1
|
Sathe EA, Chronister NJ, Dudley R. Incipient wing flapping enhances aerial performance of a robotic paravian model. BIOINSPIRATION & BIOMIMETICS 2023; 18:046017. [PMID: 37253379 DOI: 10.1088/1748-3190/acda03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/30/2023] [Indexed: 06/01/2023]
Abstract
The functional origins of bird flight remain unresolved despite a diversity of hypothesized selective factors. Fossil taxa phylogenetically intermediate between typical theropod dinosaurs and modern birds exhibit dense aggregations of feathers on their forelimbs, and the evolving morphologies and kinematic activational patterns of these structures could have progressively enhanced aerodynamic force production over time. However, biomechanical functionality of flapping in such transitional structures is unknown. We evaluated a robot inspired by paravian morphology to model the effects of incremental increases in wing length, wingbeat frequency, and stroke amplitude on aerial performance. From a launch height of 2.8 m, wing elongation most strongly influenced distance travelled and time aloft for all frequency-amplitude combinations, although increased frequency and amplitude also enhanced performance. Furthermore, we found interaction effects among these three parameters such that when the wings were long, higher values of either wingbeat frequency or stroke amplitude synergistically improved performance. For launches from a height of 5.0 m, the effects of these flapping parameters appear to diminish such that only flapping at the highest frequency (5.7 Hz) and amplitude (60°) significantly increased performance. Our results suggest that a gliding animal at the physical scale relevant to bird flight origins, and with transitional wings, can improve aerodynamic performance via rudimentary wing flapping at relatively low frequencies and amplitudes. Such gains in horizontal translation and time aloft, as those found in this study, are likely to be advantageous for any taxon that engages in aerial behavior for purposes of transit or escape. This study thus demonstrates aerodynamic benefits of transition from a gliding stage to full-scale wing flapping in paravian taxa.
Collapse
Affiliation(s)
- Erik Andrew Sathe
- Department of Integrative Biology, University of California, Berkeley, CA, United States of America
| | | | - Robert Dudley
- Department of Integrative Biology, University of California, Berkeley, CA, United States of America
| |
Collapse
|
2
|
Moncrief ND, Hightower L, Mead AJ, Ivanov K. Prevalence and location of survivable skeletal injuries in two North American tree squirrels (Sciurus). J Mammal 2022. [DOI: 10.1093/jmammal/gyab131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Skeletal injuries, especially broken bones, diminish physical mobility of animals, and they may affect an individual’s ability to obtain food and to evade predators. We quantified and compared healed fractures in two sympatric species of tree squirrels (Sciurus niger Linnaeus, 1758 and S. carolinensis Gmelin, 1788) that differ in body size (mass) and locomotor mode. We assessed the number and location of healed fractures in two urban populations of S. carolinensis and in individuals of both species from one rural location. We found a higher-than-expected proportion of healed fractures in older animals of both species. However, we detected no deviations from expected in the number of healed fractures between the two species or between sexes within a species. Urban populations of S. carolinensis exhibited significantly higher-than-expected proportions of healed fractures, and they were approximately 4.5 times more likely to have a healed injury as compared to rural S. carolinensis. Our findings suggest that S. carolinensis in urban populations experience a higher rate of injury and/or a higher rate of survival after injury than those in rural populations.
Collapse
Affiliation(s)
- Nancy D Moncrief
- Virginia Museum of Natural History, 21 Starling Avenue, Martinsville, VA 24112, USA
| | - Liberty Hightower
- Virginia Museum of Natural History, 21 Starling Avenue, Martinsville, VA 24112, USA
| | - Alfred J Mead
- Department of Biological and Environmental Sciences, Georgia College & State University, Milledgeville, GA 31061, USA
| | - Kaloyan Ivanov
- Virginia Museum of Natural History, 21 Starling Avenue, Martinsville, VA 24112, USA
| |
Collapse
|
3
|
Jentzsch M, Kraft R, Lemkul A, Kapischke HJ, Maternowski HW, Wolf R. Anomalies and pathological changes of skulls and dentition of wild small mammal species from Germany. JOURNAL OF VERTEBRATE BIOLOGY 2020. [DOI: 10.25225/jvb.20072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Matthias Jentzsch
- Dresden University of Applied Sciences, Faculty of Agriculture/Environment/Chemistry, Dresden, Germany; e-mail:
| | | | | | | | | | - Ronny Wolf
- Leipzig University, Faculty of Life Sciences, Leipzig, Germany; e-mail:
| |
Collapse
|
4
|
Rolian C. Endochondral ossification and the evolution of limb proportions. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 9:e373. [PMID: 31997553 DOI: 10.1002/wdev.373] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/09/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022]
Abstract
Mammals have remarkably diverse limb proportions hypothesized to have evolved adaptively in the context of locomotion and other behaviors. Mechanistically, evolutionary diversity in limb proportions is the result of differential limb bone growth. Longitudinal limb bone growth is driven by the process of endochondral ossification, under the control of the growth plates. In growth plates, chondrocytes undergo a tightly orchestrated life cycle of proliferation, matrix production, hypertrophy, and cell death/transdifferentiation. This life cycle is highly conserved, both among the long bones of an individual, and among homologous bones of distantly related taxa, leading to a finite number of complementary cell mechanisms that can generate heritable phenotype variation in limb bone size and shape. The most important of these mechanisms are chondrocyte population size in chondrogenesis and in individual growth plates, proliferation rates, and hypertrophic chondrocyte size. Comparative evidence in mammals and birds suggests the existence of developmental biases that favor evolutionary changes in some of these cellular mechanisms over others in driving limb allometry. Specifically, chondrocyte population size may evolve more readily in response to selection than hypertrophic chondrocyte size, and extreme hypertrophy may be a rarer evolutionary phenomenon associated with highly specialized modes of locomotion in mammals (e.g., powered flight, ricochetal bipedal hopping). Physical and physiological constraints at multiple levels of biological organization may also have influenced the cell developmental mechanisms that have evolved to produce the highly diverse limb proportions in extant mammals. This article is categorized under: Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Comparative Development and Evolution > Regulation of Organ Diversity Comparative Development and Evolution > Organ System Comparisons Between Species.
Collapse
Affiliation(s)
- Campbell Rolian
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
5
|
Williams ACDC. Persistence of pain in humans and other mammals. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190276. [PMID: 31544608 PMCID: PMC6790389 DOI: 10.1098/rstb.2019.0276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2019] [Indexed: 12/23/2022] Open
Abstract
Evolutionary models of chronic pain are relatively undeveloped, but mainly concern dysregulation of an efficient acute defence, or false alarm. Here, a third possibility, mismatch with the modern environment, is examined. In ancestral human and free-living animal environments, survival needs urge a return to activity during recovery, despite pain, but modern environments allow humans and domesticated animals prolonged inactivity after injury. This review uses the research literature to compare humans and other mammals, who share pain neurophysiology, on risk factors for pain persistence, behaviours associated with pain, and responses of conspecifics to behaviours. The mammal populations studied are mainly laboratory rodents in pain research, and farm and companion animals in veterinary research, with observations of captive and free-living primates. Beyond farm animals and rodent models, there is virtually no evidence of chronic pain in other mammals. Since evidence is sparse, it is hard to conclude that it does not occur, but its apparent absence is compatible with the mismatch hypothesis. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.
Collapse
Affiliation(s)
- Amanda C. de C. Williams
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| |
Collapse
|
6
|
Cosman MN, Britz HM, Rolian C. Selection for longer limbs in mice increases bone stiffness and brittleness, but does not alter bending strength. ACTA ACUST UNITED AC 2019; 222:jeb.203125. [PMID: 31043455 DOI: 10.1242/jeb.203125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/24/2019] [Indexed: 12/14/2022]
Abstract
The ability of a bone to withstand loads depends on its structural and material properties. These tend to differ among species with different modes of locomotion, reflecting their unique loading patterns. The evolution of derived limb morphologies, such as the long limbs associated with jumping, may compromise overall bone strength. We evaluated bone mechanical properties in the Longshanks mouse, which was selectively bred for increased tibia length relative to body mass. We combined analyses of 3D shape and cross-sectional geometry of the tibia, with mechanical testing and bone composition assays, to compare bone strength, elastic properties and mineral composition in Longshanks mice and randomly bred controls. Our data show that, despite being more slender, cortical geometry and predicted bending strength of the Longshanks tibia were similar to controls. In whole bone bending tests, measures of bone bending strength were similar across groups; however, Longshanks tibiae were significantly more rigid, more brittle, and required less than half the energy to fracture. Tissue-level elastic properties were also altered in Longshanks mice, but the bones did not differ from the control in water content, ash content or density. These results indicate that while Longshanks bones are as strong as control tibiae, selection for increased tibia length has altered its elastic properties, possibly through changes in organic bony matrix composition. We conclude that selection for certain limb morphologies, and/or selection for rapid skeletal growth, can lead to tissue-level changes that can increase the risk of skeletal fracture, which in turn may favor the correlated evolution of compensatory mechanisms to mitigate increased fracture risk, such as delayed skeletal maturity.
Collapse
Affiliation(s)
- Miranda N Cosman
- Department of Anthropology, University of Michigan, 101 West Hall 1085 S. University Ave, Ann Arbor, MI 48109, United States
| | - Hayley M Britz
- Department of Cell Biology and Anatomy, Cumming School or Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Campbell Rolian
- McCaig Institute for Bone and Joint Health, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada .,Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| |
Collapse
|
7
|
Stephens RB, Burke CB, Woodman N, Poland LB, Rowe RJ. Skeletal injuries in small mammals: a multispecies assessment of prevalence and location. J Mammal 2018. [DOI: 10.1093/jmammal/gyy020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ryan B Stephens
- Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
| | - Christopher B Burke
- Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
| | - Neal Woodman
- United States Geological Survey Patuxent Wildlife Research Center, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Lily B Poland
- Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
| | - Rebecca J Rowe
- Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
8
|
|
9
|
Mendonça AF, Bocchiglieri A, Vieira MV. Limb abnormality in a neotropical scansorial marsupial, Gracilinanus agilis (Didelphimorphia: Didelphidae). MAMMALIA 2016. [DOI: 10.1515/mammalia-2015-0007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractIn this study, we describe a limb abnormality, possibly ectrodactyly, in a male adult gracile mouse opossum (
Collapse
|
10
|
Adaptations for marine habitat and the effect of Triassic and Jurassic predator pressure on development of decompression syndrome in ichthyosaurs. Naturwissenschaften 2012; 99:443-8. [PMID: 22573359 DOI: 10.1007/s00114-012-0918-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 10/28/2022]
Abstract
Decompression syndrome (caisson disease or the "the bends") resulting in avascular necrosis has been documented in mosasaurs, sauropterygians, ichthyosaurs, and turtles from the Middle Jurassic to Late Cretaceous, but it was unclear that this disease occurred as far back as the Triassic. We have examined a large Triassic sample of ichthyosaurs and compared it with an equally large post-Triassic sample. Avascular necrosis was observed in over 15% of Late Middle Jurassic to Cretaceous ichthyosaurs with the highest occurrence (18%) in the Early Cretaceous, but was rare or absent in geologically older specimens. Triassic reptiles that dive were either physiologically protected, or rapid changes of their position in the water column rare and insignificant enough to prevent being recorded in the skeleton. Emergency surfacing due to a threat from an underwater predator may be the most important cause of avascular necrosis for air-breathing divers, with relative frequency of such events documented in the skeleton. Diving in the Triassic appears to have been a "leisurely" behavior until the evolution of large predators in the Late Jurassic that forced sudden depth alterations contributed to a higher occurrence of bends.
Collapse
|