1
|
Park JY, Han D, Park Y, Cho ES, In Yook J, Lee JS. Intracellular infection of Cutibacterium acnes in macrophages of extensive peri-implantitis lesions: A clinical case series. Clin Implant Dent Relat Res 2024. [PMID: 39137527 DOI: 10.1111/cid.13367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024]
Abstract
Cutibacterium acnes is a facultative anaerobic, gram-positive rod, and a commensal bacterium of the body surface including oral cavity. A causal relationship between C. acnes and chronic granulomatous diseases, such as sarcoidosis and orthopedic implant-associated infections, has been previously reported. Typically, C. acnes has been observed inside macrophages, allowing evasion of host immunity, and triggering a persistent inflammatory response. However, such findings have not been reported in peri-implantitis lesions. In this case series, we collected inflamed tissues from extensive peri-implantitis lesions of eight patients. Out of the eight samples, seven tested positive for the 16 s rRNA gene of C. acnes by polymerase chain reaction, and six were positive by immunohistochemistry. Immunohistochemical staining revealed the presence of C. acnes in the cytoplasm of macrophages, suggesting a role in lesion formation. This finding may enhance our understanding of the pathophysiology of persistent peri-implantitis lesions and provide implications for future therapy.
Collapse
Affiliation(s)
- Jin-Young Park
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Dawool Han
- Department of Oral Pathology, Yonsei University, College of Dentistry, Seoul, Republic of Korea
- Oral Cancer Research Institute, Yonsei University, College of Dentistry, Seoul, Republic of Korea
| | - Yuan Park
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Eunae Sandra Cho
- Department of Oral Pathology, Yonsei University, College of Dentistry, Seoul, Republic of Korea
- Oral Cancer Research Institute, Yonsei University, College of Dentistry, Seoul, Republic of Korea
| | - Jong In Yook
- Department of Oral Pathology, Yonsei University, College of Dentistry, Seoul, Republic of Korea
- Oral Cancer Research Institute, Yonsei University, College of Dentistry, Seoul, Republic of Korea
| | - Jung-Seok Lee
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Republic of Korea
| |
Collapse
|
2
|
Suriyaamporn P, Sahatsapan N, Patrojanasophon P, Opanasopit P, Kumpugdee-Vollrath M, Ngawhirunpat T. Optimization of In Situ Gel-Forming Chlorhexidine-Encapsulated Polymeric Nanoparticles Using Design of Experiment for Periodontitis. AAPS PharmSciTech 2023; 24:161. [PMID: 37505346 DOI: 10.1208/s12249-023-02600-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/28/2023] [Indexed: 07/29/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease of the gums caused by pathogenic microorganisms damaging and destroying periodontal tissues. Chlorhexidine digluconate (CHX) is a commonly used antimicrobial agent for the treatment of periodontitis. However, it has many drawbacks, such as toxicity due to the high dosage required, low prolonged release, and low adhesion in the periodontal pocket. The objective of this study was to develop and optimize CHX-encapsulated polymeric nanoparticles (NPs) loaded into in situ gel-forming (ISGF) using design of experiment (DoE) to improve the treatment of periodontitis and overcome these limitations. CHX-NPs were optimized from 0.046%w/v chitosan, 0.05%w/w gelatin, and 0.25%w/w CHX. After that, the optimized of CHX-NPs was loaded into a thermosensitive ISGF, which was a mixture of 15%w/v Poloxamer 407 and 1% hydroxypropyl methylcellulose (HPMC). The optimized CHX-NPs, loaded into ISGF, was evaluated by measuring gelling temperature and time, pH, viscosity, compatibility, in vitro drug release, antibacterial activity, cytotoxicity, and stability. The results showed that the size, PDI, and zeta potential of optimized CHX-NPs were 53.07±10.17 nm, 0.36±0.02, and 27.63±4.16 mV, respectively. Moreover, the optimized ISGF loading CHX-NPs showed a gelling temperature at 34.3±1.2°C within 120.00±17.32 s with a pH value of 4.06. The viscosity of the formulations at 4°C was 54.33±0.99 cP. The DSC and FTIR showed no interaction between ingredients. The optimal formulations showed a prolonged release of up to 7 days while providing potential antibacterial activity and were safe for normal gingival fibroblast cells. Moreover, the formulations had high stability at 4°C and 25°C for 3 months. In conclusion, the study achieved the successful development of ISGF loading CHX-NPs formulations for effectiveness use in periodontal treatment.
Collapse
Affiliation(s)
- Phuvamin Suriyaamporn
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Nitjawan Sahatsapan
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Prasopchai Patrojanasophon
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Mont Kumpugdee-Vollrath
- Department of Pharmaceutical Technology, University of Applied Sciences (BHT), Luxemburger Street 10, 13353, Berlin, Germany
| | - Tanasait Ngawhirunpat
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| |
Collapse
|
3
|
Khan RA, Devi KR, Pratim Barman M, Bhagawati M, Sarmah R. Bacteria in the oral cavity of individuals consuming intoxicating substances. PLoS One 2023; 18:e0285753. [PMID: 37235563 DOI: 10.1371/journal.pone.0285753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Food habits and oral hygiene are critical attributes for physiochemical environment of the oral cavity. Consumption of intoxicating substances such as betel nut ('Tamul'), alcohol, smoking and chewing tobacco may strongly influence the oral ecosystem including commensal microbes. Therefore, a comparative assessment of microbes in the oral cavity between individuals consuming intoxicating substances and non-consumers may indicate the influence of these substances. Oral swabs were collected from consumers of intoxicating substances and non- consumers of Assam, India, microbes were isolated by culturing on Nutrient agar and identified by phylogenetic analysis of their 16S rRNA gene sequences. The risks of consumption of intoxicating substance on occurrence of microbes and health conditions were estimated using binary logistic regression. Mostly pathogens and opportunistic pathogens were found in the oral cavity of consumers and oral cancer patients which included Pseudomonas aeruginosa, Serratia marcescens, Rhodococcus antrifimi, Paenibacillus dendritiformis, Bacillus cereus, Staphylococcus carnosus, Klebsiella michiganensis and Pseudomonas cedrina. Enterobacter hormaechei was found in the oral cavity of cancer patients but not in other cases. Pseudomonas sp. were found to be widely distributed. The risk of occurrence of these organisms were found in between 0.01 and 2.963 odds and health conditions between 0.088 and 10.148 odds on exposure to different intoxicating substances. When exposed to microbes, the risk of varying health conditions ranged between 0.108 and 2.306 odds. Chewing tobacco showed a higher risk for oral cancer (10.148 odds). Prolonged exposure to intoxicating substances conduce a favorable environment for the pathogens and opportunistic pathogens to colonize in the oral cavity of individuals consuming intoxicating substances.
Collapse
Affiliation(s)
- Reyaz Ahmad Khan
- Department of Microbiology, Faculty of Science, Assam Down Town University, Guwahati, Assam, India
| | - Kangjam Rekha Devi
- Regional Medical Research Centre-Indian Council of Medical Research, Dibrugarh, Assam, India
| | | | - Madhusmita Bhagawati
- Department of Microbiology, Shrimanta Shankardeva University of Health Science, Guwahati, Assam, India
| | - Rajeev Sarmah
- Department Biotechnology, Faculty of Science, Assam Down Town University, Guwahati, Assam, India
| |
Collapse
|
4
|
Wu F, Fang B, Wuri G, Zhao L, Liu F, Zhang M. Metagenomic Analysis Reveals a Mitigating Role for Lactobacillus paracasei and Bifidobacterium animalis in Experimental Periodontitis. Nutrients 2022; 14:2125. [PMID: 35631266 PMCID: PMC9146436 DOI: 10.3390/nu14102125 10.3390/nu14102125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Probiotics have aroused increasing concern as an intervention strategy for periodontitis (PD), but their underlying mechanism of action remains poorly characterized. Regarding the significance of oral microbiota dysbiosis related to PD, we predicted that the preventive activity of probiotics may be influenced by suppressing the bacterial pathogenicity. Herein, we investigated the effects of Lactobacillus paracasei L9 (L9) and Bifidobacterium animalis A6 (A6) on PD using a rat model, and demonstrated a regulatory effect of probiotics on oral flora from a metagenomics perspective. Oral administration of A6 or L9 effectively relieved gingival bleeding, periodontal inflammatory infiltration, and alveolar bone resorption. In addition, A6 or L9 treatment reduced the inflammatory response and increased the expression of anti-inflammatory cytokines, which we expected to ameliorate alveolar bone resorption as mediated by the receptor activator of the nuclear factor-κB ligand/OPG signaling pathway. More importantly, using metagenomic sequencing, we showed that probiotics significantly altered the taxonomic composition of the subgingival microbiome, and reduced the relative proportions of pathogenic bacterial genera such as Streptococcus, Fusobacterium, Veillonella, and Escherichia. Both probiotics significantly inhibited levels of bacterial virulence factors related to adherence, invasion, exoenzyme, and complement protease functions that are strongly correlated with the pathogenesis of PD. Our overall results suggest that A6 and L9 may constitute promising prophylactic agents for PD, and should thus be further explored in the future.
Collapse
Affiliation(s)
- Fang Wu
- School of Food and Health, Beijing Technology and Business University, Beijing 100084, China; (F.W.); (G.W.)
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China;
| | - Guna Wuri
- School of Food and Health, Beijing Technology and Business University, Beijing 100084, China; (F.W.); (G.W.)
| | - Liang Zhao
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fudong Liu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China;
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, China
| | - Ming Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100084, China; (F.W.); (G.W.)
- Correspondence:
| |
Collapse
|
5
|
Wu F, Fang B, Wuri G, Zhao L, Liu F, Zhang M. Metagenomic Analysis Reveals a Mitigating Role for Lactobacillus paracasei and Bifidobacterium animalis in Experimental Periodontitis. Nutrients 2022; 14:2125. [PMID: 35631266 PMCID: PMC9146436 DOI: 10.3390/nu14102125+10.3390/nu14102125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Probiotics have aroused increasing concern as an intervention strategy for periodontitis (PD), but their underlying mechanism of action remains poorly characterized. Regarding the significance of oral microbiota dysbiosis related to PD, we predicted that the preventive activity of probiotics may be influenced by suppressing the bacterial pathogenicity. Herein, we investigated the effects of Lactobacillus paracasei L9 (L9) and Bifidobacterium animalis A6 (A6) on PD using a rat model, and demonstrated a regulatory effect of probiotics on oral flora from a metagenomics perspective. Oral administration of A6 or L9 effectively relieved gingival bleeding, periodontal inflammatory infiltration, and alveolar bone resorption. In addition, A6 or L9 treatment reduced the inflammatory response and increased the expression of anti-inflammatory cytokines, which we expected to ameliorate alveolar bone resorption as mediated by the receptor activator of the nuclear factor-κB ligand/OPG signaling pathway. More importantly, using metagenomic sequencing, we showed that probiotics significantly altered the taxonomic composition of the subgingival microbiome, and reduced the relative proportions of pathogenic bacterial genera such as Streptococcus, Fusobacterium, Veillonella, and Escherichia. Both probiotics significantly inhibited levels of bacterial virulence factors related to adherence, invasion, exoenzyme, and complement protease functions that are strongly correlated with the pathogenesis of PD. Our overall results suggest that A6 and L9 may constitute promising prophylactic agents for PD, and should thus be further explored in the future.
Collapse
Affiliation(s)
- Fang Wu
- School of Food and Health, Beijing Technology and Business University, Beijing 100084, China; (F.W.); (G.W.)
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China;
| | - Guna Wuri
- School of Food and Health, Beijing Technology and Business University, Beijing 100084, China; (F.W.); (G.W.)
| | - Liang Zhao
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fudong Liu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China;
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, China
| | - Ming Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100084, China; (F.W.); (G.W.)
- Correspondence:
| |
Collapse
|
6
|
Metagenomic Analysis Reveals a Mitigating Role for Lactobacillus paracasei and Bifidobacterium animalis in Experimental Periodontitis. Nutrients 2022; 14:nu14102125. [PMID: 35631266 PMCID: PMC9146436 DOI: 10.3390/nu14102125] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 12/15/2022] Open
Abstract
Probiotics have aroused increasing concern as an intervention strategy for periodontitis (PD), but their underlying mechanism of action remains poorly characterized. Regarding the significance of oral microbiota dysbiosis related to PD, we predicted that the preventive activity of probiotics may be influenced by suppressing the bacterial pathogenicity. Herein, we investigated the effects of Lactobacillus paracasei L9 (L9) and Bifidobacterium animalis A6 (A6) on PD using a rat model, and demonstrated a regulatory effect of probiotics on oral flora from a metagenomics perspective. Oral administration of A6 or L9 effectively relieved gingival bleeding, periodontal inflammatory infiltration, and alveolar bone resorption. In addition, A6 or L9 treatment reduced the inflammatory response and increased the expression of anti-inflammatory cytokines, which we expected to ameliorate alveolar bone resorption as mediated by the receptor activator of the nuclear factor-κB ligand/OPG signaling pathway. More importantly, using metagenomic sequencing, we showed that probiotics significantly altered the taxonomic composition of the subgingival microbiome, and reduced the relative proportions of pathogenic bacterial genera such as Streptococcus, Fusobacterium, Veillonella, and Escherichia. Both probiotics significantly inhibited levels of bacterial virulence factors related to adherence, invasion, exoenzyme, and complement protease functions that are strongly correlated with the pathogenesis of PD. Our overall results suggest that A6 and L9 may constitute promising prophylactic agents for PD, and should thus be further explored in the future.
Collapse
|
7
|
Presence of non-oral bacteria in the oral cavity. Arch Microbiol 2021; 203:2747-2760. [PMID: 33791834 PMCID: PMC8012020 DOI: 10.1007/s00203-021-02300-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/20/2020] [Accepted: 03/22/2021] [Indexed: 12/30/2022]
Abstract
A homeostatic balance exists between the resident microbiota in the oral cavity and the host. Perturbations of the oral microbiota under particular conditions can contribute to the growth of non-oral pathogens that are hard to kill because of their higher resistance to antimicrobials, raising the probability of treatment failure and reinfection. The presence of these bacteria in the oral cavity has been proven to be associated with several oral diseases such as periodontitis, caries, and gingivitis, and systemic diseases of importance in clinical medicine such as cystic fibrosis, HIV, and rheumatoid arthritis. However, it is still controversial whether these species are merely transient members or unique to the oral cavity. Mutualistic and antagonistic interactions between the oral microbiota and non-oral pathogens can also occur, though the mechanisms used by these bacteria are not clear. Therefore, this review presents an overview of the current knowledge about the presence of non-oral bacteria in the oral cavity, their relationship with systemic and oral diseases, and their interactions with oral bacteria.
Collapse
|
8
|
Shokeen B, Dinis MDB, Haghighi F, Tran NC, Lux R. Omics and interspecies interaction. Periodontol 2000 2020; 85:101-111. [PMID: 33226675 DOI: 10.1111/prd.12354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interspecies interactions are key determinants in biofilm behavior, ecology, and architecture. The cellular responses of microorganisms to each other at transcriptional, proteomic, and metabolomic levels ultimately determine the characteristics of biofilm and the corresponding implications for health and disease. Advances in omics technologies have revolutionized our understanding of microbial community composition and their activities as a whole. Large-scale analyses of the complex interaction between the many microbial species residing within a biofilm, however, are currently still hampered by technical and bioinformatics challenges. Thus, studies of interspecies interactions have largely focused on the transcriptional and proteomic changes that occur during the contact of a few prominent species, such as Porphyromonas gingivalis, Streptococcus mutans, Candida albicans, and a few others, with selected partner species. Expansion of available tools is necessary to grow the revealing, albeit limited, insight these studies have provided into a profound understanding of the nature of individual microbial responses to the presence of others. This will allow us to answer important questions including: Which intermicrobial interactions orchestrate the myriad of cooperative, synergistic, antagonistic, manipulative, and other types of relationships and activities in the complex biofilm environment, and what are the implications for oral health and disease?
Collapse
Affiliation(s)
- Bhumika Shokeen
- Section of Periodontics, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Marcia Dalila Botelho Dinis
- Section of Pediatric Dentistry, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Farnoosh Haghighi
- Section of Periodontics, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Nini Chaichanasakul Tran
- Section of Pediatric Dentistry, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Renate Lux
- Section of Periodontics, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
9
|
Monje A, Vera M, Muñoz-Sanz A, Wang HL, Nart J. Suppuration as diagnostic criterium of peri-implantitis. J Periodontol 2020; 92:216-224. [PMID: 32729628 DOI: 10.1002/jper.20-0159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Suppuration (SUP) as a diagnostic parameter for monitoring dental implants is not yet well understood. The retrospective clinical and radiographic study was therefore performed to investigate the patient, implant, and site characteristics among individuals exhibiting SUP. METHODS Demographic characteristics and clinical parameters were recorded. Radiographic features were analyzed using cone-beam computed tomography. Peri-implantitis was defined based on the consensus report of Workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions: probing depth (PD) ≥6 mm, presence of bleeding and/or SUP on gentle probing, and radiographic marginal bone loss (MBL) ≥3 mm. SUP was graded according to profuseness (dot versus line/drop) and time after probing (≥15 seconds versus <15 seconds after probing versus spontaneous). Simple binary logistic regression models were estimated using generalized estimation equations to explain the probability of SUP based on demographic, clinical, and radiographic variables. RESULTS A total of 111 eligible patients (nimplants = 501) were assessed. Of them, 57 (nimplants = 334) were diagnosed with peri-implantitis according to the established case definition, and of these individuals, 31 (nimplants = 96) presented SUP. Therefore, the prevalence of SUP was 27.92% in the total sample size and 54.38% in peri-implantitis patients. Overall, 28.74% implants displayed SUP within patients with peri-implantitis. SUP was more frequently found at buccal sites (51%) and proved less prevalent at mesio-lingual sites (16.7%). Defect morphology (OR = 6.59; P = 0.004), PD (OR = 1.63; P = 0.024), and MBL (OR = 1.35; P = 0.010) were significantly associated with the presence of SUP. Likewise, defect morphology (P = 0.02), PD (P = 0.003), and MBL (P = 0.01) were significantly correlated with the grade of SUP. CONCLUSION The presence and grade of SUP are associated with peri-implant bone loss, probing depth, and defect morphology in patients with peri-implantitis.
Collapse
Affiliation(s)
- Alberto Monje
- Department of Periodontology, School of Dental Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Department of Periodontology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Maria Vera
- Department of Periodontology, School of Dental Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Agustín Muñoz-Sanz
- Division of Infectious Diseases, Department of Biomedical Sciences, Universidad de Extremadura, Badajoz, Spain
| | - Hom-Lay Wang
- Department of Periodontology, School of Dental Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - José Nart
- Department of Periodontology, Universitat Internacional de Catalunya, Barcelona, Spain
| |
Collapse
|
10
|
Montenegro SCL, Retamal-Valdes B, Bueno-Silva B, Duarte PM, Faveri M, Figueiredo LC, Feres M. Do patients with aggressive and chronic periodontitis exhibit specific differences in the subgingival microbial composition? A systematic review. J Periodontol 2020; 91:1503-1520. [PMID: 32233092 DOI: 10.1002/jper.19-0586] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/15/2020] [Accepted: 02/27/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND The 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions grouped the diseases previously recognized as chronic (CP) or aggressive (AgP) periodontitis under a single category named periodontitis. The rationale for this decision was the lack of specific patterns of immune-inflammatory response or microbial profiles associated with CP or AgP. However, no previous studies have compiled the results of all studies comparing subgingival microbial data between these clinical conditions. Thus, this systematic review aimed to answer the following focused question: "Do patients with AgP periodontitis present differences in the subgingival microbiota when compared with patients with CP?" METHODS A systematic review was conducted according to the PRISMA statement. The MEDLINE, EMBASE, and Cochrane databases were searched up to June 2019 for studies of any design (except case reports, case series, and reviews) comparing subgingival microbial data from patients with CP and AgP. RESULTS A total of 488 articles were identified and 56 were included. Thirteen studies found Aggregatibacter actinomycetemcomitans elevated in AgP in comparison with CP, while Fusobacterium nucleatum, Parvimonas micra, and Campylobacter rectus were elevated in AgP in a few studies. None of these species were elevated in CP. However, the number of studies not showing statistically significant differences between CP and AgP was always higher than that of studies showing differences. CONCLUSION These results suggested an association of A. actinomycetemcomitans with AgP, but neither this species nor the other species studied to date were unique to or could differentiate between CP and AgP (PROSPERO #CRD42016039385).
Collapse
Affiliation(s)
| | - Belen Retamal-Valdes
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Bruno Bueno-Silva
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Poliana Mendes Duarte
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil.,Department of Periodontology, School of Advanced Dental Sciences, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Marcelo Faveri
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | | | - Magda Feres
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| |
Collapse
|
11
|
Mohtashami Z, Esmaili Z, Vakilinezhad MA, Seyedjafari E, Akbari Javar H. Pharmaceutical implants: classification, limitations and therapeutic applications. Pharm Dev Technol 2019; 25:116-132. [DOI: 10.1080/10837450.2019.1682607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Zahra Mohtashami
- Pharmaceutics Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Esmaili
- Pharmaceutics Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Hamid Akbari Javar
- Pharmaceutics Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Gonçalves LS, Ferreira DDC, Heng NCK, Vidal F, Santos HF, Zanicotti DG, Vasconcellos M, Stambovsky M, Lawley B, Rubini NDPM, Santos KRN, Seymour GJ. Oral bacteriome of HIV‐1‐infected children from Rio de Janeiro, Brazil: Next‐generation DNA sequencing analysis. J Clin Periodontol 2019; 46:1192-1204. [DOI: 10.1111/jcpe.13176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 07/15/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Lucio Souza Gonçalves
- Programa de Pós‐Graduação em Odontologia Universidade Estácio de Sá Rio de Janeiro Brazil
| | - Dennis de Carvalho Ferreira
- Programa de Pós‐Graduação em Odontologia Universidade Estácio de Sá Rio de Janeiro Brazil
- Universidade Veiga de Almeida Rio de Janeiro Brazil
| | | | - Fabio Vidal
- Programa de Pós‐Graduação em Odontologia Universidade Estácio de Sá Rio de Janeiro Brazil
| | | | | | | | | | - Blair Lawley
- Department of Microbiology and Immunology University of Otago Dunedin New Zealand
| | | | - Katia Regina Netto Santos
- Instituto de Microbiologia Paulo de Góes Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | | |
Collapse
|
13
|
Farina R, Severi M, Carrieri A, Miotto E, Sabbioni S, Trombelli L, Scapoli C. Whole metagenomic shotgun sequencing of the subgingival microbiome of diabetics and non-diabetics with different periodontal conditions. Arch Oral Biol 2019; 104:13-23. [PMID: 31153098 DOI: 10.1016/j.archoralbio.2019.05.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The aim of this study was to use high-resolution whole metagenomic shotgun sequencing to characterize the subgingival microbiome of patients with/without type 2 Diabetes Mellitus and with/without periodontitis. DESIGN Twelve subjects, falling into one of the four study groups based on the presence/absence of poorly controlled type 2 Diabetes Mellitus and moderate-severe periodontitis, were selected. For each eligible subject, subgingival plaque samples were collected at 4 sites, all representative of the periodontal condition of the individual (i.e., non-bleeding sulci in subjects without a history of periodontitis, bleeding pockets in patients with moderate-severe periodontitis). The subgingival microbiome was evaluated using high-resolution whole metagenomic shotgun sequencing. RESULTS The results showed that: (i) the presence of type 2 Diabetes Mellitus and/or periodontitis were associated with a tendency of the subgingival microbiome to decrease in richness and diversity; (ii) the presence of type 2 Diabetes Mellitus was not associated with significant differences in the relative abundance of one or more species in patients either with or without periodontitis; (iii) the presence of periodontitis was associated with a significantly higher relative abundance of Anaerolineaceae bacterium oral taxon 439 in type 2 Diabetes Mellitus patients. CONCLUSIONS Whole metagenomic shotgun sequencing of the subgingival microbiome was extremely effective in the detection of low-abundant taxon. Our results point out a significantly higher relative abundance of Anaerolineaceae bacterium oral taxon 439 in patients with moderate to severe periodontitis vs patients without history of periodontitis, which was maintained when the comparison was restricted to type 2 diabetics.
Collapse
Affiliation(s)
- Roberto Farina
- Research Centre for the Study of Periodontal and Peri-Implant Diseases, University of Ferrara, Italy; Operative Unit of Dentistry, University-Hospital of Ferrara, Italy.
| | - Mattia Severi
- Research Centre for the Study of Periodontal and Peri-Implant Diseases, University of Ferrara, Italy
| | - Alberto Carrieri
- Department of Life Sciences and Biotechnology - Section of Biology and Evolution, University of Ferrara, Italy
| | - Elena Miotto
- Department of Life Sciences and Biotechnology - Section of Pathology and Applied Microbiology,University of Ferrara, Italy
| | - Silvia Sabbioni
- Department of Life Sciences and Biotechnology - Section of Pathology and Applied Microbiology,University of Ferrara, Italy
| | - Leonardo Trombelli
- Research Centre for the Study of Periodontal and Peri-Implant Diseases, University of Ferrara, Italy; Operative Unit of Dentistry, University-Hospital of Ferrara, Italy
| | - Chiara Scapoli
- Research Centre for the Study of Periodontal and Peri-Implant Diseases, University of Ferrara, Italy; Department of Life Sciences and Biotechnology - Section of Biology and Evolution, University of Ferrara, Italy
| |
Collapse
|
14
|
An insight into the emergence of Acinetobacter baumannii as an oro-dental pathogen and its drug resistance gene profile - An in silico approach. Heliyon 2018; 4:e01051. [PMID: 30603692 PMCID: PMC6304470 DOI: 10.1016/j.heliyon.2018.e01051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/10/2018] [Accepted: 12/12/2018] [Indexed: 11/23/2022] Open
Abstract
Background Acinetobacter baumannii, a potential nosocomial pathogen has stealthily gained entry into the oral cavity. Their association with other pathogens like Pseudomonas aeruginosa in chronic and aggressive periodontitis cases is well documented. The magnitude of problem caused by A . baumannii could be attributed to resistance genes acquired by the organism. Since the microbiome of oral cavity is heterogeneous and complex, the transfer of genes from multidrug resistant A . baumannii may be a serious threat in infection control and management. In view of this fact, the present study aims to categorize and characterize drug resistant genes present in each of the 19 genomes of Acinetobacter Sp. selected for the study. Methods About 19 genome sequences of Acinetobacter spp. with the predominance of different strains of A . baumannii was genotyped using in silico restriction digestion and pulse field gel electrophoresis (PFGE). Further, the prevalence of common drug resistant genes in the genome of various Acinetobacter spp. was recorded using in silico PCR analysis. Results Based on the PFGE pattern, phylogenetic tree was constructed and the genomes were clustered into 6 genotypes. Genotype 4 (n = 8; 42.10%) and 5 (n = 6; 31.57%) were predominant, followed by genotypes 2 (n = 2; 10.52%), 1, 3 and 6 (n = 1; 5.26%). Three species were excluded from the list since they were negative for most of the drug resistant genes tested. Prevalence of drug resistant genes in each of the 16 genomes analysed found oxa-51, ISAba 1 and ADC 1 to be the major genes found in A . baumannii. Acinetobacter spp. belonging to genotypes 4 and 5 were found to harbour 6-10 and 2-8 potential drug resistant genes respectively. Conclusion The present study showed cluster of multi-drug resistant genes in genomes analysed, thus, warranting the need for antibiotic surveillance, alternate therapeutic measures and development of novel antimicrobials. An extensive study on the genes conferring drug resistance in this pathogen will open new avenues for battling the entry and spread of this pathogen in vulnerable patient groups.
Collapse
|
15
|
Vijayashree Priyadharsini J, Smiline Girija AS, Paramasivam A. In silico analysis of virulence genes in an emerging dental pathogen A. baumannii and related species. Arch Oral Biol 2018; 94:93-98. [PMID: 30015217 DOI: 10.1016/j.archoralbio.2018.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Acinetobacter baumannii is an opportunistic pathogen which has recently been categorized as a high risk pathogen by World Health Organisation (WHO). The microbe has stealthily entered the oral cavity and has established itself as a potential pathogen by acquiring drug resistance and expression of several virulence genes. Surveillance on the type of virulence factors harboured by the organism will enable us to comprehend the mechanism of pathogenesis. The study was performed to screen for the presence of crucial virulence factors associated with Acinetobacter spp. as reviewed from the literature by employing computational tools. DESIGN Nineteen genome sequences of Acinetobacter spp. with the predominance of different strains of A. baumannii were classified phylogenetically into clusters using in silico restriction digestion and pulse field gel electrophoresis (PFGE). Further, the frequency of common virulence genes in the genome of various Acinetobacter spp. was recorded using in silico PCR analysis. RESULTS Based on PFGE pattern and phylogenetic tree the genomes of A. baumannii were clustered into 4 genotypes (G1-G4). Two species were excluded from the list since they were negative for almost all the virulence genes tested. Frequency of virulence genes in each of the 17 genomes analysed, found ompA and smpA to be the major virulence factors in A. baumannii and related species. Acinetobacter spp. belonging to genotypes 2 and 3 were found to harbour 1-15 and 6-10 potential genes encoding virulence factors respectively. CONCLUSIONS The present study showed numerous virulence genes in genomes analysed. In silico analysis of these virulence genes can be used as candidates to build novel therapeutic targets against the pathogen. An extensive study on the functional role of these genes could aid in stalling the propagation and dissemination of A. baumannii among susceptible individuals.
Collapse
Affiliation(s)
- J Vijayashree Priyadharsini
- Biomedical Research Unit and Laboratory Animal Centre-Dental Research Cell [BRULAC-DRC], Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Poonamallee High Road, Chennai, 600 077, Tamil Nadu, India.
| | - A S Smiline Girija
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Poonamallee High Road, Chennai, 600 077, Tamil Nadu, India
| | - A Paramasivam
- Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad, Telangana, 500007, India
| |
Collapse
|
16
|
Yadav SK, Khan G, Bansal M, Thokala S, Bonde GV, Upadhyay M, Mishra B. Multiparticulate based thermosensitive intra-pocket forming implants for better treatment of bacterial infections in periodontitis. Int J Biol Macromol 2018; 116:394-408. [PMID: 29746970 DOI: 10.1016/j.ijbiomac.2018.04.179] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 04/09/2018] [Accepted: 04/30/2018] [Indexed: 01/27/2023]
Abstract
Considering alarming projections in the prevalence of periodontitis, following study was undertaken to develop chitosan-vanillin crosslinked microspheres loaded in-situ gel (MLIG) implants containing ornidazole and doxycycline hyclate for the treatment of pocket infections. Firstly, microspheres were formulated and optimized using response surface methodology for particle size <50 μm, entrapment efficiency >80%, in-vitro drug release (T80%) >7 days and acceptable mucoadhesion. Further, MLIG were optimized for gelation temperature of 34-37 °C and viscosity <1000 cps respectively. FTIR, DSC and XRD graphs disclosed compatibility and alterations in crystallinity of drugs. In-vitro dissolution study demonstrated non-Fickian type of drug release mechanism for twelve days. Stability studies ascertained MLIG implants were sterilizable and stable for about 11.29 months on refrigeration. The formulations exhibited significant (p < 0.001) antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Enterococcus faecalis, and were found biocompatible and biodegradable during preclinical studies. Ligature-induced periodontal rat model, corroborated significant growth (p < 0.05) of gingival tissue after two weeks. Clinical trials revealed, intra-pocket administration of MLIG along with SRP provided significant reduction in clinical parameters as compared to SRP alone. Conclusively, antimicrobials incorporated thermosensitive, biodegradable, mucoadhesive and syringeable MLIG implants appeared as better option for the treatment of periodontitis.
Collapse
Affiliation(s)
- Sarita Kumari Yadav
- Department of Pharmaceutical Engineering & Technology (formerly Department of Pharmaceutics), Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India; Department of Pharmacy, Moti Lal Nehru Medical College, Allahabad 211002, Uttar Pradesh, India
| | - Gayasuddin Khan
- Department of Pharmaceutical Engineering & Technology (formerly Department of Pharmaceutics), Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Monika Bansal
- Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Sathish Thokala
- Department of Pharmaceutical Engineering & Technology (formerly Department of Pharmaceutics), Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Gunjan Vasant Bonde
- Department of Pharmaceutical Engineering & Technology (formerly Department of Pharmaceutics), Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Mansi Upadhyay
- Department of Pharmaceutical Engineering & Technology (formerly Department of Pharmaceutics), Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering & Technology (formerly Department of Pharmaceutics), Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
17
|
Tinidazole functionalized homogeneous electrospun chitosan/poly (ε-caprolactone) hybrid nanofiber membrane: Development, optimization and its clinical implications. Int J Biol Macromol 2017; 103:1311-1326. [PMID: 28583874 DOI: 10.1016/j.ijbiomac.2017.05.161] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/20/2017] [Accepted: 05/27/2017] [Indexed: 02/07/2023]
Abstract
We have prepared tinidazole (TNZ) functionalized biodegradable chitosan (CH)/poly (ε-caprolactone) (PCL) mucoadhesive hybrid nanofiber membrane (TNZ-PCHNF) to alleviate existing shortcomings in treatment of periodontitis. Box-Behnken design was employed for evaluating influence of formulation and processing variables on quality of final formulation. Optimized nanofiber membrane was subjected to solid-state and surface characterization studies using FTIR, DSC, XRD, SEM and AFM, which revealed that TNZ was entrapped in an amorphous form inside smooth and uniform cylindrical nanofibers without any physicochemical interaction with excipients. The optimized TNZ-PCHNF membrane had a diameter of 143.55±8.5nm and entrapment efficiency of 83.25±1.8%. In vitro drug release and antibacterial study demonstrated capability of the developed nanofiber membranes for efficiently delivering TNZ in a sustained manner up to 18days, and its ability to inhibit bacterial growth, respectively. Further, reduction of contact angle (from 123.4±2.5 to 27.4±2.3) revealed that blending of CH with PCL increases hydrophilicity of the nanofiber membrane. MTT assay and CLSM study suggested that nanofiber membrane was devoid of cytotoxicity on mouse fibroblasts. Moreover, preliminary clinical trials on patients proved therapeutic efficacy of the nanofiber membrane by eliciting a significant (p<0.05) decrease in clinical markers of periodontitis.
Collapse
|
18
|
Physical key properties of antibiotic-free, PLGA/HPMC-based in-situ forming implants for local periodontitis treatment. Int J Pharm 2017; 521:282-293. [PMID: 28223246 DOI: 10.1016/j.ijpharm.2017.02.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 01/03/2023]
Abstract
In-situ forming implants (ISFI) offer an interesting potential for the treatment of periodontitis, allowing for time-controlled drug release directly at the site of action (which is difficult to reach). For this purpose, ISFI loaded with antibiotics have been reported in the literature. But the use of antibiotic drugs at low doses over prolonged periods of time can lead to the development of bacterial resistances. This risk should be avoided. The aim of this study was to develop a novel type of in-situ forming implants, loaded with the antiseptic drug chlorhexidine. Special emphasis was placed on the physical properties of the systems, assuring a reliable residence time in the periodontal pockets of patients suffering from periodontitis. In particular, the risk of premature, accidental loss of the formulations due to mechanical stress (e.g. during tooth brushing and chewing) was to be reduced. Two commercially available drug products for local periodontitis treatment were studied for reasons of comparison: Chlo-site and Parocline. The syringeability and swelling behavior of the formulations were investigated, and the hardness, springiness, resilience and "stickiness" of the systems determined using extracted human teeth. Interestingly, the novel in-situ forming implants, based on PLGA/HPMC and being free of antibiotics, exhibit highly promising physical key properties: They are intensively sticking to teeth' surfaces and provide adequate mechanical strength to assure reliable and prolonged residence times in periodontal pockets. In contrast, the commercial drug products showed limited adhesion and either rapidly shrank (Chlo-site), or substantially swelled and were mechanically very weak (Parocline).
Collapse
|
19
|
Mashima I, Theodorea CF, Thaweboon B, Thaweboon S, Nakazawa F. Identification of Veillonella Species in the Tongue Biofilm by Using a Novel One-Step Polymerase Chain Reaction Method. PLoS One 2016; 11:e0157516. [PMID: 27326455 PMCID: PMC4915624 DOI: 10.1371/journal.pone.0157516] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/30/2016] [Indexed: 12/02/2022] Open
Abstract
Six Veillonella species have been frequently isolated from human oral cavities including infectious sites. Recently, it was reported that diet, smoking, and possibly socioeconomic status can influence the bacterial profile in oral cavities. In addition, oral hygiene habits may also influence oral microbiota in terms of both numbers and diversity of microorganisms. In this study, the identification of Veillonella species in tongue biofilms of Thai children, divided into three groups dependent on their status of oral hygiene. For this, we used a novel one-step PCR method with species-specific primer sets based on sequences of the rpoB gene. As shown in the results, the number of isolates of Veillonella species was 101 strains from only 10 of 89 subjects. However, the total number of bacteria was high for all subjects. Since it was reported in previous studies that Veillonella species were easy to isolate in human tongue biofilms at high numbers, the results obtained in this study may suggest country- or age-specific differences. Moreover, Veillonella species were detected predominantly in subjects who had poor oral hygiene compared to those with good or moderate oral hygiene. From these results, there is a possibility that Veillonella species may be an index of oral hygiene status. Furthermore, V. rogosae was a predominant species in tongue biofilms of Thai children, whereas V. parvula and V. denticariosi were not isolated at all. These characteristics of the distribution and frequency of Veillonella species are similar to those reported in previous studies. Although further studies are needed in other countries, in this study, a successful novel one-step PCR method was established to detect Veillonella species in human oral cavities easily and effectively. Furthermore, this is the first report investigating the distribution and frequency of Veillonella species in tongue biofilms of Thai children.
Collapse
Affiliation(s)
- Izumi Mashima
- Postdoctoral Fellow of Japan Society for the Promotion of Science, 5-3-1, Kouji-machi, Chiyoda-Ku, Tokyo, 102-0083, Japan
- Department of Oral Microbiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Citra Fragrantia Theodorea
- Department of Oral Microbiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
- Department of Oral Biology, Faculty of Dentistry, University of Indonesia, Jalan Salemba Raya No. 4, Jakarta, 10430, Indonesia
| | - Boonyanit Thaweboon
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, 6 Yothi Street, Bangkok, 10400, Thailand
| | - Sroisiri Thaweboon
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, 6 Yothi Street, Bangkok, 10400, Thailand
| | - Futoshi Nakazawa
- Department of Oral Microbiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
- * E-mail:
| |
Collapse
|
20
|
van Winkelhoff AJ, Rurenga P, Wekema-Mulder GJ, Singadji ZM, Rams TE. Non-oral gram-negative facultative rods in chronic periodontitis microbiota. Microb Pathog 2016; 94:117-22. [PMID: 26835659 DOI: 10.1016/j.micpath.2016.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 01/27/2016] [Accepted: 01/27/2016] [Indexed: 10/22/2022]
Abstract
OBJECTIVE The subgingival prevalence of gram-negative facultative rods not usually inhabiting or indigenous to the oral cavity (non-oral GNFR), as well as selected periodontal bacterial pathogens, were evaluated by culture in untreated and treated chronic periodontitis patients. METHODS Subgingival biofilm specimens from 102 untreated and 101 recently treated adults with chronic periodontitis in the Netherlands were plated onto MacConkey III and Dentaid selective media with air-5% CO2 incubation for isolation of non-oral GNFR, and onto enriched Oxoid blood agar with anaerobic incubation for recovery of selected periodontal bacterial pathogens. Suspected non-oral GNFR clinical isolates were identified to a species level with the VITEK 2 automated system. RESULTS A total of 87 (42.9%) out of 203 patients yielded subgingival non-oral GNFR. Patients recently treated with periodontal mechanical debridement therapy demonstrated a greater prevalence of non-oral GNFR (57.4% vs 28.4%, P < 0.0001), and a greater number of different non-oral GNFR species (23 vs 14 different species), than untreated patients. Sphingomonas paucimobilis was the most frequently isolated subgingival non-oral GNFR species. Several GNFR species normally found in animals and human zoonotic infections, and not previously detected in human subgingival biofilms, were recovered from some patients, including Bordetella bronchispetica, Pasteurella canis, Pasteurella pneumotropica and Neisseria zoodegmatis. Porphyromonas gingivalis and Tannerella forsythia were significantly associated with the presence of subgingival non-oral GNFR. CONCLUSIONS A surprisingly high proportion of Dutch chronic periodontitis patients yielded cultivable non-oral GNFR in periodontal pockets, particularly among those recently treated with periodontal mechanical debridement therapy. Since non-oral GNFR species may resist mechanical debridement from periodontal pockets, and are often not susceptible to many antibiotics frequently used in periodontal practice, their subgingival presence may complicate periodontal treatment in species-positive patients and increase risk of potentially dangerous GNFR infections developing at other body sites.
Collapse
Affiliation(s)
- Arie J van Winkelhoff
- Department of Medical Microbiology, Medical School, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Center for Dentistry and Oral Hygiene, Dental School, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Patrick Rurenga
- Department of Medical Microbiology, Medical School, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gepke J Wekema-Mulder
- Department of Medical Microbiology, Medical School, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Zadrach M Singadji
- Department of Medical Microbiology, Medical School, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Thomas E Rams
- Department of Periodontology and Oral Implantology, and Oral Microbiology Testing Service Laboratory, Temple University School of Dentistry, Philadelphia, PA 19140, USA; Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
21
|
Khan G, Patel RR, Yadav SK, Kumar N, Chaurasia S, Ajmal G, Mishra PK, Mishra B. Development, optimization and evaluation of tinidazole functionalized electrospun poly(ε-caprolactone) nanofiber membranes for the treatment of periodontitis. RSC Adv 2016. [DOI: 10.1039/c6ra22072j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The proposed work is focused to alleviate shortcomings in the treatment of periodontitis by electrospinning of a novel biodegradable poly(ε-caprolactone) based nanofiber membrane functionalized with tinidazole.
Collapse
Affiliation(s)
- Gayasuddin Khan
- Department of Pharmaceutics
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221005
- India
| | - Ravi R. Patel
- Department of Pharmaceutics
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221005
- India
| | - Sarita K. Yadav
- Department of Pharmaceutics
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221005
- India
| | - Nagendra Kumar
- Department of Pharmaceutics
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221005
- India
| | - Sundeep Chaurasia
- Department of Pharmaceutics
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221005
- India
| | - Gufran Ajmal
- Department of Pharmaceutics
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221005
- India
| | - Pradeep K. Mishra
- Department of Chemical Engineering
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221005
- India
| | - Brahmeshwar Mishra
- Department of Pharmaceutics
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221005
- India
| |
Collapse
|
22
|
Vieira Colombo AP, Magalhães CB, Hartenbach FARR, Martins do Souto R, Maciel da Silva-Boghossian C. Periodontal-disease-associated biofilm: A reservoir for pathogens of medical importance. Microb Pathog 2015; 94:27-34. [PMID: 26416306 DOI: 10.1016/j.micpath.2015.09.009] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 11/29/2022]
Abstract
The ecological diversity of the periodontal microenvironment may provide suitable conditions for the colonization of species not usually considered members of the oral microbiota. In this investigation, we aimed to determine the prevalence and levels of pathogenic species of medical relevance in the microbiota of individuals with distinct periodontal clinical status. Subgingival biofilm was obtained from patients with periodontal health (H, n = 81), gingivitis (G, n = 55), generalized aggressive (AgP, n = 36) or chronic periodontitis (CP, n = 98), and analyzed for 39 microbial taxa using a checkerboard DNA-DNA hybridization technique. Microbial differences among groups, as well as associations between clinical and microbiological parameters were sought by non-parametric and univariate correlation tests. Neisseria spp., Peptostreptococus anaerobius, Candida albicans, enterobacteria, Pseudomonas aeruginosa, Eubacterium saphenum, Clostridium difficile and Olsenella uli were detected in high mean prevalence and counts in the subgingival microbiota of the study population. Species that were more related to periodontal inflammation and tissue destruction at the patient and site levels included enterobacteria, C. albicans, Neisseria spp., P. aeruginosa, O. uli, Hafnia alvei, Serratia marcescens and Filifactor alocis (p < 0.05). In contrast, Fusobacterium necrophorum, Lactobacillus acidophilus, Staphylococcus aureus and Streptococcus pneumoniae were associated with periodontal health (p < 0.05). Pathogenic species of medical importance may be detected in high prevalence and levels in the periodontal microbiota. Regardless of their role in periodontal health or disease, the periodontal biofilm may be a source for dissemination and development of systemic infections by these pathogenic microorganisms.
Collapse
Affiliation(s)
- Ana Paula Vieira Colombo
- Institute of Microbiology, Department of Medical Microbiology, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373/CCS/ Bloco I, lab. I2-03, Cidade Universitária - Rio de Janeiro, RJ CEP: 21941-902, Brazil.
| | - Clarissa Bichara Magalhães
- Institute of Microbiology, Department of Medical Microbiology, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373/CCS/ Bloco I, lab. I2-03, Cidade Universitária - Rio de Janeiro, RJ CEP: 21941-902, Brazil.
| | - Fátima Aparecida Rocha Resende Hartenbach
- Institute of Microbiology, Department of Medical Microbiology, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373/CCS/ Bloco I, lab. I2-03, Cidade Universitária - Rio de Janeiro, RJ CEP: 21941-902, Brazil; School of Dentistry, Department of Clinics, Federal University of Rio de Janeiro Rua Professor Rodolpho Paulo Rocco, 325, Cidade Universitária - Rio de Janeiro, RJ CEP: 21941-617, Brazil.
| | - Renata Martins do Souto
- Institute of Microbiology, Department of Medical Microbiology, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373/CCS/ Bloco I, lab. I2-03, Cidade Universitária - Rio de Janeiro, RJ CEP: 21941-902, Brazil.
| | - Carina Maciel da Silva-Boghossian
- Institute of Microbiology, Department of Medical Microbiology, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373/CCS/ Bloco I, lab. I2-03, Cidade Universitária - Rio de Janeiro, RJ CEP: 21941-902, Brazil; School of Dentistry, University of Grande Rio, R. Prof. José de Souza Herdy, 1160, Jardim Vinte e Cinco de Agosto, Duque de Caxias, RJ CEP: 25071-202, Brazil.
| |
Collapse
|
23
|
Do MP, Neut C, Metz H, Delcourt E, Siepmann J, Mäder K, Siepmann F. Mechanistic analysis of PLGA/HPMC-based in-situ forming implants for periodontitis treatment. Eur J Pharm Biopharm 2015; 94:273-83. [PMID: 26047797 DOI: 10.1016/j.ejpb.2015.05.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/28/2015] [Accepted: 05/21/2015] [Indexed: 11/20/2022]
Abstract
In-situ forming implant formulations based on poly(lactic-co-glycolic acid) (PLGA), acetyltributyl citrate (ATBC), minocycline HCl, N-methyl pyrrolidone (NMP) and optionally hydroxypropyl methylcellulose (HPMC) were prepared and thoroughly characterized in vitro. This includes electron paramagnetic resonance (EPR), nuclear magnetic resonance ((1)H NMR), mass change and drug release measurements under different conditions, optical microscopy, size exclusion chromatography (SEC) as well as antibacterial activity tests using gingival crevicular fluid samples from periodontal pockets of periodontitis patients. Based on these results, deeper insight into the physico-chemical phenomena involved in implant formation and the control of drug release could be gained. For instance, the effects of adding HPMC to the formulations, resulting in improved implant adherence and reduced swelling, could be explained. Importantly, the in-situ formed implants effectively hindered the growth of bacteria present in the patients' periodontal pockets. Interestingly, the systems were more effectively hindering the growth of pathogenic bacterial strains (e.g., Fusobacterium nucleatum) than that of strains with a lower pathogenic potential (e.g., Streptococcus salivarius). In vivo, such a preferential action against the pathogenic bacteria can be expected to give a chance to the healthy flora to re-colonize the periodontal pockets.
Collapse
Affiliation(s)
- M P Do
- University of Lille, College of Pharmacy, 3 Rue du Prof. Laguesse, 59006 Lille, France; INSERM U 1008, Controlled Drug Delivery Systems and Biomaterials, 3 Rue du Prof. Laguesse, 59006 Lille, France
| | - C Neut
- University of Lille, College of Pharmacy, 3 Rue du Prof. Laguesse, 59006 Lille, France; INSERM U 995, Inflammatory Bowel Diseases, 3 Rue du Prof. Laguesse, 59006 Lille, France
| | - H Metz
- Martin-Luther-University Halle-Wittenberg, Department of Pharmaceutics and Biopharmaceutics, Halle/Saale, Germany
| | - E Delcourt
- INSERM U 1008, Controlled Drug Delivery Systems and Biomaterials, 3 Rue du Prof. Laguesse, 59006 Lille, France; University of Lille, School of Dentistry, Place de Verdun, 59000 Lille, France
| | - J Siepmann
- University of Lille, College of Pharmacy, 3 Rue du Prof. Laguesse, 59006 Lille, France; INSERM U 1008, Controlled Drug Delivery Systems and Biomaterials, 3 Rue du Prof. Laguesse, 59006 Lille, France
| | - K Mäder
- Martin-Luther-University Halle-Wittenberg, Department of Pharmaceutics and Biopharmaceutics, Halle/Saale, Germany
| | - F Siepmann
- University of Lille, College of Pharmacy, 3 Rue du Prof. Laguesse, 59006 Lille, France; INSERM U 1008, Controlled Drug Delivery Systems and Biomaterials, 3 Rue du Prof. Laguesse, 59006 Lille, France.
| |
Collapse
|
24
|
The interaction between Streptococcus spp. and Veillonella tobetsuensis in the early stages of oral biofilm formation. J Bacteriol 2015; 197:2104-2111. [PMID: 25917902 DOI: 10.1128/jb.02512-14] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dental plaque is a multispecies oral biofilm, the development of which is initiated by adherence of the pioneer Streptococcus spp. Oral Veillonella spp., including V. atypica, V. denticariosi, V. dispar, V. parvula, V. rogosae, and V. tobetsuensis, are known as early colonizers in oral biofilm formation. These species have been reported to co-aggregate with Streptococcus spp. in a metabolic cooperation-dependent manner to form biofilms in human oral cavities, especially in the early stages of biofilm formation. However, in our previous study, Streptococcus gordonii showed biofilm formation to the greatest extent in the presence of V. tobetsuensis, without co-aggregation between species. These results suggest that V. tobetsuensis produces signaling molecules that promote the proliferation of S. gordonii in biofilm formation. It is well known in many bacterial species that the quorum-sensing (QS) system regulates diverse functions such as biofilm formation. However, little is known about the QS system with autoinducers (AIs), between Veillonella and Streptococcus. Recently, AI-1 and AI-2 were detected and identified in the culture supernatants of V. tobetsuensis as strong signaling molecules in biofilm formation with S. gordonii. In particular, the supernatant from V. tobetsuensis showed the highest AI-2 activity among 6 oral Veillonella species, indicating that AIs, mainly AI-2, produced by V. tobetsuensis may be important factors and may facilitate biofilm formation of S. gordonii. Clarifying the mechanism that underlies the QS system between S. gordonii and V. tobetsuensis may lead to the development of novel methods for the prevention of oral infectious diseases caused by oral biofilms.
Collapse
|
25
|
Do MP, Neut C, Metz H, Delcourt E, Mäder K, Siepmann J, Siepmann F. In-situ forming composite implants for periodontitis treatment: How the formulation determines system performance. Int J Pharm 2015; 486:38-51. [PMID: 25791762 DOI: 10.1016/j.ijpharm.2015.03.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 11/27/2022]
Abstract
Periodontitis is the primary cause of tooth loss in adults and a very wide-spread disease. Recently, composite implants, based on a drug release rate controlling polymer and an adhesive polymer, have been proposed for an efficient local drug treatment. However, the processes involved in implant formation and the control of drug release in these composite systems are complex and the relationships between the systems' composition and the implants' performance are yet unclear. In this study, advanced characterization techniques (e.g., electron paramagnetic resonance, EPR) were applied to better understand the in-situ forming implants based on: (i) different types of poly(lactic-co-glycolic acid) (PLGA) as drug release rate controlling polymers; (ii) hydroxypropyl methylcellulose (HPMC) as adhesive polymer; and (iii) doxycycline or metronidazole as drugs. Interestingly, HPMC addition to shorter chain PLGA slightly slows down drug release, whereas in the case of longer chain PLGA the release rate substantially increases. This opposite impact on drug release was rather surprising, since the only difference in the formulations was the polymer molecular weight of the PLGA. Based on the physico-chemical analyses, the underlying mechanisms could be explained as follows: since longer chain PLGA is more hydrophobic than shorter chain PLGA, the addition of HPMC leads to a much more pronounced facilitation of water penetration into the system (as evidenced by EPR). This and the higher polymer lipophilicity result in more rapid PLGA precipitation and a more porous inner implant structure. Consequently, drug release is accelerated. In contrast, water penetration into formulations based on shorter chain PLGA is rather similar in the presence and absence of HPMC and the resulting implants are much less porous than those based on longer chain PLGA.
Collapse
Affiliation(s)
- M P Do
- University of Lille, College of Pharmacy, 3 Rue du Prof. Laguesse, 59006 Lille, France; INSERM U 1008, 3 Rue du Prof. Laguesse, Lille 59006, France
| | - C Neut
- University of Lille, College of Pharmacy, 3 Rue du Prof. Laguesse, 59006 Lille, France; INSERM U 995, 3 Rue du Prof. Laguesse, Lille 59006, France
| | - H Metz
- Martin-Luther-University Halle-Wittenberg, Department of Pharmaceutics and Biopharmaceutics, Halle/Saale, Germany
| | - E Delcourt
- INSERM U 1008, 3 Rue du Prof. Laguesse, Lille 59006, France; University of Lille, School of Dentistry, Place de Verdun, Lille 59000, France
| | - K Mäder
- Martin-Luther-University Halle-Wittenberg, Department of Pharmaceutics and Biopharmaceutics, Halle/Saale, Germany
| | - J Siepmann
- University of Lille, College of Pharmacy, 3 Rue du Prof. Laguesse, 59006 Lille, France; INSERM U 1008, 3 Rue du Prof. Laguesse, Lille 59006, France
| | - F Siepmann
- University of Lille, College of Pharmacy, 3 Rue du Prof. Laguesse, 59006 Lille, France; INSERM U 1008, 3 Rue du Prof. Laguesse, Lille 59006, France.
| |
Collapse
|
26
|
Propionibacterium acnes: from commensal to opportunistic biofilm-associated implant pathogen. Clin Microbiol Rev 2015; 27:419-40. [PMID: 24982315 DOI: 10.1128/cmr.00092-13] [Citation(s) in RCA: 414] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Propionibacterium acnes is known primarily as a skin commensal. However, it can present as an opportunistic pathogen via bacterial seeding to cause invasive infections such as implant-associated infections. These infections have gained more attention due to improved diagnostic procedures, such as sonication of explanted foreign materials and prolonged cultivation time of up to 14 days for periprosthetic biopsy specimens, and improved molecular methods, such as broad-range 16S rRNA gene PCR. Implant-associated infections caused by P. acnes are most often described for shoulder prosthetic joint infections as well as cerebrovascular shunt infections, fibrosis of breast implants, and infections of cardiovascular devices. P. acnes causes disease through a number of virulence factors, such as biofilm formation. P. acnes is highly susceptible to a wide range of antibiotics, including beta-lactams, quinolones, clindamycin, and rifampin, although resistance to clindamycin is increasing. Treatment requires a combination of surgery and a prolonged antibiotic treatment regimen to successfully eliminate the remaining bacteria. Most authors suggest a course of 3 to 6 months of antibiotic treatment, including 2 to 6 weeks of intravenous treatment with a beta-lactam. While recently reported data showed a good efficacy of rifampin against P. acnes biofilms, prospective, randomized, controlled studies are needed to confirm evidence for combination treatment with rifampin, as has been performed for staphylococcal implant-associated infections.
Collapse
|
27
|
Richards AM, Abu Kwaik Y, Lamont RJ. Code blue: Acinetobacter baumannii, a nosocomial pathogen with a role in the oral cavity. Mol Oral Microbiol 2014; 30:2-15. [PMID: 25052812 DOI: 10.1111/omi.12072] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2014] [Indexed: 01/20/2023]
Abstract
Actinetobacter baumannii is an important nosocomial pathogen that can cause a wide range of serious conditions including pneumonia, meningitis, necrotizing fasciitis and sepsis. It is also a major cause of wound infections in military personnel injured during the conflicts in Afghanistan and Iraq, leading to its popular nickname of 'Iraqibacter'. Contributing to its success in clinical settings is resistance to environmental stresses such as desiccation and disinfectants. Moreover, in recent years there has been a dramatic increase in the number of A. baumannii strains with resistance to multiple antibiotic classes. Acinetobacter baumannii is an inhabitant of oral biofilms, which can act as a reservoir for pneumonia and chronic obstructive pulmonary disease. Subgingival colonization by A. baumannii increases the risk of refractory periodontitis. Pathogenesis of the organism involves adherence, biofilm formation and iron acquisition. In addition, A. baumannii can induce apoptotic cell death in epithelial cells and kill hyphal forms of Candida albicans. Virulence factors that have been identified include pili, the outer membrane protein OmpA, phospholipases and extracellular polysaccharide. Acinetobacter baumannii can sense blue light through a blue-light sensing using flavin (BLUF) domain protein, BlsA. The resulting conformational change in BlsA leads to changes in gene expression, including virulence genes.
Collapse
Affiliation(s)
- A M Richards
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, USA
| | | | | |
Collapse
|
28
|
Arora N, Mishra A, Chugh S. Microbial role in periodontitis: Have we reached the top? Some unsung bacteria other than red complex. J Indian Soc Periodontol 2014; 18:9-13. [PMID: 24744537 PMCID: PMC3988654 DOI: 10.4103/0972-124x.128192] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/25/2013] [Indexed: 12/12/2022] Open
Abstract
The microbial etiology of periodontal disease has been the focus of researchers for a long time. The search for the pathogens of periodontal diseases has been underway for more than 100 years, and continues up today. Despite the increasing knowledge about oral microbiota, we are not able to implicate any one particular organism that can be considered as a candidate pathogen. In fact the term "candidate pathogen" has lost its steam with a myriad of microorganisms being incriminated from time to time. Most studies of the bacterial etiology of periodontitis have used either culture-based or targeted deoxyribonucleic acid approaches and so it is likely that pathogens remain undiscovered. The advent of 16S cloning and sequencing has facilitated identification of several uncultivable bacteria in the oral cavity. The concept that not one single organism, but several organisms contained in the biofilm orchestrating in a medley of the show appears to be more plausible. The present review highlights some lesser known bacteria associated with periodontal destruction.
Collapse
Affiliation(s)
- Nupur Arora
- Department of Periodontics, Sri Sai College of Dental Surgery, Vikarabad, Andhra Pradesh, India
| | - Ashank Mishra
- Department of Periodontics, Sri Sai College of Dental Surgery, Vikarabad, Andhra Pradesh, India
| | - Samir Chugh
- Department of Oral and Maxillofacial Surgery, Dr. HSRSM Dental College, Hingoli, Maharashtra, India
| |
Collapse
|
29
|
Do MP, Neut C, Delcourt E, Seixas Certo T, Siepmann J, Siepmann F. In situ forming implants for periodontitis treatment with improved adhesive properties. Eur J Pharm Biopharm 2014; 88:342-50. [PMID: 24833006 DOI: 10.1016/j.ejpb.2014.05.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 04/23/2014] [Accepted: 05/05/2014] [Indexed: 11/25/2022]
Abstract
Novel in situ forming implants are presented showing a promising potential to overcome one of the major practical hurdles associated with local periodontitis treatment: limited adhesion to the surrounding tissue, resulting in accidental expulsion of at least parts of the implants from the patients' pockets. This leads to high uncertainties in the systems' residence times at the site of action and in the resulting drug exposure. In the present study, the addition of different types and amounts of plasticizers (acetyltributyl citrate and dibutyl sebacate) as well as of adhesive polymers (e.g., cellulose derivatives such as hydroxypropyl methylcellulose) is shown to allow for a significant increase in the stickiness of poly(lactic-co-glycolic acid)-based implants. The systems are formed in situ from N-methyl pyrrolidone-based liquid formulations. Importantly, at the same time, good plastic deformability of the implants can be provided and desired drug release patterns can be fine-tuned using several formulation tools. The antimicrobial activity of this new type of in situ forming implants, loaded with doxycycline hyclate, was demonstrated using the agar well diffusion method and multiple Streptococcus strains isolated from the oral microflora of patients suffering from periodontitis.
Collapse
Affiliation(s)
- M P Do
- University of Lille, College of Pharmacy, Lille, France; INSERM U 1008, Controlled Drug Delivery Systems and Biomaterials, Lille, France
| | - C Neut
- University of Lille, College of Pharmacy, Lille, France; INSERM U 995, Inflammatory Bowel Diseases, Lille, France
| | - E Delcourt
- INSERM U 1008, Controlled Drug Delivery Systems and Biomaterials, Lille, France; University of Lille, School of Dentistry, Lille, France
| | - T Seixas Certo
- University of Lille, College of Pharmacy, Lille, France; INSERM U 1008, Controlled Drug Delivery Systems and Biomaterials, Lille, France
| | - J Siepmann
- University of Lille, College of Pharmacy, Lille, France; INSERM U 1008, Controlled Drug Delivery Systems and Biomaterials, Lille, France
| | - F Siepmann
- University of Lille, College of Pharmacy, Lille, France; INSERM U 1008, Controlled Drug Delivery Systems and Biomaterials, Lille, France.
| |
Collapse
|
30
|
Egyed L, Makrai L. Cultivable internal bacterial flora of ticks isolated in Hungary. EXPERIMENTAL & APPLIED ACAROLOGY 2014; 63:107-122. [PMID: 24366635 DOI: 10.1007/s10493-013-9762-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 12/04/2013] [Indexed: 06/03/2023]
Abstract
From six sampling sites in north-western Hungary 126 questing ticks of three species (Ixodes ricinus, Dermacentor reticulatus, Haemaphysalis concinna) were sampled. After inactivating the external bacteria on the surface of ticks, the internal bacterial flora was cultured (two kinds of agar media at three temperatures with aerobic and anaerobic conditions were applied), and 116 strains were isolated. Our results showed, that after a blood meal the bacterial contamination of ticks was much higher in Ixodes and Dermacentor, than in Haemaphysalis, indicating different host range or blood meal habits. Most (89.7 %) of the bacteria were Gram-positive, the most frequent genera were the Staphylococcus (18.1 %) and Bacillus (7.8 %). The percentage of bacteria part of the skin and mucosal flora was 21.6 %. Among the environmental bacteria 14 were found with reported medical importance. The results show, that members of some genera are able to replicate inside the ticks (Mycobacterium, Bacillus) which can increase their potential risk. Isolated bacteria/tick ratio continuously grew from larvae to adults, indicating that larvae probably are hatched sterile, but later bacterial uptake from the environment and from the hosts increases bacterial contamination. Ten anaerobic bacteria were cultured, mostly Propionibacterium acnes, a facultative skin pathogen. No significant differences were found between the isolated bacteria of the six sampling sites. Our work showed, that internal bacterial community of ticks is diverse, novel strains were isolated several with medical importance, some bacteria multiplicate inside ticks, and that ticks continuously take up bacteria from the environment. Our study first described anaerobic bacteria from ticks.
Collapse
Affiliation(s)
- László Egyed
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, 1143, Budapest, Hungary,
| | | |
Collapse
|
31
|
Tomita S, Kasai S, Ihara Y, Imamura K, Kita D, Ota K, Kinumatsu T, Nakagawa T, Saito A. Effects of systemic administration of sitafloxacin on subgingival microflora and antimicrobial susceptibility profile in acute periodontal lesions. Microb Pathog 2014; 71-72:1-7. [PMID: 24747615 DOI: 10.1016/j.micpath.2014.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 01/08/2023]
Abstract
The aim of this study was to assess the effect(s) of systemic administration of sitafloxacin on subgingival microbial profiles of acute periodontal lesions. Antimicrobial susceptibility of clinical isolates was also investigated. Patients with acute phases of chronic periodontitis were subjected to clinical examination and microbiological assessment of their subgingival plaque samples by culture technique. Sitafloxacin was then administered (100 mg/day for 5 days) systemically. The clinical and microbiological examinations were repeated 6-8 days after administration. Susceptibilities of clinical isolates to various antimicrobials were determined using the broth and agar dilution methods. From the sampled sites in 30 participants, a total of 355 clinical isolates (34 different bacterial species) were isolated and identified. Parvimonas micra, Prevotella intermedia and Streptococcus mitis were the most prevalent cultivable bacteria in acute sites. Systemic administration of sitafloxacin yielded a significant improvement in clinical and microbiological parameters. Among the antimicrobials tested, sitafloxacin was the most potent against the clinical isolates with an MIC90 of 0.12 μg/ml at baseline. After administration, most clinical isolates were still highly susceptible to sitafloxacin although some increase in MICs was observed. The results suggest that systemic administration of sitafloxacin is effective against subgingival bacteria isolated from acute periodontal lesions.
Collapse
Affiliation(s)
- Sachiyo Tomita
- Department of Periodontology, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Shunsuke Kasai
- Department of Dentistry and Oral Surgery, School of Medicine, Keio University, 35 Shinanomachi, Sinnjuku-ku, Tokyo 160-8582, Japan
| | - Yuichiro Ihara
- Department of Dentistry and Oral Surgery, School of Medicine, Keio University, 35 Shinanomachi, Sinnjuku-ku, Tokyo 160-8582, Japan
| | - Kentaro Imamura
- Department of Periodontology, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Daichi Kita
- Department of Periodontology, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Koki Ota
- Department of Periodontology, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; Oral Health Science Center, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Takashi Kinumatsu
- Department of Periodontology, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Taneaki Nakagawa
- Department of Dentistry and Oral Surgery, School of Medicine, Keio University, 35 Shinanomachi, Sinnjuku-ku, Tokyo 160-8582, Japan
| | - Atsushi Saito
- Department of Periodontology, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; Oral Health Science Center, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan.
| |
Collapse
|
32
|
Zorina OA, Petrukhina NB, Basova AA, Shibaeva AV, Trubnikova EV, Shevelev AB. [Identification of key markers of normal and pathogenic microbiota determining health of periodontium by NGS-sequencing 16S-rDNA libraries of periodontal swabs]. STOMATOLOGIIA 2014; 93:25-31. [PMID: 25588395 DOI: 10.17116/stomat201493625-31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
By using NGS-sequencing libraries of DNA from periodontal swabs with primers specific to V6 region of 16S rDNA prevalence of bacterial genera and species in periodontal microbiota of patients with aggressive periodontitis and healthy donors was analyzed. Six genera of putative periodontal protectors and eight periodontal pathogens were identified with respect to aggressive (but not chronic) periodontitis. Statistically relevant over-colonization by general Porphyromonas, Treponema, Synergistes, Tannerella, Filifactor, Ruminococcus, Parvimonas and Mycoplasma was found to be associated with the condition. From these, only three genera Porphyromonas, Treponema and Tannerella are traditionally considered as periodontal pathogens. Statistically confidential over-colonization by genus Veillonella was found in healthy patients. This genus should be considered as a relevant marker of a healthy periodontium. Genera Streptococcus, Bergeyella, Granulicatella, Kingella and Corynebacterium may be considered as putative periodontal protectors. Comparison of data of NGS-sequencing and real-time PCR demonstrated a good agreement if different PCR efficiency using independent primer pairs is taken into account.
Collapse
Affiliation(s)
- O A Zorina
- FGBU "Tsentral'nyĭ nauchno-issledovatel'skiĭ institut stomatologii i cheliustno-litsevoĭ khirurgii" Ministerstva zdravookhraneniia Rossiĭskoĭ Federatsii, Moskva; GBOU VPO Pervyĭ Moskovskiĭ gosudarstvennyĭ universitet im. I.M. Sechenova, Moskva
| | - N B Petrukhina
- FGBU "Tsentral'nyĭ nauchno-issledovatel'skiĭ institut stomatologii i cheliustno-litsevoĭ khirurgii" Ministerstva zdravookhraneniia Rossiĭskoĭ Federatsii, Moskva; GBOU VPO Pervyĭ Moskovskiĭ gosudarstvennyĭ universitet im. I.M. Sechenova, Moskva
| | - A A Basova
- GBOU VPO Pervyĭ Moskovskiĭ gosudarstvennyĭ universitet im. I.M. Sechenova, Moskva
| | - A V Shibaeva
- Institut biokhimicheskoĭ fiziki im. N.M. Émanuélia RAN, Moskva; Institut poliomielita i virusnykh éntsefalitov im. M.P. Chumakova RAMN, Moskva
| | | | - A B Shevelev
- Institut poliomielita i virusnykh éntsefalitov im. M.P. Chumakova RAMN, Moskva
| |
Collapse
|
33
|
Mashima I, Nakazawa F. A review on the characterization of a novel oral Veillonella species, V. tobetsuensis, and its role in oral biofilm formation. J Oral Biosci 2013. [DOI: 10.1016/j.job.2013.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|