1
|
Gavriiloglou M, Hammad M, Iliopoulos JM, Layrolle P, Apazidou DA. Bioengineering the Junctional Epithelium in 3D Oral Mucosa Models. J Funct Biomater 2024; 15:330. [PMID: 39590534 PMCID: PMC11595533 DOI: 10.3390/jfb15110330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Two-dimensional (2D) culture models and animal experiments have been widely used to study the pathogenesis of periodontal and peri-implant diseases and to test new treatment approaches. However, neither of them can reproduce the complexity of human periodontal tissues, making the development of a successful 3D oral mucosal model a necessity. The soft-tissue attachment formed around a tooth or an implant function like a biologic seal, protecting the deeper tissues from bacterial infection. The aim of this review is to explore the advancements made so far in the biofabrication of a junctional epithelium around a tooth-like or an implant insert in vitro. This review focuses on the origin of cells and the variety of extracellular components and biomaterials that have been used for the biofabrication of 3D oral mucosa models. The existing 3D models recapitulate soft-tissue attachment around implant abutments and hydroxyapatite discs. Hereby, the qualitative and quantitative assessments performed for evidencing the soft-tissue attachment are critically reviewed. In perspective, the design of sophisticated 3D models should work together for oral immunology and microbiology biofilms to accurately reproduce periodontal and peri-implant diseases.
Collapse
Affiliation(s)
- Marianna Gavriiloglou
- Department of Preventive Dentistry, Periodontology & Implant Biology, School of Dentistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (M.G.); (D.A.A.)
| | - Mira Hammad
- Toulouse NeuroImaging Center (ToNIC), INSERM, Toulouse University UMR 1214, CHU Toulouse Purpan, 31024 Toulouse, France;
| | - Jordan M. Iliopoulos
- Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| | - Pierre Layrolle
- Toulouse NeuroImaging Center (ToNIC), INSERM, Toulouse University UMR 1214, CHU Toulouse Purpan, 31024 Toulouse, France;
| | - Danae A. Apazidou
- Department of Preventive Dentistry, Periodontology & Implant Biology, School of Dentistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (M.G.); (D.A.A.)
| |
Collapse
|
2
|
Karimi M, Mosaddad SA, Aghili SS, Dortaj H, Hashemi SS, Kiany F. Attachment and proliferation of human gingival fibroblasts seeded on barrier membranes using Wharton's jelly-derived stem cells conditioned medium: An in vitro study. J Biomed Mater Res B Appl Biomater 2024; 112:e35368. [PMID: 38247251 DOI: 10.1002/jbm.b.35368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/12/2023] [Accepted: 12/02/2023] [Indexed: 01/23/2024]
Abstract
The effect of Wharton's jelly mesenchymal stem cells conditioned medium (WJMSCs-CM) and zinc oxide nanoparticles (ZnO-NPs) on cultured human gingival fibroblasts on various barrier membranes was investigated in this study. In this study, human gingival fibroblasts were prepared and cultured on three membranes: collagen membrane, acellular dermal matrix (ADM) with ZnO-NPs, and ADM without ZnO-NPs. WJMSCs-CM was given to the testing groups, while control groups received the same membranes without WJMSCs-CM. Following 48 and 72 h, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) tests were performed to assess cell survival. Cell proliferation on the membranes was also evaluated using 4',6-diamidino-2-phenylindole (DAPI) staining after 48 and 72 h. Field emission scanning electron microscopy was used to determine membrane surface structure and cell adhesion. Nanoparticles were also subjected to an energy-dispersive x-ray analysis to identify their chemical structure. Two-way analysis of variance was used to conduct the statistical analysis. The p-value ≤.05 was considered significant. When ADM-ZnO-NPs were combined with CM, fibroblast viability, and adhesion significantly differed from ADM-ZnO-NPs alone. DAPI results confirmed cell proliferation in all six groups on both experiment days. The abundance and concentrated distribution of cells during cell proliferation were found in CM-containing membranes, specifically the ADM-ZnO-NPs membrane, demonstrating the improved biocompatibility of the ADM-ZnO-NPs membrane for cell proliferation. The other groups did not significantly differ from one another. WJMSCs-CM positively affected the viability and proliferation of gingival fibroblasts, but only marginally. Under certain conditions, ZnO-NPs below a specific concentration increased the biocompatibility of the membranes.
Collapse
Affiliation(s)
- Mohammadreza Karimi
- Student Research Committee, Department of Periodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Ali Mosaddad
- Department of Conservative Dentistry and Bucofacial Prosthesis, Faculty of Odontology, Complutense University of Madrid, Madrid, Spain
| | - Seyedeh Sara Aghili
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hengameh Dortaj
- Department of Tissue Engineering, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh-Sara Hashemi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farin Kiany
- Oral and Dental Disease Research Center, Department of Periodontology, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Nasarudin NA, Razali M, Goh V, Chai WL, Muchtar A. Expression of Interleukin-1β and Histological Changes of the Three-Dimensional Oral Mucosal Model in Response to Yttria-Stabilized Nanozirconia. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2027. [PMID: 36903142 PMCID: PMC10003861 DOI: 10.3390/ma16052027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Over the years, advancement in ceramic-based dental restorative materials has led to the development of monolithic zirconia with increased translucency. The monolithic zirconia fabricated from nano-sized zirconia powders is shown to be superior in physical properties and more translucent for anterior dental restorations. Most in vitro studies on monolithic zirconia have focused mainly on the effect of surface treatment or the wear of the material, while the nanotoxicity of this material is yet to be explored. Hence, this research aimed to assess the biocompatibility of yttria-stabilized nanozirconia (3-YZP) on the three-dimensional oral mucosal models (3D-OMM). The 3D-OMMs were constructed using human gingival fibroblast (HGF) and immortalized human oral keratinocyte cell line (OKF6/TERT-2), co-cultured on an acellular dermal matrix. On day 12, the tissue models were exposed to 3-YZP (test) and inCoris TZI (IC) (reference material). The growth media were collected at 24 and 48 h of exposure to materials and assessed for IL-1β released. The 3D-OMMs were fixed with 10% formalin for the histopathological assessments. The concentration of the IL-1β was not statistically different between the two materials for 24 and 48 h of exposure (p = 0.892). Histologically, stratification of epithelial cells was formed without evidence of cytotoxic damage and the epithelial thickness measured was the same for all model tissues. The excellent biocompatibility of nanozirconia, as evidenced by the multiple endpoint analyses of the 3D-OMM, may indicate the potential of its clinical application as a restorative material.
Collapse
Affiliation(s)
- Naziratul Adirah Nasarudin
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Masfueh Razali
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Victor Goh
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Wen Lin Chai
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Andanastuti Muchtar
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
4
|
Evaluation of Xenograft Efficacy in Immediate Prosthesis-based Breast Reconstruction. Plast Reconstr Surg Glob Open 2022; 10:e4534. [PMID: 36187275 PMCID: PMC9521749 DOI: 10.1097/gox.0000000000004534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/18/2022] [Indexed: 12/03/2022]
Abstract
The advent of acellular dermal matrix (ADM) has revolutionized prosthesis-based breast reconstruction. However, paucity of human cadaveric tissue has resulted in limitation of supply and increased associated costs, prompting concerted effort to identify xenograft alternatives. Although studies have examined the safety of Artia, a porcine-derived ADM, few have evaluated its clinical efficacy as soft tissue reinforcement. This study uniquely evaluates the clinical efficacy of Artia in implant-based breast reconstruction.
Collapse
|
5
|
Esmaeilnejad A, Kadkhodazadeh M, Mohammadi S, Yadegari Z, Amid R. Viability, Distribution and Penetration of Human Gingival Fibroblasts into Three Types of Acellular Dermal Matrix Membranes. J Maxillofac Oral Surg 2021. [DOI: 10.1007/s12663-021-01584-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
6
|
Couto SR, Luan X, Rossmann JA, Stenberg WV, Yen K, Atwi S, Svoboda KK. An in vivo comparison of wound healing characteristics of two commercial acellular dermal matrices. Clin Exp Dent Res 2021; 7:679-691. [PMID: 33939337 PMCID: PMC8543485 DOI: 10.1002/cre2.412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/09/2021] [Accepted: 01/29/2021] [Indexed: 11/24/2022] Open
Abstract
Objectives Many acellular dermal matrices (ADMs) are available for use in periodontal surgical procedures. However, few studies exist evaluating their in vivo healing properties. The objectives of this study were to compare the wound healing and remodeling of two ADMs used for gingival augmentation procedures in the rat model. Materials and methods This was a nonrandomized controlled split‐mouth study. Envelope flaps were surgically created in the maxillary quadrants of 24 Sprague Dawley rats. Each received either (a) AlloDerm Regenerative Tissue Matrix, or (b) OrACELL. Gingival tissue from one mandibular quadrant served as the untreated control. Six male and six female rats were treated for 7 or 21 days. Biopsies were processed for histologic analysis (H&E, Picro‐sirius red, Verhoeff's solution) or RNA analysis (RT‐PCR) to analyze the expression of type I collagen (Col1a1), fibronectin (Fn‐1) and VEGF‐A (Vegf‐A). Results There was a greater density of fibroblasts in OrACELL compared to AlloDerm at both timepoints. There was a greater density of elastin present in AlloDerm compared to OrACELL at 7 days but no differences at 21 days. There were no differences between test groups in the percentage of birefringent collagen or in the expression of Vegf‐A or Fn‐1. At 7 days, there were significantly more fibroblasts for males in the OrACELL group compared to females. At 21 days, there was a significantly greater expression of Col1a1 for males in the OrACELL group compared to females. Conclusions Early wound healing and remodeling of OrACELL appeared to occur more rapidly than AlloDerm and was accelerated in male rats. Whether these results have clinical implications for soft tissue grafting procedures in humans remains to be determined.
Collapse
Affiliation(s)
- Sophie R Couto
- Department of Periodontics, Texas A&M University, College of Dentistry, Dallas, Texas, USA
| | - Xianghong Luan
- Department of Periodontics, Texas A&M University, College of Dentistry, Dallas, Texas, USA
| | - Jeffrey A Rossmann
- Department of Periodontics, Texas A&M University, College of Dentistry, Dallas, Texas, USA
| | - William V Stenberg
- Department of Biomedical Sciences, Texas A&M University, College of Dentistry, Dallas, Texas, USA
| | - Karen Yen
- Texas A&M University, College of Dentistry, Dallas, Texas, USA
| | - Sarah Atwi
- Sunnybrook Health Sciences Center, University of Toronto, Toronto, Ontario, Canada
| | - Kathy K Svoboda
- Department of Biomedical Sciences, Texas A&M University, College of Dentistry, Dallas, Texas, USA
| |
Collapse
|
7
|
The apoptotic and autophagic effects of cast Au-Pt, and differently manufactured Co-Cr and cp-Ti on three-dimensional oral mucosal model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111672. [PMID: 33545837 DOI: 10.1016/j.msec.2020.111672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/26/2022]
Abstract
The application of digitally manufactured dental metals has aroused the attention on their biocompatibilities. Three-dimensional oral mucosal model (3D OMM) would provide excellent assessments to the biocompatibility. In the current study, we set to measure metal ion release levels in the extracts of cast gold-platinum alloy (Au-Pt), differently manufactured cobalt-chromium alloy (Co-Cr) and commercially pure titanium (cp-Ti). We further tested two scaffold materials of 3D OMM to determine the better one for the succedent work. Lastly, we evaluated the apoptotic and autophagic effects of cast Au-Pt, and differently manufactured Co-Cr and cp-Ti on mucosal cells based on 3D OMM. We found that, in the construction of 3D OMM, Matrigel showed better performance than bovine acellular dermal matrix. Thus, Matrigel was chosen to construct the 3D OMM in the succedent studies. The results of ion release and biological assessments showed that, firstly, cast Au-Pt and cp-Ti triggered less early apoptotic cells and ion release than cast Co-Cr, implying better chemical stability and biocompatibility of them; secondly, digitally manufactured (including CAD/CAM milling and SLM) Co-Cr showed significantly lower ion release levels and lesser early apoptotic effects on 3D OMM as compared to the cast one. Although cast cp-Ti released much more ions than CAD/CAM milling one, manufacturing methods had no impact on apoptotic effect of cp-Ti. Therefore, we believe that digital methods possess same or even better chemical stability and biocompatibility than conventional casting one. Thirdly, although increased autophagic levels are observed in all test groups, so far there is no evidence that the test metals trigger different levels of autophagy as compared to each other. In addition, correlation analysis indicates that Co, W, and Mn appear to be the potential inducements for the apoptotic and autophagic effects of Co-Cr.
Collapse
|
8
|
Cunha E, Freitas FB, São Braz B, Moreira da Silva J, Tavares L, Veiga AS, Oliveira M. Polyphasic Validation of a Nisin-Biogel to Control Canine Periodontal Disease. Antibiotics (Basel) 2020; 9:antibiotics9040180. [PMID: 32295175 PMCID: PMC7235766 DOI: 10.3390/antibiotics9040180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Periodontal disease (PD) is a highly prevalent inflammatory disease in dogs. This disease is initiated by a polymicrobial biofilm on the teeth surface, whose control includes its prevention and removal. Recently, it was shown that nisin displays antimicrobial activity against canine PD-related bacteria. Moreover, guar gum biogel has shown to be a promising topical delivery system for nisin. METHODS In this study we aimed to evaluate the antimicrobial activity of the nisin-biogel in the presence of canine saliva and after a 24-month storage, at different conditions, using a canine oral enterococci collection. We also studied the nisin-biogel cytotoxicity using a Vero cell line and canine primary intestinal fibroblasts. RESULTS The presence of saliva hampers nisin-biogel antimicrobial activity, and higher nisin concentrations were required for an effective activity. A significant reduction (p ≤ 0.05) in inhibitory activity was observed for nisin-biogel solutions stored at 37 °C, over a 24-month period, which was not observed with the other conditions. The nisin-biogel showed no cytotoxicity against the cells tested at concentrations up to 200 µg/mL. CONCLUSIONS Our results confirmed the potential of the nisin-biogel for canine PD control, supporting the development of an in vivo clinical trial.
Collapse
Affiliation(s)
- Eva Cunha
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (E.C.); (F.B.F.); (B.S.B.); (L.T.)
| | - Ferdinando Bernardino Freitas
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (E.C.); (F.B.F.); (B.S.B.); (L.T.)
| | - Berta São Braz
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (E.C.); (F.B.F.); (B.S.B.); (L.T.)
| | - Jorge Moreira da Silva
- Virbac de Portugal Laboratórios, Lda., Rua do Centro Empresarial, Quinta da Beloura, 2710-693 Sintra, Portugal;
| | - Luís Tavares
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (E.C.); (F.B.F.); (B.S.B.); (L.T.)
| | - Ana Salomé Veiga
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal;
| | - Manuela Oliveira
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (E.C.); (F.B.F.); (B.S.B.); (L.T.)
- Correspondence: ; Tel.: +35-1213-6020-52
| |
Collapse
|
9
|
Novaes AB, Palioto DB. Experimental and clinical studies on plastic periodontal procedures. Periodontol 2000 2019; 79:56-80. [PMID: 30892770 DOI: 10.1111/prd.12247] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have compiled, in this Periodontology 2000 review, all Latin American literature on experimental and clinical studies of periodontal plastic procedures. The body of literature on this subject has led to a discussion of the features and treatment outcomes of root-coverage procedures. Over time, knowledge on periodontal plastic procedures has become less empirical and more supportive of the clinical management of recession-type defects. Gingival recession etiology, animal studies, free gingival grafts, pedicle flaps (semilunar, laterally positioned, and coronally positioned), and subepithelial connective tissue grafts are extensively reviewed. The use of allografts as an alternative to subepithelial connective tissue grafts, the treatment of multiple gingival recessions, and the rationale for use of guided tissue regeneration and enamel matrix derivative in plastic periodontal procedure is discussed. We also assess how smoking can affect the treatment outcomes in plastic surgery procedures. Minimally invasive procedures are of great value in improving the features of the final tissues. The following aspects identified in this compilation were of great interest: (a) some factors, anatomical in nature, favor the formation of root recessions, but it is the inflammatory process (caused by the presence of biofilm and/or by traumatic toothbrushing) that is responsible for the development of root recessions; and (b) pedicle flap procedures (especially the coronally positioned flap) are extremely versatile and have the most predictable outcome of all root-coverage procedures, especially when combined with subepithelial connective tissue grafting and/or allogeneic grafts. In summary: subepithelial connective tissue grafting is considered as the first option to augment gingival width and thickness, and it may provide better long-term results; the same principles of root-coverage procedures in individual sites appear be used in clinical practice also for multiple-recession type defects; an allograft is an efficient alternative to a subepithelial connective tissue graft and, when it is the treatment option of choice, the use of wide, extended flaps should be considered; because of the superiority of plastic periodontal procedures over guided tissue regeneration and the technical difficulty of the latter, guided tissue regeneration has become obsolete for root-coverage procedures; there is rather a large body of evidence attesting that smoking negatively influences root-coverage procedures, especially subepithelial connective tissue grafts; and minimally invasive techniques may be of great value for improving the results obtained with plastic periodontal procedures, but these techniques need to be better addressed in clinical trials, both in terms of the quality and quantity of the new tissue generated.
Collapse
Affiliation(s)
- Arthur Belém Novaes
- Department of Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Daniela Bazan Palioto
- Department of Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
10
|
Um Min Allah N, Berahim Z, Ahmad A, Kannan TP. Biological Interaction Between Human Gingival Fibroblasts and Vascular Endothelial Cells for Angiogenesis: A Co-culture Perspective. Tissue Eng Regen Med 2017; 14:495-505. [PMID: 30603504 DOI: 10.1007/s13770-017-0065-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/18/2017] [Accepted: 06/08/2017] [Indexed: 12/13/2022] Open
Abstract
Advancement in cell culture protocols, multidisciplinary research approach, and the need of clinical implication to reconstruct damaged or diseased tissues has led to the establishment of three-dimensional (3D) test systems for regeneration and repair. Regenerative therapies, including dental tissue engineering, have been pursued as a new prospect to repair and rebuild the diseased/lost oral tissues. Interactions between the different cell types, growth factors, and extracellular matrix components involved in angiogenesis are vital in the mechanisms of new vessel formation for tissue regeneration. In vitro pre-vascularization is one of the leading scopes in the tissue-engineering field. Vascularization strategies that are associated with co-culture systems have proved that there is communication between different cell types with mutual beneficial effects in vascularization and tissue regeneration in two-dimensional or 3D cultures. Endothelial cells with different cell populations, including osteoblasts, smooth muscle cells, and fibroblasts in a co-culture have shown their ability to advocate pre-vascularization. In this review, a co-culture perspective of human gingival fibroblasts and vascular endothelial cells is discussed with the main focus on vascularization and future perspective of this model in regeneration and repair.
Collapse
Affiliation(s)
- Nasar Um Min Allah
- 1School of Dental Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Malaysia
| | - Zurairah Berahim
- 1School of Dental Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Malaysia
| | - Azlina Ahmad
- 1School of Dental Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Malaysia
| | - Thirumulu Ponnuraj Kannan
- 1School of Dental Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Malaysia
- 2Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Malaysia
| |
Collapse
|
11
|
Pelegrini CB, Maia LP, de Souza SLS, Taba M, Palioto DB. Morphological, functional and biochemical characterization of canine gingival fibroblasts. Braz Dent J 2014; 24:128-35. [PMID: 23780356 DOI: 10.1590/0103-6440201302144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/02/2013] [Indexed: 11/22/2022] Open
Abstract
As dogs are good models for in vivo studies, it is interesting to evaluate the behavior of canine gingival fibroblasts (CGF) in vitro, so that these cells could be seeded on a matrix and later studied in vivo. The aim of this study was to perform a morphological, functional and biochemical analysis of CGF, comparing it with human gingival fibroblasts (HGF), as well as to evaluate the change of their characteristics over several passages. Using gingival fibroblasts from 3 dogs and 3 humans in the subculture (Sub), first (P1), third (P3), fifth (P5) and seventh (P7) passages, the following parameters were assessed: cell morphology, spreading, adhesion, viability and total protein content. The results showed no major differences between the passages in terms of morphology and spreading, and a tendency of greater adhesion and viability for HGF when compared with CGF. The total protein content was significantly higher for HGF. HGF exhibited greater functional and biochemical activity in vitro compared to CGF. Higher numbers at Sub were observed for both CGF and HGF in all evaluated parameters. The differences do not prevent the use of CGF for tissue engineering, but its use seems to be more appropriate in the subculture or first passage.
Collapse
Affiliation(s)
- Camila Bonvicino Pelegrini
- Department of Traumatology and Bucomaxillofacial Surgery and Periodontology, Ribeirão Preto Dental School, USP - University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | |
Collapse
|
12
|
Bozchaloei SS, Gong SG, Dehpour AR, Farrokh P, Khoshayand MR, Oskoui M. Caffeine alters mitochondrial dehydrogenase and alkaline phosphatase activity of human gingival fibroblasts in vitro. ACTA ACUST UNITED AC 2012; 4:233-9. [DOI: 10.1111/jicd.12020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 06/30/2012] [Indexed: 11/26/2022]
Affiliation(s)
| | - Siew-Ging Gong
- Department of Orthodontics; Faculty of Dentistry, University of Toronto; Toronto ON Canada
| | - Ahmad R. Dehpour
- Department of Pharmacology; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Parisa Farrokh
- Department of Microbiology; Pasteur Institute of Iran; Tehran Iran
| | - Mohammad R. Khoshayand
- Department of Food and Drug Control; School of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - Mahvash Oskoui
- Department of Microbiology; Pasteur Institute of Iran; Tehran Iran
| |
Collapse
|