1
|
Arioli M, Puiggalí J, Franco L. Nylons with Applications in Energy Generators, 3D Printing and Biomedicine. Molecules 2024; 29:2443. [PMID: 38893319 PMCID: PMC11173604 DOI: 10.3390/molecules29112443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Linear polyamides, known as nylons, are a class of synthetic polymers with a wide range of applications due to their outstanding properties, such as chemical and thermal resistance or mechanical strength. These polymers have been used in various fields: from common and domestic applications, such as socks and fishing nets, to industrial gears or water purification membranes. By their durability, flexibility and wear resistance, nylons are now being used in addictive manufacturing technology as a good material choice to produce sophisticated devices with precise and complex geometric shapes. Furthermore, the emergence of triboelectric nanogenerators and the development of biomaterials have highlighted the versatility and utility of these materials. Due to their ability to enhance triboelectric performance and the range of applications, nylons show a potential use as tribo-positive materials. Because of the easy control of their shape, they can be subsequently integrated into nanogenerators. The use of nylons has also extended into the field of biomaterials, where their biocompatibility, mechanical strength and versatility have paved the way for groundbreaking advances in medical devices as dental implants, catheters and non-absorbable surgical sutures. By means of 3D bioprinting, nylons have been used to develop scaffolds, joint implants and drug carriers with tailored properties for various biomedical applications. The present paper aims to collect evidence of these recently specific applications of nylons by reviewing the literature produced in recent decades, with a special focus on the newer technologies in the field of energy harvesting and biomedicine.
Collapse
Affiliation(s)
- Matteo Arioli
- Departament d’Enginyeria Química, Escola d’Enginyeria de Barcelona Est-EEBE, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10–14, 08019 Barcelona, Spain; (M.A.); (J.P.)
| | - Jordi Puiggalí
- Departament d’Enginyeria Química, Escola d’Enginyeria de Barcelona Est-EEBE, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10–14, 08019 Barcelona, Spain; (M.A.); (J.P.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10–14, 08019 Barcelona, Spain
| | - Lourdes Franco
- Departament d’Enginyeria Química, Escola d’Enginyeria de Barcelona Est-EEBE, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10–14, 08019 Barcelona, Spain; (M.A.); (J.P.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10–14, 08019 Barcelona, Spain
| |
Collapse
|
2
|
Chug M, Crutchfield N, Garren M, Handa H, Brisbois EJ. Engineering Nitric Oxide-Releasing Antimicrobial Dental Coating for Targeted Gingival Therapy. ACS APPLIED BIO MATERIALS 2024; 7:2993-3004. [PMID: 38593411 PMCID: PMC11110066 DOI: 10.1021/acsabm.4c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Bacterial biofilms play a central role in the development and progression of periodontitis, a chronic inflammatory condition that affects the oral cavity. One solution to current treatment constraints is using nitric oxide (NO)─with inherent antimicrobial properties. In this study, an antimicrobial coating is developed from the NO donor S-nitroso-N-acetylpenicillamine (SNAP) embedded within polyethylene glycol (PEG) to prevent periodontitis. The SNAP-PEG coating design enabled a controlled NO release, achieving tunable NO levels for more than 24 h. Testing the SNAP-PEG composite on dental floss showed its effectiveness as a uniform and bioactive coating. The coating exhibited antibacterial properties against Streptococcus mutans and Escherichia coli, with inhibition zones measuring up to 7.50 ± 0.28 and 14.80 ± 0.46 mm2, respectively. Furthermore, SNAP-PEG coating materials were found to be stable when stored at room temperature, with 93.65% of SNAP remaining after 28 d. The coatings were biocompatible against HGF and hFOB 1.19 cells through a 24 h controlled release study. This study presents a facile method to utilize controlled NO release with dental antimicrobial coatings comprising SNAP-PEG. This coating can be easily applied to various substrates, providing a user-friendly approach for targeted self-care in managing gingival infections associated with periodontitis.
Collapse
Affiliation(s)
- Manjyot
Kaur Chug
- School of Chemical, Materials,
and Biomedical Engineering, University of
Georgia, 302 E Campus
Rd, Athens, Georgia 30605, United States
| | - Natalie Crutchfield
- School of Chemical, Materials,
and Biomedical Engineering, University of
Georgia, 302 E Campus
Rd, Athens, Georgia 30605, United States
| | - Mark Garren
- School of Chemical, Materials,
and Biomedical Engineering, University of
Georgia, 302 E Campus
Rd, Athens, Georgia 30605, United States
| | - Hitesh Handa
- School of Chemical, Materials,
and Biomedical Engineering, University of
Georgia, 302 E Campus
Rd, Athens, Georgia 30605, United States
| | - Elizabeth J. Brisbois
- School of Chemical, Materials,
and Biomedical Engineering, University of
Georgia, 302 E Campus
Rd, Athens, Georgia 30605, United States
| |
Collapse
|
3
|
Liu C, Hu X, Zhou X, Ma Y, Leung PHM, Xin JH, Fei B. Guanidine-containing double-network silks with enhanced tensile and antibacterial property. Int J Biol Macromol 2023:125470. [PMID: 37336382 DOI: 10.1016/j.ijbiomac.2023.125470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/02/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
The bacterial infection of surgical wounds results in prolonged hospitalization and even death of patients, calling for antibacterial function in modern suture products. To tackle this challenge, cationic guanidine-containing copolymer was synthesized, exhibiting antibacterial potency over 5 log reduction against both Gram-positive S. aureus and Gram-negative E. coli. Furthermore, we developed a double-network silk suture by integrating a guanidine-containing copolymer network into the silk fibroin network. This suture exhibited biocidal activity against S. aureus and E. coli, and superior strength compared to the commercial product in both dry and wet conditions. These results may bring general benefits to public health and medical equipment sustainability.
Collapse
Affiliation(s)
- Chang Liu
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong
| | - Xin Hu
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong
| | - Xiang Zhou
- Department of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Ma
- Jinzhou Central Hospital, Jinzhou, China
| | - Polly H M Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong
| | - John H Xin
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong
| | - Bin Fei
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong.
| |
Collapse
|
4
|
Sabarees G, Tamilarasi G, Velmurugan V, Alagarsamy V, Sibuh BZ, Sikarwar M, Taneja P, Kumar A, Gupta PK. Emerging trends in silk fibroin based nanofibers for impaired wound healing. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Boese S, Gill HS. Drug-Coated Floss to Treat Gum Diseases: In Vitro and In Vivo Characterization. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28663-28670. [PMID: 35708223 DOI: 10.1021/acsami.2c07976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Treatment of gum disease often requires antibiotic treatment. In this study, our objective was to advance the practicality of drug-coated floss as an intra gum pocket drug delivery system. The initial design of this delivery system has been previously reported by us. Here, we advance the concept further through in vitro and in vivo evaluation. A floss piece was dip coated in the middle section with model molecules leaving free ends for holding. Porcine gum tissues were used ex vivo and in vivo to evaluate the coated floss, including effect of coating thickness on delivery efficiency, ability to deliver more than one type of molecule (one hydrophilic and one hydrophobic), mechanical properties using a scratch test, and finally retention of delivered material in vivo in the porcine model. After reaching a certain coating thickness, the delivery efficiency of the coated floss decreased, indicating the presence of an optimal coating thickness. Hydrophobic and hydrophilic molecules were successfully coated and delivered with high efficiency into gum pockets. The scratch test indicated that the coatings were resilient. Lastly, the in vivo analysis showed that the drug coating was delivered into the porcine gum pocket with about 65% efficiency, and the coatings could maintain extended residency within the gum pocket despite the native adverse environment of the oral cavity. Overall, this data shows that drug-coated floss can act as a drug delivery vehicle and has potential to provide a minimally invasive and practical method for the delivery of drugs into the gum pockets.
Collapse
Affiliation(s)
- Seth Boese
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Harvinder Singh Gill
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
6
|
Xu L, Liu Y, Zhou W, Yu D. Electrospun Medical Sutures for Wound Healing: A Review. Polymers (Basel) 2022; 14:1637. [PMID: 35566807 PMCID: PMC9105379 DOI: 10.3390/polym14091637] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
With the increasing demand for wound healing around the world, the level of medical equipment is also increasing, but sutures are still the preferred medical equipment for medical personnel to solve wound closures. Compared with the traditional sutures, the nanofiber sutures produced by combining the preparation technology of drug-eluting sutures have greatly improved both mechanical properties and biological properties. Electrospinning technology has attracted more attention as one of the most convenient and simple methods for preparing functional nanofibers and the related sutures. This review firstly discusses the structural classification of sutures and the performance analysis affecting the manufacture and use of sutures, followed by the discussion and classification of electrospinning technology, and then summarizes the relevant research on absorbable and non-absorbable sutures. Finally, several common polymers and biologically active substances used in creating sutures are concluded, the related applications of sutures are discussed, and the future prospects of electrospinning sutures are suggested.
Collapse
Affiliation(s)
- Lin Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (L.X.); (W.Z.)
| | - Yanan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (L.X.); (W.Z.)
| | - Wenhui Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (L.X.); (W.Z.)
| | - Dengguang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (L.X.); (W.Z.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| |
Collapse
|
7
|
Ghalei S, Handa H. A Review on Antibacterial Silk Fibroin-based Biomaterials: Current State and Prospects. MATERIALS TODAY. CHEMISTRY 2022; 23:100673. [PMID: 34901586 PMCID: PMC8664245 DOI: 10.1016/j.mtchem.2021.100673] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Bacterial contamination of biomaterials is a common problem and a serious threat to human health worldwide. Therefore, the development of multifunctional biomaterials that possess antibacterial properties and can resist infection is a continual goal for biomedical applications. Silk fibroin (SF), approved by U.S. Food and Drug Administration (FDA) as a biomaterial, is one of the most widely studied natural polymers for biomedical applications due to its unique mechanical properties, biocompatibility, tunable biodegradation, and versatile material formats. In the last decade, many methods have been employed for the development of antibacterial SF-based biomaterials (SFBs) such as physical loading or chemical functionalization of SFBs with different antibacterial agents and bio-inspired surface modifications. In this review, we first describe the current understanding of the composition and structure-properties relationship of SF as a leading-edge biomaterial. Then we demonstrate the different antibacterial agents and methods implemented for the development of bactericidal SFBs, their mechanisms of action, and different applications. We briefly address their fabrication methods, advantages, and limitations, and finally discuss the emerging technologies and future trends in this research area.
Collapse
Affiliation(s)
- Sama Ghalei
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, United States
| |
Collapse
|
8
|
Boese S, Gill HS. Coated floss for drug delivery into the gum pocket. Int J Pharm 2021; 606:120855. [PMID: 34224840 DOI: 10.1016/j.ijpharm.2021.120855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 12/21/2022]
Abstract
The purpose of this study was to develop a drug-coated floss to allow delivery of therapeutics into diseased gum pocket. Periodontal (gum) disease affects nearly 45% of adults over 30 years of age. Bacterial persistence makes treatment challenging. Drug-coated floss is expected to provide a self-administrable and targeted method for drug delivery into the diseased gum pockets. We investigated various types of floss and sutures as potential candidates to coat drug. An un-waxed nylon braided floss was selected and dip-coated with model hydrophilic and hydrophobic drugs either in free form or after encapsulation in poly(lactic-co-glycolic acid) particles. By tuning the drug concentration or the number of times a floss is dipped into the coating solution we were able to coat from as little as 0.4 μg to as high as 1.6 mg of drug. Coated floss was passed within the gum pocket of excised porcine mandibles to demonstrate delivery efficiency up to 91%. Utilizing the porcine jaw in an ex-vivo condition we illustrated the ability of the delivered drug to diffuse into the tissue. Overall, the data illustrates the potential of coated floss as an innovative modality for drug delivery to the gum pocket.
Collapse
Affiliation(s)
- Seth Boese
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Harvinder Singh Gill
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
9
|
Berninghausen LK, Osterhoff G, Langer S, Kohler LH. Scar quality examination comparing titanium-coated suture material and non-coated suture material on flap donor sites in reconstructive surgery. BMC Surg 2020; 20:268. [PMID: 33143708 PMCID: PMC7640681 DOI: 10.1186/s12893-020-00932-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/27/2020] [Indexed: 01/27/2023] Open
Abstract
Background Wound healing and scar quality after trauma are subject to impairment through excessive wound healing, chronic wound or even surgical site infections. Optimizing the process of scar formation and skin healing is crucial in virtually all fields of medicine. In this regard, we tested the possible usage and advantages of titanium coated suture material. Methods We performed a prospective observational cohort study including 30 patients who underwent soft tissue reconstruction. One half of the donor flap site was sutured with titanium coated suture material, while the other half was closed with non-coated sutures. Scar quality of the donor flap site was assessed by photographs and POSAS scores on days 2–5, 14, 42, 72 and 180 postoperatively. Results No difference between the titanium coated sutures and non-coated sutures was seen in the POSAS assessment, neither for the patient scale at 14, 42, 72 and 180 days, nor for the observer scale on the same dates. Comorbidities like diabetes, chronic renal failure and smoking as well as the BMI of each patient affected the wound healing process to an equal degree on both sides of the suture. Conclusions No difference between the titanium coated and non-titanium-coated suture material was seen in the POSAS assessment in regard to scar quality and wound healing. The titanium-coated suture material can be considered to be equally as effective and safe in all qualities as the non-titanium-coated suture material, even in patients with comorbidities. Clinical trial register This study is registered at the German Clinical Trials Register (DRKS) under the registration number DRKS00021767. (https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00021767)
Collapse
Affiliation(s)
- Laura K Berninghausen
- Department of Orthopedic, Trauma and Plastic Surgery, Leipzig University Hospital, Liebigstraße 20, 04103, Leipzig, Saxony, Germany
| | - Georg Osterhoff
- Department of Orthopedic, Trauma and Plastic Surgery, Leipzig University Hospital, Liebigstraße 20, 04103, Leipzig, Saxony, Germany
| | - Stefan Langer
- Department of Orthopedic, Trauma and Plastic Surgery, Leipzig University Hospital, Liebigstraße 20, 04103, Leipzig, Saxony, Germany
| | - Lukas H Kohler
- Department of Orthopedic, Trauma and Plastic Surgery, Leipzig University Hospital, Liebigstraße 20, 04103, Leipzig, Saxony, Germany.
| |
Collapse
|
10
|
Kwaśniewska D, Chen YL, Wieczorek D. Biological Activity of Quaternary Ammonium Salts and Their Derivatives. Pathogens 2020; 9:E459. [PMID: 32531904 PMCID: PMC7350379 DOI: 10.3390/pathogens9060459] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
Besides their positive role, microorganisms are related to a number of undesirable effects, including many diseases, biodeterioration and food spoilage, so when their presence is undesired, they must be controlled. Numerous biocides limiting the development of microorganisms have been proposed, however, in this paper the biocidal and inhibitory activity of quaternary ammonium salts (QASs) and their zwitterionic derivatives is addressed. This paper presents the current state of knowledge about the biocidal activity of QAS and their derivatives. Moreover, the known mechanisms of antimicrobial activity and the problem of emerging resistance to QAS are discussed. The latest trends in the study of surfactants and their potential use are also presented.
Collapse
Affiliation(s)
- Dobrawa Kwaśniewska
- Department of Technology and Instrumental Analysis, Institute of Quality Science, Poznań University of Economics and Business, 61-875 Poznań, Poland;
| | - Ying-Lien Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 100, Taiwan;
| | - Daria Wieczorek
- Department of Technology and Instrumental Analysis, Institute of Quality Science, Poznań University of Economics and Business, 61-875 Poznań, Poland;
| |
Collapse
|
11
|
Fan W, Li Y, Sun Q, Tay FR, Fan B. Quaternary ammonium silane, calcium and phosphorus-loaded PLGA submicron particles against Enterococcus faecalis infection of teeth: An in vitro and in vivo study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110856. [PMID: 32279748 DOI: 10.1016/j.msec.2020.110856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/14/2020] [Accepted: 03/14/2020] [Indexed: 01/05/2023]
Abstract
Refractory root canal infection of human teeth is the primary cause of dental treatment failure. Enterococcus faecalis is the major cause of refractory root canal infection. In the present study, poly(D,L-lactic-co-glycolide) (PLGA) submicron particles were used as carriers to deliver an antimicrobial quaternary ammonium silane (code-named K21) as well as calcium and phosphorus elements. The release profiles, antibacterial ability against E. faecalis, extent of infiltration into dentinal tubules, biocompatibility and in vitro mineralization potential of the particles were investigated. In addition, the antimicrobial effects of the particles against E. faecalis infection were evaluated in vivo in the teeth of beagle dogs. The encapsulated components were released from the PLGA particles in a sustained-release manner. The particles also displayed good biocompatibility, in vitro mineralization ability and antibacterial activity against E. faecalis. The particles could be driven into dentinal tubules of dentin slices by ultrasonic activation and inhibited E. faecalis colonization. In the root canals of beagle dogs, PLGA submicron particles loaded with K21, calcium and phosphorus demonstrated strong preventive effects against E. faecalis infection. The system may be developed into a new intracanal disinfectant for root canal treatment.
Collapse
Affiliation(s)
- Wei Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Yanyun Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Qing Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Franklin R Tay
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Bing Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.
| |
Collapse
|
12
|
Dental floss impregnated with povidone-iodine coated with Eudragit L-100 as an antimicrobial delivery system against periodontal-associated pathogens. J Med Microbiol 2020; 69:298-308. [DOI: 10.1099/jmm.0.001126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
13
|
Anjum S, Gupta A, Kumari S, Gupta B. Preparation and biological characterization of plasma functionalized poly(ethylene terephthalate) antimicrobial sutures. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1655748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Sadiya Anjum
- Department of Textile Technology, Bioengineering Laboratory, Indian Institute of Technology, New Delhi, India
| | - Amlan Gupta
- Department of Pathology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok, India
| | - Shanti Kumari
- Department of Textile Technology, Bioengineering Laboratory, Indian Institute of Technology, New Delhi, India
| | - Bhuvanesh Gupta
- Department of Textile Technology, Bioengineering Laboratory, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
14
|
John CN, Abrantes PMDS, Prusty BK, Ablashi DV, Africa CWJ. K21 Compound, a Potent Antifungal Agent: Implications for the Treatment of Fluconazole-Resistant HIV-Associated Candida Species. Front Microbiol 2019; 10:1021. [PMID: 31231313 PMCID: PMC6558409 DOI: 10.3389/fmicb.2019.01021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 04/24/2019] [Indexed: 11/13/2022] Open
Abstract
Background/Objectives: With mucocutaneous candidiasis being highly prevalent in HIV patients, the emergence of fluconazole-resistant Candida species forms a major challenge in treating and eradicating these infections. The objective of this study was to establish the antifungal activity of K21, a membrane-rupturing antimicrobial compound derived from a silica quaternary ammonium compound (SiQAC) with tetraethoxysilane (TEOS). Methods: The study sample included 81 Candida species of which 9 were type strains and 72 were clinical isolates. Minimum inhibitory concentrations, synergy, fractional inhibitory concentration index (FICI), and time kill assays were determined by broth microdilution. Electron microscopy (EM) was used to determine the qualitative changes brought about after treatment with K21. Results: K21 inhibited the growth of all fluconazole-resistant and susceptible Candida strains with only 2 h of exposure required to effectively kill 99.9% of the inoculum, and a definite synergistic effect was observed with a combination of K21 and fluconazole. EM demonstrated the presence of two forms of extracellular vesicles indicative of biofilm formation and cell lysis. Conclusion: The study established the efficacy of K21 as an antifungal agent and with fluconazole-resistant candidiasis on the increase, the development of K21 can provide a promising alternative to combat acquired drug resistance.
Collapse
Affiliation(s)
- Cathy N. John
- Maternal Endogenous Infections Studies (MEnIS) Research Laboratories, Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa
| | - Pedro M. D. S. Abrantes
- Maternal Endogenous Infections Studies (MEnIS) Research Laboratories, Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa
| | - Bhupesh K. Prusty
- Institute for Virology and Immunobiology, University of Wuerzburg, Wuerzburg, Germany
| | | | - Charlene W. J. Africa
- Maternal Endogenous Infections Studies (MEnIS) Research Laboratories, Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
15
|
Daood U, Burrow MF, Yiu CKY. Effect of a novel quaternary ammonium silane cavity disinfectant on cariogenic biofilm formation. Clin Oral Investig 2019; 24:649-661. [PMID: 31115692 DOI: 10.1007/s00784-019-02928-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/30/2019] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Evaluate effect of quaternary ammonium silane (QAS) cavity disinfectant on cariogenic biofilm. MATERIALS AND METHODS Single- (Streptococcus mutans or Lactobacillus acidophilus), dual- (Streptococcus mutans/Lactobacillus Acidophilus), and multi-species (Streptococcus mutans, Actinomyces naeslundii, and Streptococcus sanguis) biofilms were grown on acid-etched dentine discs. Biofilms were incubated (120 min/37 °C) and allowed to grow for 3 days anaerobically. Discs (no treatment) served as control (group 1). Groups II, III, IV, and V were then treated with 2% chlorhexidine, and 2%, 5%, and 10% QAS (20 s). Discs were returned to well plates with 300 μL of bacterial suspension and placed in anaerobic incubator at 37 °C and biofilms redeveloped for 4 days. Confocal microscopy, Raman, CFU, and MTT assay were performed. RESULTS Raman peaks show shifts at 1450 cm-1, 1453 cm-1, 1457 cm-1, 1460 cm-1, and 1462 cm-1 for control, 2% CHX, 2%, 5%, and 10% QAS groups in multi-species biofilms. There was reduction of 484 cm-1 band in 10% QAS group. CLSM revealed densely clustered green colonies in control group and red confluent QAS-treated biofilms with significantly lower log CFU for single/dual species. Metabolic activities of Streptococcus mutans and Lactobacillus acidophilus decreased with increasing QAS exposure time. CONCLUSION Quaternary ammonium silanes possess antimicrobial activities and inhibit growth of cariogenic biofilms. CLINICAL SIGNIFICANCE Available data demonstrated use of QAS as potential antibacterial cavity disinfectant in adhesive dentistry. Experimental QAS can effectively eliminate caries-forming bacteria, when used inside a prepared cavity, and can definitely overcome problems associated with present available cavity disinfectants.
Collapse
Affiliation(s)
- U Daood
- Clinical Dentistry, Restorative Division, Faculty of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Bukit Jalil, Wilayah Persekutuan, 57000, Kuala Lumpur, Malaysia.
| | - M F Burrow
- Prosthodontic Dentistry, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Road, Pokfulam, Hong Kong, SAR, China
| | - C K Y Yiu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Road, Pokfulam, Hong Kong, SAR, China
| |
Collapse
|
16
|
Elashiry M, Meghil M, Kalathingal S, Buchanan A, Rajendran M, Elrefai R, Ochieng M, Elawady A, Arce R, Sandhage K, Cutler C. Development of radiopaque, biocompatible, antimicrobial, micro-particle fillers for micro-CT imaging of simulated periodontal pockets. Dent Mater 2018; 34:569-578. [DOI: 10.1016/j.dental.2017.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/30/2022]
|
17
|
Preventing Surgical Site Infections Using a Natural, Biodegradable, Antibacterial Coating on Surgical Sutures. Molecules 2017; 22:molecules22091570. [PMID: 28925959 PMCID: PMC6151728 DOI: 10.3390/molecules22091570] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/16/2017] [Indexed: 12/02/2022] Open
Abstract
Surgical site infections (SSIs) are one of the most common nosocomial infections, which can result in serious complications after surgical interventions. Foreign materials such as implants or surgical sutures are optimal surfaces for the adherence of bacteria and subsequent colonization and biofilm formation. Due to a significant increase in antibiotic-resistant bacterial strains, naturally occurring agents exhibiting antibacterial properties have great potential in prophylactic therapies. The aim of this study was to develop a coating for surgical sutures consisting of the antibacterial substance totarol, a naturally occurring diterpenoid isolated from Podocarpustotara in combination with poly(lactide-co-glycolide acid) (PLGA) as a biodegradable drug delivery system. Hence, non-absorbable monofilament and multifilament sutures were coated with solutions containing different amounts and ratios of totarol and PLGA, resulting in a smooth, crystalline coating. Using an agar diffusion test (ADT), it became evident that the PLGA/totarol-coated sutures inhibited the growth of Staphylococcus aureus over a period of 15 days. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that the coated sutures were not cytotoxic to murine fibroblasts. Overall, the data indicates that our innovative, biodegradable suture coating has the potential to reduce the risk of SSIs and postoperative biofilm-formation on suture material without adverse effects on tissue.
Collapse
|
18
|
Jiao Y, Niu LN, Ma S, Li J, Tay FR, Chen JH. Quaternary ammonium-based biomedical materials: State-of-the-art, toxicological aspects and antimicrobial resistance. Prog Polym Sci 2017; 71:53-90. [PMID: 32287485 PMCID: PMC7111226 DOI: 10.1016/j.progpolymsci.2017.03.001] [Citation(s) in RCA: 348] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 12/20/2022]
Abstract
Microbial infections affect humans worldwide. Many quaternary ammonium compounds have been synthesized that are not only antibacterial, but also possess antifungal, antiviral and anti-matrix metalloproteinase capabilities. Incorporation of quaternary ammonium moieties into polymers represents one of the most promising strategies for preparation of antimicrobial biomaterials. Various polymerization techniques have been employed to prepare antimicrobial surfaces with quaternary ammonium functionalities; in particular, syntheses involving controlled radical polymerization techniques enable precise control over macromolecular structure, order and functionality. Although recent publications report exciting advances in the biomedical field, some of these technological developments have also been accompanied by potential toxicological and antimicrobial resistance challenges. Recent evidenced-based data on the biomedical applications of antimicrobial quaternary ammonium-containing biomaterials that are based on randomized human clinical trials, the golden standard in contemporary medicinal science, are included in the present review. This should help increase visibility, stimulate debates and spur conversations within a wider scientific community on the implications and plausibility for future developments of quaternary ammonium-based antimicrobial biomaterials.
Collapse
Affiliation(s)
- Yang Jiao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
- Department of Stomatology, PLA Army General Hospital, 100700, Beijing, China
| | - Li-na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
| | - Sai Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
| | - Jing Li
- Department of Orthopaedic Oncology, Xijing Hospital Affiliated to the Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
| | - Franklin R. Tay
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
- Corresponding authors.
| | - Ji-hua Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
- Corresponding authors.
| |
Collapse
|
19
|
Effect of a novel quaternary ammonium silane on dentin protease activities. J Dent 2017; 58:19-27. [DOI: 10.1016/j.jdent.2017.01.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/30/2016] [Accepted: 01/03/2017] [Indexed: 12/13/2022] Open
|
20
|
Gulve N, Kimmerling K, Johnston AD, Krueger GR, Ablashi DV, Prusty BK. Anti-herpesviral effects of a novel broad range anti-microbial quaternary ammonium silane, K21. Antiviral Res 2016; 131:166-73. [PMID: 27181377 DOI: 10.1016/j.antiviral.2016.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/16/2016] [Accepted: 05/04/2016] [Indexed: 12/29/2022]
Abstract
We have created a novel quaternary ammonium silane, K21 through sol-gel chemistry, using an ethoxylated version of an organosilane quaternary ammonium compound and TetraEthyl Ortho Silicate (TEOS) as precursors. Previous studies using the precursor molecule quaternary ammonium compounds (QACs) and a methacryloxy version of K21, primarily designed for use in dental healthcare, have shown inhibited growth properties against several types of gram-positive and gram-negative bacteria including Escherichia coli, Streptococcus mutans, Actinomyces naeslundii and Candida albicans etc. Here we tested the effect of K21 on HSV-1, HHV-6A and HHV-7 in in vitro cell culture infection models. Our results show growth inhibitory effect of K21 on HSV-1, HHV-6A and HHV-7 infection.
Collapse
Affiliation(s)
- Nitish Gulve
- Biocenter, Chair of Microbiology, University of Würzburg, 97074 Würzburg, Germany
| | | | | | - Gerhard R Krueger
- Department of Pathology and Laboratory Medicine, UT-Houston Medical School, Houston, USA
| | | | - Bhupesh K Prusty
- Biocenter, Chair of Microbiology, University of Würzburg, 97074 Würzburg, Germany.
| |
Collapse
|
21
|
Dennis C, Sethu S, Nayak S, Mohan L, Morsi YY, Manivasagam G. Suture materials - Current and emerging trends. J Biomed Mater Res A 2016; 104:1544-59. [DOI: 10.1002/jbm.a.35683] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/07/2016] [Accepted: 02/05/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Christopher Dennis
- Centre for Biomaterials Science and Technology, School of Mechanical and Building Sciences, VIT University; Vellore Tamil Nadu 632014 India
| | - Swaminathan Sethu
- GROW Research Laboratory, Narayana Nethralaya Foundation; Bangalore Karnataka 560099 India
| | - Sunita Nayak
- Centre for Biomaterials Science and Technology, School of Mechanical and Building Sciences, VIT University; Vellore Tamil Nadu 632014 India
- School of Bio Sciences and Technology, VIT University; Vellore Tamil Nadu 632014 India
| | - Loganathan Mohan
- Surface Engineering Division; CSIR - National Aerospace Laboratories; Bangalore Karnataka 560017 India
| | - Yosry Yos Morsi
- Biomechanical and Tissue Engineering Labs, Faculty of Science, Engineering and Technology, Swinburne University of Technology; Australia
| | - Geetha Manivasagam
- Centre for Biomaterials Science and Technology, School of Mechanical and Building Sciences, VIT University; Vellore Tamil Nadu 632014 India
| |
Collapse
|