne L, Karubian J. Frequency‐dependent selection for rare genotypes promotes genetic diversity of a tropical palm. Ecol Lett 2016; 19:1439-1447. [DOI: 10.1111/ele.12692] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/02/2016] [Accepted: 09/08/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Luke Browne
- Department of Ecology and Evolutionary Biology Tulane University New Orleans Louisiana
- Foundation for the Conservation of the Tropical Andes Quito Ecuador
| | - Jordan Karubian
- Department of Ecology and Evolutionary Biology Tulane University New Orleans Louisiana
- Foundation for the Conservation of the Tropical Andes Quito Ecuador
| |
Collapse
|
22
|
Liang M, Liu X, Gilbert GS, Zheng Y, Luo S, Huang F, Yu S. Adult trees cause density-dependent mortality in conspecific seedlings by regulating the frequency of pathogenic soil fungi. Ecol Lett 2016; 19:1448-1456. [PMID: 27790825 DOI: 10.1111/ele.12694] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/11/2016] [Accepted: 09/19/2016] [Indexed: 11/30/2022]
Abstract
Negative density-dependent seedling mortality has been widely detected in tropical, subtropical and temperate forests, with soil pathogens as a major driver. Here we investigated how host density affects the composition of soil pathogen communities and consequently influences the strength of plant-soil feedbacks. In field censuses of six 1-ha permanent plots, we found that survival was much lower for newly germinated seedlings that were surrounded by more conspecific adults. The relative abundance of pathogenic fungi in soil increased with increasing conspecific tree density for five of nine tree species; more soil pathogens accumulated around roots where adult tree density was higher, and this greater pathogen frequency was associated with lower seedling survival. Our findings show how tree density influences populations of soil pathogens, which creates plant-soil feedbacks that contribute to community-level and population-level compensatory trends in seedling survival.
Collapse
Affiliation(s)
- Minxia Liang
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xubing Liu
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| | - Gregory S Gilbert
- Environmental Studies Department, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA.,Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| | - Yi Zheng
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shan Luo
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fengmin Huang
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shixiao Yu
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
23
|
Liu X, Liang M, Etienne RS, Gilbert GS, Yu S. Phylogenetic congruence between subtropical trees and their associated fungi. Ecol Evol 2016; 6:8412-8422. [PMID: 28031793 PMCID: PMC5167024 DOI: 10.1002/ece3.2503] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/23/2016] [Accepted: 08/30/2016] [Indexed: 11/29/2022] Open
Abstract
Recent studies have detected phylogenetic signals in pathogen–host networks for both soil‐borne and leaf‐infecting fungi, suggesting that pathogenic fungi may track or coevolve with their preferred hosts. However, a phylogenetically concordant relationship between multiple hosts and multiple fungi in has rarely been investigated. Using next‐generation high‐throughput DNA sequencing techniques, we analyzed fungal taxa associated with diseased leaves, rotten seeds, and infected seedlings of subtropical trees. We compared the topologies of the phylogenetic trees of the soil and foliar fungi based on the internal transcribed spacer (ITS) region with the phylogeny of host tree species based on matK, rbcL, atpB, and 5.8S genes. We identified 37 foliar and 103 soil pathogenic fungi belonging to the Ascomycota and Basidiomycota phyla and detected significantly nonrandom host–fungus combinations, which clustered on both the fungus phylogeny and the host phylogeny. The explicit evidence of congruent phylogenies between tree hosts and their potential fungal pathogens suggests either diffuse coevolution among the plant–fungal interaction networks or that the distribution of fungal species tracked spatially associated hosts with phylogenetically conserved traits and habitat preferences. Phylogenetic conservatism in plant–fungal interactions within a local community promotes host and parasite specificity, which is integral to the important role of fungi in promoting species coexistence and maintaining biodiversity of forest communities.
Collapse
Affiliation(s)
- Xubing Liu
- Department of Ecology School of Life Sciences/State Key Laboratory of Biocontrol Sun Yat-sen University Guangzhou China; Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| | - Minxia Liang
- Department of Ecology School of Life Sciences/State Key Laboratory of Biocontrol Sun Yat-sen University Guangzhou China
| | - Rampal S Etienne
- Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| | - Gregory S Gilbert
- Department of Environmental Studies University of California Santa Cruz Santa Cruz CA USA
| | - Shixiao Yu
- Department of Ecology School of Life Sciences/State Key Laboratory of Biocontrol Sun Yat-sen University Guangzhou China
| |
Collapse
|
24
|
Zwolak R, Bogdziewicz M, Wróbel A, Crone EE. Advantages of masting in European beech: timing of granivore satiation and benefits of seed caching support the predator dispersal hypothesis. Oecologia 2015; 180:749-58. [PMID: 26612728 DOI: 10.1007/s00442-015-3511-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 11/07/2015] [Indexed: 10/22/2022]
Abstract
The predator satiation and predator dispersal hypotheses provide alternative explanations for masting. Both assume satiation of seed-eating vertebrates. They differ in whether satiation occurs before or after seed removal and caching by granivores (predator satiation and predator dispersal, respectively). This difference is largely unrecognized, but it is demographically important because cached seeds are dispersed and often have a microsite advantage over nondispersed seeds. We conducted rodent exclosure experiments in two mast and two nonmast years to test predictions of the predator dispersal hypothesis in our study system of yellow-necked mice (Apodemus flavicollis) and European beech (Fagus sylvatica). Specifically, we tested whether the fraction of seeds removed from the forest floor is similar during mast and nonmast years (i.e., lack of satiation before seed caching), whether masting decreases the removal of cached seeds (i.e., satiation after seed storage), and whether seed caching increases the probability of seedling emergence. We found that masting did not result in satiation at the seed removal stage. However, masting decreased the removal of cached seeds, and seed caching dramatically increased the probability of seedling emergence relative to noncached seeds. European beech thus benefits from masting through the satiation of scatterhoarders that occurs only after seeds are removed and cached. Although these findings do not exclude other evolutionary advantages of beech masting, they indicate that fitness benefits of masting extend beyond the most commonly considered advantages of predator satiation and increased pollination efficiency.
Collapse
Affiliation(s)
- Rafał Zwolak
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland.
| | - Michał Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland
| | - Aleksandra Wróbel
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland
| | - Elizabeth E Crone
- Harvard Forest, Harvard University, Petersham, MA, 01366, USA.,Department of Biology, Tufts University, 163 Packard Ave, Medford, MA, 02155, USA
| |
Collapse
|