1
|
Huo B, Song Y, Tan B, Li J, Zhang J, Zhang F, Chang L. Research on the mechanisms of taraxerol for the treatment of gastric cancer effect based on network pharmacology. Int J Immunopathol Pharmacol 2022; 36:20587384211063962. [PMID: 34986036 PMCID: PMC8743941 DOI: 10.1177/20587384211063962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Modern pharmacological studies have shown that traditional Chinese medicine (TCM) Taraxacum mongolicum possesses anti-cancer activity. Taraxerol (TRX) is a pentacyclic triterpene isolated from T. mongolicum, which is widely used in clinical treatment, and its anti-cancer effects have been extensively studied. However, the effects and molecular mechanism of TRX in gastric cancer (GC) have not been fully explicated. METHODS We used public databases to derive information on potential targets of TRX and proteins related to GC. Also, STRING and R3.6.2 software were used to analyze the protein-protein interaction (PPI). The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were done to explain the potential mechanism underlying the regulatory role of TRX in GC. The role of TRX in GC was verified by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide (MTT) assay, apoptosis analysis, Transwell assay, and wound healing assay, and the key signaling pathways were verified. RESULTS We identified 135 potential targets for the treatment of GC via network pharmacological analysis. GO and KEGG enrichment analysis showed that steroid hormone receptor activity and the PI3K/AKT signaling pathway were the biological processes and pathways with the highest degree of enrichment. Additionally, cellular experiments revealed that TRX inhibited the proliferation, migration, and invasion of GC cells as well as induced G1 phase arrest and apoptosis in GC cells. CONCLUSION Here, we used multi-target and multi-pathway network pharmacological analysis to verify the anti-cancer activity of TRX in GC. Also, in vitro experimental data were used to derive the potential molecular mechanism.
Collapse
Affiliation(s)
- Bingjie Huo
- Department of Traditional Chinese Medicine, 117878The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P. R. China
| | - Yanru Song
- Department of Traditional Chinese Medicine, 117878The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P. R. China
| | - Bibo Tan
- Department of General Surgery, 117878The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P. R. China
| | - Jianbo Li
- Department of Traditional Chinese Medicine, 117878The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P. R. China
| | - Jie Zhang
- Department of Traditional Chinese Medicine, 117878The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P. R. China
| | - Fengbin Zhang
- Department of Gastroenterology Pharmacology, 117878The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P. R. China
| | - Liang Chang
- HeBei University of Chinese Medicine, No. 3 Xing yuan Road, Lu quan District, Shijiazhuang, Hebei 050200, P. R. China
| |
Collapse
|
2
|
Guo M, Lu B, Gan J, Wang S, Jiang X, Li H. Apoptosis detection: a purpose-dependent approach selection. Cell Cycle 2021; 20:1033-1040. [PMID: 34000960 PMCID: PMC8208110 DOI: 10.1080/15384101.2021.1919830] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/13/2021] [Indexed: 01/20/2023] Open
Abstract
Apoptosis is closely associated with many diseases. Detection of apoptosis can be achieved by morphology, biochemistry, molecular biology, immunology, and other techniques. However, as technologies are increasingly used for the detection of apoptosis, many researchers are confused about how to choose a suitable method to detect apoptosis. Selection of a suitable detection method for apoptosis will help clinical diagnosis and prevention of diseases. This article reviews the selection of optimal apoptosis-detection methods based on research purposes and technique principles.
Collapse
Affiliation(s)
- Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Lu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuangcui Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huhu Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Yang X, Su Y, Wu J, Wan W, Chen H, Cao X, Wang J, Zhang Z, Wang Y, Ma D, Loake GJ, Jiang J. Parallel analysis of global garlic gene expression and alliin content following leaf wounding. BMC PLANT BIOLOGY 2021; 21:174. [PMID: 33838642 PMCID: PMC8035738 DOI: 10.1186/s12870-021-02948-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Allium sativum (garlic) is an economically important food source and medicinal plant rich in sulfides and other protective substances such as alliin, the precursor of allicin biosynthesis. Cysteine, serine and sulfur is the precursor of alliin biosynthesis. However, little is known about the alliin content under abiotic stress or the mechanism by which it is synthesized. RESULTS The findings revealed that the content of alliin was lowest in the garlic roots, and highest in the buds. Furthermore, alliin levels decreased in mature leaves following wounding. Transcriptome data generated over time after wounding further revealed significant up-regulation of genes integral to the biosynthetic pathways of cysteine and serine in mature garlic leaves. CONCLUSIONS The findings suggest that differential expression of cysteine, serine and sulfide-related genes underlies the accumulation of alliin and its precursors in garlic, providing a basis for further analyses of alliin biosynthesis.
Collapse
Affiliation(s)
- Xuqin Yang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| | - Yiren Su
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| | - Jiaying Wu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| | - Wen Wan
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| | - Huijian Chen
- XuZhou Nuote Chemical co., Ltd., Xuzhou, 221137, Jiangsu, China
| | - Xiaoying Cao
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| | - Junjuan Wang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| | - Zhong Zhang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| | - Youzhi Wang
- XuZhou Nuote Chemical co., Ltd., Xuzhou, 221137, Jiangsu, China
| | - Deliang Ma
- XuZhou Nuote Chemical co., Ltd., Xuzhou, 221137, Jiangsu, China
| | - G J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JH, UK
| | - Jihong Jiang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China.
| |
Collapse
|