1
|
Nemr WA, Nashwa RK. Development of a multiplex polymerase chain reaction assay for detection of hepatitis C virus, hepatitis B virus, and human immunodeficiency virus 1. World J Virol 2024; 13:88164. [PMID: 38616859 PMCID: PMC11008401 DOI: 10.5501/wjv.v13.i1.88164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/07/2023] [Accepted: 01/10/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Hepatitis C virus (HCV), hepatitis B virus (HBV), and human immunodeficiency virus 1 (HIV-1) are the most epidemic blood-borne viruses, posing threats to human health and causing economic losses to nations for combating the infection transmission. The diagnostic methodologies that depend on the detection of viral nucleic acids are much more expensive, but they are more accurate than serological testing. AIM To develop a rapid, cost-effective, and accurate diagnostic multiplex polymerase chain reaction (PCR) assay for simultaneous detection of HCV, HBV, and HIV-1. METHODS The design of the proposed PCR assay targets the amplification of a short conserved region featured with a distinguishable melting profile and electrophoretic molecular weight inside each viral genome. Therefore, this diagnostic method will be appropriate for application in both conventional (combined with electrophoresis) and real-time PCR facilities. Confirmatory in silico investigations were conducted to prove the capability of the approached PCR assay to detect variants of each virus. Then, Egyptian isolates of each virus were subjected to the wet lab examination using the given diagnostic assay. RESULTS The in silico investigations confirmed that the PCR primers can match many viral variants in a multiplex PCR assay. The wet lab experiment proved the efficiency of the assay in distinguishing each viral type through high-resolution melting analysis. Compared to related published assays, the proposed assay in the current study is more sensitive and competitive with many expensive PCR assays. CONCLUSION This study provides a simple, cost-effective, and sensitive diagnostic PCR assay facilitating the detection of the most epidemic blood-borne viruses; this makes the proposed assay promising to be substitutive for the mistakable and cheap serological-based assays.
Collapse
Affiliation(s)
- Waleed Abdelgaber Nemr
- Department of Radiation Microbiology, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo 11371, Egypt
| | - Radwan K Nashwa
- Department of Health Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo 11371, Egypt
| |
Collapse
|
2
|
Belaiba Z, Ayouni K, Gdoura M, Kammoun Rebai W, Touzi H, Sadraoui A, Hammemi W, Yacoubi L, Abdelati S, Hamzaoui L, Msaddak Azzouz M, Chouikha A, Triki H. Whole genome analysis of hepatitis B virus before and during long-term therapy in chronic infected patients: Molecular characterization, impact on treatment and liver disease progression. Front Microbiol 2022; 13:1020147. [PMID: 36325017 PMCID: PMC9618822 DOI: 10.3389/fmicb.2022.1020147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/15/2022] [Indexed: 07/23/2023] Open
Abstract
Hepatitis B virus (HBV) infection remains a serious public health concern worldwide despite the availability of an efficient vaccine and the major improvements in antiviral treatments. The aim of the present study is to analyze the mutational profile of the HBV whole genome in ETV non-responder chronic HBV patients, in order to investigate antiviral drug resistance, immune escape, and liver disease progression to Liver Cirrhosis (LC) or Hepatocellular Carcinoma (HCC). Blood samples were collected from five chronic hepatitis B patients. For each patient, two plasma samples were collected, before and during the treatment. Whole genome sequencing was performed using Sanger technology. Phylogenetic analysis comparing the studied sequences with reference ones was used for genotyping. The mutational profile was analyzed by comparison with the reference sequence M32138. Genotyping showed that the studied strains belong to subgenotypes D1, D7, and D8. The mutational analysis showed high genetic variability. In the RT region of the polymerase gene, 28 amino acid (aa) mutations were detected. The most significant mutations were the pattern rtL180M + rtS202G + rtM204V, which confer treatment resistance. In the S gene, 35 mutations were detected namely sP120T, sT126S, sG130R, sY134F, sS193L, sI195M, and sL216stop were previously described to lead to vaccine, immunotherapy, and/or diagnosis escape. In the C gene, 34 mutations were found. In particular, cG1764A, cC1766G/T, cT1768A, and cC1773T in the BCP; cG1896A and cG1899A in the precore region and cT12S, cE64D, cA80T, and cP130Q in the core region were associated with disease progression to LC and/or HCC. Other mutations were associated with viral replication increase including cT1753V, cG1764A/T, cC1766G/T, cT1768A, and cC1788G in the BCP as well as cG1896A and cG1899A in the precore region. In the X gene, 30 aa substitutions were detected, of which substitutions xT36D, xP46S, xA47T, xI88F, xA102V, xI127T, xK130M, xV131I, and xF132Y were previously described to lead to LC and/or HCC disease progression. In conclusion, our results show high genetic variability in the long-term treatment of chronic HBV patients causing several effects. This could contribute to guiding national efforts to optimize relevant HBV treatment management in order to achieve the global hepatitis elimination goal by 2030.
Collapse
Affiliation(s)
- Zeineb Belaiba
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis, Tunisia
- Research Laboratory “Virus, Vectors and Hosts: One Health Approach and Technological Innovation for a Better Health,” LR20IPT02, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis, Tunisia
| | - Kaouther Ayouni
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis, Tunisia
- Research Laboratory “Virus, Vectors and Hosts: One Health Approach and Technological Innovation for a Better Health,” LR20IPT02, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis, Tunisia
| | - Mariem Gdoura
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis, Tunisia
- Research Laboratory “Virus, Vectors and Hosts: One Health Approach and Technological Innovation for a Better Health,” LR20IPT02, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis, Tunisia
| | - Wafa Kammoun Rebai
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis, Tunisia
| | - Henda Touzi
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis, Tunisia
| | - Amel Sadraoui
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis, Tunisia
| | - Walid Hammemi
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis, Tunisia
| | - Lamia Yacoubi
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis, Tunisia
| | - Salwa Abdelati
- Department of Gastroenterology, Polyclinic of CNSS, Sousse, Tunisia
| | - Lamine Hamzaoui
- Department of Gastroenterology, Hospital of Tahar Maamouri, Nabeul, Tunisia
| | | | - Anissa Chouikha
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis, Tunisia
- Research Laboratory “Virus, Vectors and Hosts: One Health Approach and Technological Innovation for a Better Health,” LR20IPT02, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis, Tunisia
| | - Henda Triki
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis, Tunisia
- Research Laboratory “Virus, Vectors and Hosts: One Health Approach and Technological Innovation for a Better Health,” LR20IPT02, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis, Tunisia
| |
Collapse
|
4
|
Mbamalu C, Ekejindu I, Enweani I, Kalu S, Igwe D, Akaeze G. Hepatitis B virus precore/core region mutations and genotypes among hepatitis B virus chronic carriers in South-Eastern, Nigeria. Int J Health Sci (Qassim) 2021; 15:26-38. [PMID: 33708042 PMCID: PMC7934135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
OBJECTIVES The study aimed at detecting the prevailing hepatitis B virus (HBV) genotypes and the presence of clinically relevant mutations in the precore/core gene of the HBV DNA, among patients with chronic infection in South-eastern, Nigeria. METHODS A total of 72 participants with chronic HBV infection were enrolled into the study. Plasma samples from those with detectable HBV DNA were subjected to nested Polymerase Chain Reaction amplification using the precore/core specific primers. This resulted to the successful amplification and sequencing of the HBV precore/core region DNA from 16 participants. Mutation analysis on the precore/core region detected the presence of certain HBV precore/core gene mutations. Genotyping was carried out by phylogenetic analysis. RESULTS The precore region mutation at nucleotide position 1896, which is a G to A change resulting to a nonsense mutation, was detected in 6.25% of the participants. Other HBV precore region mutations that were detected include: G1899A, T1846A, G1862C, G1888A, T1821C, C1826T, A1827C, A1850T, C1858T, precore start codon Kozak sequence mutations and some novel core region mutations such as G/A1951T and G1957A. Genotyping revealed the existence of HBV genotype/subgenotype A1 (87.5%) and D (12.5%) among the participants. There was no significant difference in the occurrence of specific precore/core mutations among the HBV/hepatitis C virus dually infected and HBV mono-infected participants. CONCLUSION The data suggest the likelihood of a more severe outcome of hepatitis caused by HBV in South-eastern Nigeria due to the occurrence of a variety of precore/core mutation, which resulted to HBeAg-negative chronic HBV infection among the participants.
Collapse
Affiliation(s)
- Chinenye Mbamalu
- Medical Laboratory Services, Alex Ekwueme Federal University Teaching Hospital, Abakaliki, Ebonyi State, Nigeria,Address for correspondence: Chinenye Mbamalu, Medical Laboratory Services, Alex Ekwueme Federal University Teaching Hospital, Abakaliki, Ebonyi State, Nigeria. Telephone: +2348068993161. E-mail:
| | - Ifeoma Ekejindu
- Department of Medical Laboratory Science, Faculty of Health Sciences and Technology, Nnamdi Azikiwe University, Nnewi Campus, Anambra State, Nigeria
| | - Ifeoma Enweani
- Department of Medical Laboratory Science, Faculty of Health Sciences and Technology, Nnamdi Azikiwe University, Nnewi Campus, Anambra State, Nigeria
| | - Stephen Kalu
- Department of HIV Care, PCR Laboratory Unit, Nnamdi Azikiwe University Teaching Hospital, Nnewi, Anambra State, Nigeria
| | - David Igwe
- Department of Biotechnology, Ebonyi State University, Abakaliki, Ebonyi State, Nigeria,Department of Plant Pathology and Plant-Microbe Biology/Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Gloria Akaeze
- Department of HIV Care, PCR Laboratory Unit, Nnamdi Azikiwe University Teaching Hospital, Nnewi, Anambra State, Nigeria
| |
Collapse
|