1
|
Aktulay A, Engin-Ustun Y, Kaymak O, Ozgu-Erdinc AS, Demirtas C, Kara M, Danisman N, Erkaya S. Levels of glucagon-like peptide 1 in hyperemesis gravidarum. Interv Med Appl Sci 2021; 11:213-215. [PMCID: PMC9467383 DOI: 10.1556/1646.2020.00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/18/2018] [Indexed: 11/19/2022] Open
Abstract
Objective Glucagon-like peptide 1 (GLP-1), a gut-derived peptide has been reported to have insulin-like effects. Our aim is to examine GLP1 levels in hyperemesis gravidarum (HEG). Materials-methods The study population consisted of 2 groups: Group 1 (control subjects) consisted of 22 women with uncomplicated singleton pregnancies in the first trimester. Group 2 consisted of 22 singleton pregnancies complicated by HEG. Glucose and GLP1 levels were determined. Enzyme-linked Immunosorbent Assay Kit for Glucagon like Peptide 1 (GLP1) was used (Uscn, Life Science Inc.). Results No significant differences in maternal age, gestational age and gravida were observed between hypermetric and control groups. Maternal serum GLP1 levels were significantly higher in HEG compared with control group (P = 0.004). Conclusion The results of our study revealed that the presence of increased GLP1 levels in women with HEG could contribute to the pathogenesis of the disease. Our results indicated that increased GLP1 levels may be associated with hyperemesis gravidarum. The limitation of our study was the restricted number of patients. Large prospective and randomized studies are required to evaluate the effect of GLP1 levels on hyperemesis gravidarum.
Collapse
Affiliation(s)
- Ayla Aktulay
- 1Obstetrics and Gynecology Department, Zekai Tahir Burak Women Health Training and Research Hospital, Ankara, Turkey
| | - Y Engin-Ustun
- 1Obstetrics and Gynecology Department, Zekai Tahir Burak Women Health Training and Research Hospital, Ankara, Turkey
| | - O Kaymak
- 1Obstetrics and Gynecology Department, Zekai Tahir Burak Women Health Training and Research Hospital, Ankara, Turkey
| | - Ayse Seval Ozgu-Erdinc
- 1Obstetrics and Gynecology Department, Zekai Tahir Burak Women Health Training and Research Hospital, Ankara, Turkey
| | - Canan Demirtas
- 2Biochemistry Department, Gazi University, Faculty of Medicine, Ankara, Turkey
| | - Mustafa Kara
- 1Obstetrics and Gynecology Department, Zekai Tahir Burak Women Health Training and Research Hospital, Ankara, Turkey
| | - Nuri Danisman
- 1Obstetrics and Gynecology Department, Zekai Tahir Burak Women Health Training and Research Hospital, Ankara, Turkey
| | - Salim Erkaya
- 1Obstetrics and Gynecology Department, Zekai Tahir Burak Women Health Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
2
|
Abstract
Diabetes mellitus is an important comorbidity in patients with heart failure. The presence of heart failure in diabetes worsens the prognosis of patients. Recent studies suggest that appropriate diagnostic approaches followed by differential medical treatment are of crucial importance to improve patient outcomes. This article summarizes important aspects of the association between diabetes mellitus and heart failure.
Collapse
|
3
|
|
4
|
Maack C, Lehrke M, Backs J, Heinzel FR, Hulot JS, Marx N, Paulus WJ, Rossignol P, Taegtmeyer H, Bauersachs J, Bayes-Genis A, Brutsaert D, Bugger H, Clarke K, Cosentino F, De Keulenaer G, Dei Cas A, González A, Huelsmann M, Iaccarino G, Lunde IG, Lyon AR, Pollesello P, Rena G, Riksen NP, Rosano G, Staels B, van Laake LW, Wanner C, Farmakis D, Filippatos G, Ruschitzka F, Seferovic P, de Boer RA, Heymans S. Heart failure and diabetes: metabolic alterations and therapeutic interventions: a state-of-the-art review from the Translational Research Committee of the Heart Failure Association-European Society of Cardiology. Eur Heart J 2018; 39:4243-4254. [PMID: 30295797 PMCID: PMC6302261 DOI: 10.1093/eurheartj/ehy596] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/21/2018] [Accepted: 09/07/2018] [Indexed: 12/22/2022] Open
Affiliation(s)
- Christoph Maack
- Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
| | - Michael Lehrke
- Department of Internal Medicine I, University Hospital Aachen, Aachen, Germany
| | - Johannes Backs
- Department of Molecular Cardiology and Epigenetics, University of Heidelberg, Heidelberg, Germany
| | - Frank R Heinzel
- Department of Cardiology, Charité—Universitätsmedizin, Berlin, Germany
| | - Jean-Sebastien Hulot
- Paris Cardiovascular Research Center PARCC, INSERM UMR970, CIC 1418, and F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Paris, France
- AP-HP, Hôpital Européen Georges-Pompidou, Paris, France
| | - Nikolaus Marx
- Department of Internal Medicine I, University Hospital Aachen, Aachen, Germany
| | - Walter J Paulus
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Patrick Rossignol
- Inserm, Centre d’Investigations Cliniques—Plurithématique 14-33, Inserm U1116, CHRU Nancy, Université de Lorraine, and F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - Heinrich Taegtmeyer
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Antoni Bayes-Genis
- Heart Failure Unit and Cardiology Service, Hospital Universitari Germans Trias i Pujol, CIBERCV, Badalona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Heiko Bugger
- Cardiology and Angiology, Heart Center, University of Freiburg, Freiburg, Germany
| | - Kieran Clarke
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Francesco Cosentino
- Department of Medicine Solna, Cardiology Unit, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | | | - Alessandra Dei Cas
- Department of Medicine and Surgery, Endocrinology and Metabolism, University of Parma, Parma, Italy
- Division of Endocrinology and Metabolic Diseases, Azienda Ospedaliero-Universitaria of Parma, Parma, Italy
| | - Arantxa González
- Program of Cardiovascular Diseases, Centre for Applied Medical Research, University of Navarra, Pamplona and CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Martin Huelsmann
- Division of Cardiology, Department of Medicine II, Medical University of Vienna, Vienna, Austria
| | - Guido Iaccarino
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| | - Ida Gjervold Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Alexander R Lyon
- Cardiovascular Research Centre, Royal Brompton Hospital; National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Graham Rena
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Giuseppe Rosano
- Cardiovascular Clinical Academic Group, St George's Hospitals NHS Trust University of London, London, UK
- IRCCS San Raffaele Roma, Rome, Italy
| | - Bart Staels
- University of Lille—EGID, Lille, France
- Inserm, U1011, Lille, France
- Institut Pasteur de Lille, Lille, France
- University Hospital CHU Lille, Lille, France
| | - Linda W van Laake
- Department of Cardiology, Heart and Lungs Division, and Regenerative Medicine Centre, University Medical Centre Utrecht, Utrecht, the Netherlands
| | | | - Dimitrios Farmakis
- Heart Failure Unit, Athens University Hospital Attikon, National and Kapodistrian University of Athens, Athens, Greece
| | - Gerasimos Filippatos
- Heart Failure Unit, Athens University Hospital Attikon, National and Kapodistrian University of Athens, Athens, Greece
| | - Frank Ruschitzka
- University Heart Centre, University Hospital Zurich, Zurich, Switzerland
| | - Petar Seferovic
- Department of Cardiology, Belgrade University Medical Centre, Belgrade, Serbia
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Stephane Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
- Department of Cardiovascular Sciences, Leuven University, Belgium
| |
Collapse
|
5
|
Abstract
Epidemiologic and clinical data from the last 2 decades have shown that the prevalence of heart failure in diabetes is very high, and the prognosis for patients with heart failure is worse in those with diabetes than in those without diabetes. Experimental data suggest that various mechanisms contribute to the impairment in systolic and diastolic function in patients with diabetes, and there is an increased recognition that these patients develop heart failure independent of the presence of coronary artery disease or its associated risk factors. In addition, current clinical data demonstrated that treatment with the sodium glucose cotransporter 2 inhibitor empagliflozin reduced hospitalization for heart failure in patients with type 2 diabetes mellitus and high cardiovascular risk. This review article summarizes recent data on the prevalence, prognosis, pathophysiology, and therapeutic strategies to treat patients with diabetes and heart failure.
Collapse
|
6
|
Abstract
Epidemiologic and clinical data from the last 2 decades have shown that the prevalence of heart failure in diabetes is very high, and the prognosis for patients with heart failure is worse in those with diabetes than in those without diabetes. Experimental data suggest that various mechanisms contribute to the impairment in systolic and diastolic function in patients with diabetes, and there is an increased recognition that these patients develop heart failure independent of the presence of coronary artery disease or its associated risk factors. In addition, current clinical data demonstrated that treatment with the sodium glucose cotransporter 2 inhibitor empagliflozin reduced hospitalization for heart failure in patients with type 2 diabetes mellitus and high cardiovascular risk. This review article summarizes recent data on the prevalence, prognosis, pathophysiology, and therapeutic strategies to treat patients with diabetes and heart failure.
Collapse
Affiliation(s)
- Michael Lehrke
- Department of Internal Medicine I, University Hospital Aachen, Germany
| | - Nikolaus Marx
- Department of Internal Medicine I, University Hospital Aachen, Germany.
| |
Collapse
|
7
|
Huang JH, Chen YC, Lee TI, Kao YH, Chazo TF, Chen SA, Chen YJ. Glucagon-like peptide-1 regulates calcium homeostasis and electrophysiological activities of HL-1 cardiomyocytes. Peptides 2016; 78:91-8. [PMID: 26930508 DOI: 10.1016/j.peptides.2016.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 02/18/2016] [Accepted: 02/23/2016] [Indexed: 12/25/2022]
Abstract
Glucagon like-peptide-1 (GLP-1) is an incretin hormone with antidiabetic effects through stimulating insulin secretion, β cell neogenesis, satiety sensation, and inhibiting glucagon secretion. Administration of GLP-1 provides cardioprotective effects through attenuating cardiac inflammation and insulin resistance. GLP-1 also modulates the heart rate and systolic pressure, which suggests that GLP-1 may have cardiac electrical effects. Therefore, the purposes of this study were to evaluate whether GLP-1 has direct cardiac effects and identify the underlying mechanisms. Patch clamp, confocal microscopy with Fluo-3 fluorescence, and Western blot analyses were used to evaluate the electrophysiological characteristics, calcium homeostasis, and calcium regulatory proteins in HL-1 atrial myocytes with and without GLP-1 (1 and 10nM) incubation for 24h. GLP-1 (1 and 10nM) and control cells had similar action potential durations. However, GLP-1 at 10nM significantly increased calcium transients and sarcoplasmic reticular Ca(2+) contents. Compared to the control, GLP-1 (10nM)-treated cells significantly decreased phosphorylation of the ryanodine receptor at S2814 and total phospholamban, but there were similar protein levels of sarcoplasmic reticular Ca(2+)-ATPase and the sodium-calcium exchanger. Moreover, exendin (9-39) amide (a GLP-1 receptor antagonist, 10nM) attenuated GLP-1-mediated effects on total SR content and phosphorylated ryanodine receptor S2814. This study demonstrates GLP-1 may regulate HL-1 cell arrhythmogenesis through modulating calcium handling proteins.
Collapse
Affiliation(s)
- Jen-Hung Huang
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Ting-I Lee
- Division of Endocrinology and Metabolism, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Tze-Fan Chazo
- Division of Cardiology and Cardiovascular Research Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Ann Chen
- Division of Cardiology and Cardiovascular Research Center, Taipei Veterans General Hospital, Taipei, Taiwan; National Yang-Ming University, School of Medicine, Taipei, Taiwan
| | - Yi-Jen Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
8
|
IL-6-abhängige GLP-1-Sekretion unter inflammatorischen Stimuli. Med Klin Intensivmed Notfmed 2015; 110:462-4. [DOI: 10.1007/s00063-015-0059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Sun Z, Tong G, Kim TH, Ma N, Niu G, Cao F, Chen X. PEGylated exendin-4, a modified GLP-1 analog exhibits more potent cardioprotection than its unmodified parent molecule on a dose to dose basis in a murine model of myocardial infarction. Am J Cancer Res 2015; 5:240-50. [PMID: 25553112 PMCID: PMC4279188 DOI: 10.7150/thno.10226] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/14/2014] [Indexed: 01/22/2023] Open
Abstract
A Site-specifically PEGylated exendin-4 (denoted as PEG-Ex4) is an exendin-4 (denoted as Ex4) analog we developed by site-specific PEGylation of exendin-4 with a high molecular weight trimeric poly(ethylene glycol) (tPEG). It has been shown to possess prolonged half-life in vivo with similar receptor binding affinity compared to unmodified exendin-4 by our previous work. This study is sought to test whether PEG-Ex4 is suitable for treating myocardial infarction (MI). In the MI model, PEG-Ex4 was administered every 3 days while equivalent amount of Ex4 was administered every 3 days or twice daily. Animal survival rate, heart function, remodeling and neoangiogenesis were evaluated and compared. Tube formation was examined in endothelial cells. In addition, Western blotting and histology were performed to determine the markers of cardiac hypertrophy and angiogenesis and to explore the possible molecular mechanism involved. PEG-Ex4 and Ex4 showed comparable binding affinity to GLP-1 receptor. In MI mice, PEG-Ex4 given at 3 days interval achieved similar extent of protection as Ex4 given twice daily, while Ex4 given at 3 days interval failed to produce protection. PEG-Ex4 elevated endothelial tube formation in vitro and capillary density in the border area of MI. PEG-Ex4 increased Akt activity and VEGF production in a GLP-1R dependent manner in endothelial cells and antagonism of GLP-1R, Akt or VEGF abolished the protection of PEG-Ex4 in the MI model. PEG-Ex4 is a potent long-acting GLP-1 receptor agonist for the treatment of chronic heart disease. Its protection might be attributed to enhanced angiogenesis mediated by the activation of Akt and VEGF.
Collapse
|
10
|
Clarke SJ, McCormick LM, Dutka DP. Optimising cardioprotection during myocardial ischaemia: targeting potential intracellular pathways with glucagon-like peptide-1. Cardiovasc Diabetol 2014; 13:12. [PMID: 24410815 PMCID: PMC3893610 DOI: 10.1186/1475-2840-13-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/04/2014] [Indexed: 01/02/2023] Open
Abstract
Coronary heart disease and type-2 diabetes are both major global health burdens associated with an increased risk of myocardial infarction (MI). Following MI, ischaemia-reperfusion injury (IRI) remains a significant contributor to myocardial injury at the cellular level. Research has focussed on identifying a strategy or intervention to minimise IRI to optimise reperfusion therapy, with the aim of delivering a superior clinical outcome. The incretin hormone glucagon-like peptide-1, already an established basis for the treatment of type-2 diabetes, also has the potential to protect against IRI. We explain the physiology and cellular processes involved in IRI, and the intracellular pathways activated by GLP-1, which could intercept IRI and deliver cardioprotection. The review also examines the current preclinical and clinical evidence for GLP-1 in cardioprotection and future directions for research as we look for an effective adjunctive treatment to minimise IRI.
Collapse
Affiliation(s)
| | | | - David P Dutka
- Department of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
11
|
Opinto G, Natalicchio A, Marchetti P. Physiology of incretins and loss of incretin effect in type 2 diabetes and obesity. Arch Physiol Biochem 2013; 119:170-8. [PMID: 23859800 DOI: 10.3109/13813455.2013.812664] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An important role in the regulation of glucose homeostasis is played by incretins, which are gut-derived hormones released in response to nutrient ingestion. In humans, the major incretin hormones are glucagon-like peptide (GLP)-1 and glucose-dependent insulinotropic polypeptide (GIP), and together they fully account for the incretin effect (that is, higher insulin release in response to an oral glucose challenge compared to an equal intravenous glucose load). Studies have shown that GLP-1 and GIP levels and actions may be perturbed in disease states, and the loss of incretin effect is likely to contribute importantly to the postprandial hyperglycaemia in type 2 diabetes. However, the specific cause-effect relationship between disease and incretins is still unclear. This review focuses on several key studies elucidating the association of defective incretin action with obesity and T2DM and the effects of metformin and other anti-diabetic agents on the incretin system.
Collapse
Affiliation(s)
- Giuseppina Opinto
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari School of Medicine , Bari , Italy and
| | | | | |
Collapse
|
12
|
Glucagon-like peptide-1 (GLP-1) and its split products GLP-1(9-37) and GLP-1(28-37) stabilize atherosclerotic lesions in apoe⁻/⁻ mice. Atherosclerosis 2013; 231:427-35. [PMID: 24267262 DOI: 10.1016/j.atherosclerosis.2013.08.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/24/2013] [Accepted: 08/27/2013] [Indexed: 12/25/2022]
Abstract
BACKGROUND [corrected] Glucagon-like peptide-1 (GLP-1) based therapies are new treatment options for patients with type 2 diabetes. Recent reports suggest vasoprotective actions of GLP-1. Similar beneficial effects might be reached by GLP-1(9-37) and the c-terminal GLP-1 split product (28-37) although both peptides do not activate the GLP-1 receptor. We therefore investigated the actions of GLP-1(7-37), GLP-1(9-37) as well as GLP-1(28-37) on vascular lesion formation in a mouse model of atherosclerosis. METHODS AND RESULTS GLP-1(7-37), GLP-1(9-37) and GLP-1(28-37) and LacZ (control) were overexpressed for a period of 12 weeks in apoe(-/-) mice on high-fat diet (n = 10/group) using an adeno-associated viral vector system. Neither of the constructs changed overall lesion size. However, GLP-1(7-37), GLP-1(9-37) and GLP-1(28-37) significantly reduced plaque macrophage infiltration (GLP-1(7-37): 40.6%, GLP-1(9-37): 47.0%, GLP-1(28-37): 40.1% decrease, p < 0.05) and plaque MMP-9 expression (GLP-1(7-37): 41.6%, GLP-1(9-37): 50.2%, GLP-1(28-37): 44.0% decrease, p < 0.05) compared to LacZ in the aortic arch. Moreover, all GLP-1 constructs increased plaque collagen content (GLP-1(7-37): 49.3%, GLP-1(9-37): 86.0%, GLP-1(28-37): 81.9% increase, p < 0.05) and increased fibrous cap thickness (GLP-1(7-37): 188.0%, GLP-1(9-37): 179.9% GLP-1(28-37): 111.0% increase, p < 0.05). These effects of GLP-1(7-37), GLP-1(9-37) and GLP-1(28-37) on plaque macrophage infiltration, MMP-9 expression and plaque collagen content were confirmed in the aortic root. CONCLUSION GLP-1(7-37), GLP-1(9-37) and GLP-1(28-37) reduce plaque inflammation and increase phenotypic characteristics of plaque stability in a murine model of atherosclerosis. Future studies are needed to determine whether these effects translate into improved plaque stability and less cardiovascular events in high-risk patients with type 2 diabetes.
Collapse
|
13
|
Piotrowski K, Becker M, Zugwurst J, Biller-Friedmann I, Spoettl G, Greif M, Leber AW, Becker A, Laubender RP, Lebherz C, Goeke B, Marx N, Parhofer KG, Lehrke M. Circulating concentrations of GLP-1 are associated with coronary atherosclerosis in humans. Cardiovasc Diabetol 2013; 12:117. [PMID: 23953602 PMCID: PMC3765863 DOI: 10.1186/1475-2840-12-117] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 12/25/2022] Open
Abstract
Background GLP-1 is an incretine hormone which gets secreted from intestinal L-cells in response to nutritional stimuli leading to pancreatic insulin secretion and suppression of glucagon release. GLP-1 further inhibits gastric motility and reduces appetite which in conjunction improves postprandial glucose metabolism. Additional vasoprotective effects have been described for GLP-1 in experimental models. Despite these vasoprotective actions, associations between endogenous levels of GLP-1 and cardiovascular disease have yet not been investigated in humans which was the aim of the present study. Methods GLP-1 serum levels were assessed in a cohort of 303 patients receiving coronary CT-angiography due to typical or atypical chest pain. Results GLP-1 was found to be positively associated with total coronary plaque burden in a fully adjusted model containing age, sex, BMI, hypertension, diabetes mellitus, smoking, triglycerides, LDL-C (low density lipoprotein cholesterol), hsCRP (high-sensitive C-reactive protein), and eGFR (estimated glomerular filtration rate) (OR: 2.53 (95% CI: 1.12 – 6.08; p = 0.03). Conclusion Circulating GLP-1 was found to be positivity associated with coronary atherosclerosis in humans. The clinical relevance of this observation needs further investigations.
Collapse
Affiliation(s)
- Katja Piotrowski
- Department of Internal Medicine I, University Hospital Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Shimasaki T, Masaki T, Mitsutomi K, Ueno D, Gotoh K, Chiba S, Kakuma T, Yoshimatsu H. The dipeptidyl peptidase-4 inhibitor des-fluoro-sitagliptin regulates brown adipose tissue uncoupling protein levels in mice with diet-induced obesity. PLoS One 2013; 8:e63626. [PMID: 23696840 PMCID: PMC3656085 DOI: 10.1371/journal.pone.0063626] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/04/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Dipeptidyl peptidase (DPP)-4 is responsible for the degradation of several peptides that contain an alanine or proline at the penultimate position or position P1. DPP-4 inhibitors (DPP-4is) have protective effects against type-2 diabetes and several metabolic disorders. METHODS In the present study, we examined the effects of des-fluoro-sitagliptin (DFS), a DDP-4i, on body adiposity and levels of peroxisome proliferator-activated receptor (PPAR)-α, PPAR-γ coactivator-1 (PGC-1), and uncoupling proteins (UCPs) in mice with diet-induced obesity. RESULTS Treatment with DFS dose-dependently decreased the weight of white adipose tissue and serum levels of glucose, compared with controls, without influencing food intake (P<0.05). Additionally, DFS treatment increased the levels of PPAR-α, PGC-1, and UCPs in brown adipose tissue (BAT), and of PPAR-α and UCP3 in skeletal muscle (P<0.05). Furthermore, the effects on BAT PGC-1 and muscle PPAR-α levels were attenuated by treatment with the glucagon-like peptide 1 (GLP-1) antagonist exendin (9-39). Interestingly, hypothalamic levels of proopiomelanocortin (POMC) were increased by DFS treatment and the effects of DFS on PPAR-α, PGC-1, and UCP levels were attenuated in melanocortin (MC)-4 receptor-deficient mice. CONCLUSIONS In conclusion, high-dose DFS appeared to regulate body adiposity and UCPs in mice with diet-induced obesity, at least partly through a GLP-1 and/or MC-4 pathway.
Collapse
Affiliation(s)
- Takanobu Shimasaki
- Department of Internal Medicine 1, Faculty of Medicine, Oita University, Yufu, Japan
| | - Takayuki Masaki
- Department of Internal Medicine 1, Faculty of Medicine, Oita University, Yufu, Japan
- * E-mail:
| | - Kimihiko Mitsutomi
- Department of Internal Medicine 1, Faculty of Medicine, Oita University, Yufu, Japan
| | - Daisuke Ueno
- Department of Internal Medicine 1, Faculty of Medicine, Oita University, Yufu, Japan
| | - Koro Gotoh
- Department of Internal Medicine 1, Faculty of Medicine, Oita University, Yufu, Japan
| | - Seiichi Chiba
- Department of Internal Medicine 1, Faculty of Medicine, Oita University, Yufu, Japan
| | - Tetsuya Kakuma
- Department of Internal Medicine 1, Faculty of Medicine, Oita University, Yufu, Japan
| | - Hironobu Yoshimatsu
- Department of Internal Medicine 1, Faculty of Medicine, Oita University, Yufu, Japan
| |
Collapse
|
15
|
Winkler G. Pleiotropic effects of incretins and antidiabetics with incretine mechanism. Orv Hetil 2013; 154:248-55. [DOI: 10.1556/oh.2013.29553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Discovery of physiological and pharmacological characteristics of incretins (glucagon-like peptide-1 and glucose-dependent insulinotrop polypeptide), and the introduction of various products of those into the clinical practice has fundamentally changed blood glucose lowering therapy in type 2 diabetes. In addition to the antidiabetic properties more attention is paid to their favourable pleiotropic effects independent from the blood glucose lowering such as cardio-, vaso- and renoprotectiv, blood pressure lowering effects, as well as beneficial changes on blood lipid values and hepatic steatosis. These preferential changes prevail in slightly different way when incretin mimetics applied and dipeptidyl peptidase-4 inhibitors, furthermore, prolonged action of peptides metabolised by this enzyme may serve additional benefits in this latter mentioned group. The article overviews the currently known most important pleiotropic effects of incretins from the point of view of cardiorenal risk accompanying type 2 diabetes. Orv. Hetil., 2013, 154, 248–255.
Collapse
Affiliation(s)
- Gábor Winkler
- Szent János Kórház és Észak-budai Egyesített Intézményei II. Belgyógyászat-Diabetológia Budapest Diós árok 1–3. 1125
- Miskolci Egyetem, Egészségügyi Kar Elméleti Egészségtudományi Tanszék Miskolc
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Over the last few years, a variety of new antidiabetic drugs have been approved for clinical use and novel agents are currently under development. All of these are facing new regulations created by the demand to not only lower HbA1c but also provide long-term clinical benefit and cardiovascular safety. RECENT FINDINGS The present review will discuss the following novel therapeutic options: GLP-1 mimetics and DPP-4 inhibitors are new antidiabetic drugs which favourably affect glucose metabolism without a significant risk for hypoglycaemic events and preliminary clinical data suggesting potential beneficial effects with respect to cardiovascular risk reduction. In addition, new antidiabetic concepts include SGLT2 inhibition, dual peroxisome proliferator-activated receptor agonists and G-protein receptor agonists, all of which provide beneficial cardiometabolic characteristics. SUMMARY The development of novel antidiabetic strategies currently does not only focus on potent glucose-lowering properties but also on safety aspects and potential cardiovascular benefits.
Collapse
Affiliation(s)
- Michael Lehrke
- Department of Internal Medicine I, University Hospital Aachen, Aachen, Germany
| | | |
Collapse
|
17
|
Raz I, Gallwitz B. The continuing need for drug development and clinical trials in type 2 diabetes and its complications: introduction to the RDS special issue. Rev Diabet Stud 2011; 8:288-92. [PMID: 22262067 DOI: 10.1900/rds.2011.8.288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The increased burden of type 2 diabetes (T2D) necessitates the need for effective and safe novel drugs to treat this epidemic disease and its complications. By compiling this RDS Special Issue, our aim was to provide a comprehensive and critical overview on recent, ongoing, and future developments in this field. In collaboration with distinguished and renowned experts, we analyzed and discussed the most important advances in the field of incretin-based therapies, their extraglycemic effects, cardiovascular actions, and specific properties of the central nervous system. Another important drug class currently in development, the SGLT-2 inhibitors, and the role of the kidney in T2D are topics also covered by this issue. In addition to drug developments, new physiological insights into the understanding of the organ pathophysiology in T2D are presented that may eventually lead to additional therapeutic targets for obesity, T2D, and chronic inflammation acting on the brain, cardiovascular system, and pancreatic islets. The outcome of this Special Issue is a comprehensive reference work including bundled knowledge and expert opinions on the various aspects of the disease and its possible therapy strategies available now and in the near future. However, despite the advances delivered by modern incretin-based therapies today, there are still many limitations associated with efficacy data, application routes, and safety issues, which prevent the decline in diabetes complication rates. We conclude that further drug development and clinical trials are required to overcome these limitations, and to counteract the movement towards higher incidence rates of T2D and its complications.
Collapse
Affiliation(s)
- Itamar Raz
- Diabetes Unit, Department of Medicine, Hadassah-Hebrew University Hospital, Jerusalem 91120, Israel.
| | | |
Collapse
|
18
|
Abstract
The incretin hormones, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), are gut peptides which are secreted by endocrine cells in the intestinal mucosa. Their plasma concentrations increase quickly following food ingestion, and carbohydrate, fat, and protein have all been shown to stimulate GLP-1 and GIP secretion. Although neural and hormonal mechanisms have also been proposed to regulate incretin hormone secretion, direct stimulation of the enteroendocrine cells by the presence of nutrients in the intestinal lumen is probably the most important factor in humans. The actions of the incretin hormones are crucial for maintaining normal islet function and glucose homeostasis. Furthermore, it is also now being recognized that incretin hormones may have other actions in addition to their glucoregulatory effects. Studies have shown that GLP-1 and GIP levels and actions may be perturbed in disease states, but interpretation of the precise relationship between disease and incretins is difficult. The balance of evidence seems to suggest that alterations in secretion and/or action of incretin hormones arise secondarily to the development of insulin resistance, glucose intolerance, and/or increases in body weight rather than being causative factors. However, these impairments may contribute to the deterioration of glycemic control in diabetic patients.
Collapse
Affiliation(s)
- Carolyn F Deacon
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| | | |
Collapse
|