1
|
Su L, Lin B, Yu M, Liu Y, Sun S, Feng H, Liu H, Han D. EDA Variants Are Responsible for Approximately 90% of Deciduous Tooth Agenesis. Int J Mol Sci 2024; 25:10451. [PMID: 39408781 PMCID: PMC11477375 DOI: 10.3390/ijms251910451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/08/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Deciduous tooth agenesis is a severe craniofacial developmental defect because it affects masticatory function from infancy and may result in delayed growth and development. Here, we aimed to identify the crucial pathogenic genes and clinical features of patients with deciduous tooth agenesis. We recruited 84 patients with severe deciduous tooth agenesis. Whole-exome and Sanger sequencing were used to identify the causative variants. Phenotype-genotype correlation analysis was conducted. We identified 54 different variants in 8 genes in 84 patients, including EDA (73, 86.9%), PAX9 (2, 2.4%), LRP6 (2, 2.4%), MSX1 (2, 2.4%), BMP4 (1, 1.2%), WNT10A (1, 1.2%), PITX2 (1, 1.2%), and EDARADD (1, 1.2%). Variants in ectodysplasin A (EDA) accounted for 86.9% of patients with deciduous tooth agenesis. Patients with the EDA variants had an average of 15.4 missing deciduous teeth. Mandibular deciduous central incisors had the highest missing rate (100%), followed by maxillary deciduous lateral incisors (98.8%) and mandibular deciduous lateral incisors (97.7%). Our results indicated that EDA gene variants are major pathogenic factors for deciduous tooth agenesis, and EDA is specifically required for deciduous tooth development. The results provide guidance for clinical diagnosis and genetic counseling of deciduous tooth agenesis.
Collapse
Affiliation(s)
- Lanxin Su
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Central Laboratory, Beijing 100081, China; (L.S.); (M.Y.); (Y.L.); (S.S.); (H.F.)
| | - Bichen Lin
- First Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Central Laboratory, Beijing 100081, China;
| | - Miao Yu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Central Laboratory, Beijing 100081, China; (L.S.); (M.Y.); (Y.L.); (S.S.); (H.F.)
| | - Yang Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Central Laboratory, Beijing 100081, China; (L.S.); (M.Y.); (Y.L.); (S.S.); (H.F.)
| | - Shichen Sun
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Central Laboratory, Beijing 100081, China; (L.S.); (M.Y.); (Y.L.); (S.S.); (H.F.)
| | - Hailan Feng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Central Laboratory, Beijing 100081, China; (L.S.); (M.Y.); (Y.L.); (S.S.); (H.F.)
| | - Haochen Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Central Laboratory, Beijing 100081, China; (L.S.); (M.Y.); (Y.L.); (S.S.); (H.F.)
| | - Dong Han
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Central Laboratory, Beijing 100081, China; (L.S.); (M.Y.); (Y.L.); (S.S.); (H.F.)
| |
Collapse
|
2
|
Liu Y, Sun J, Zhang C, Wu Y, Ma S, Li X, Wu X, Gao Q. Compound heterozygous WNT10A missense variations exacerbated the tooth agenesis caused by hypohidrotic ectodermal dysplasia. BMC Oral Health 2024; 24:136. [PMID: 38280992 PMCID: PMC10822191 DOI: 10.1186/s12903-024-03888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 01/12/2024] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND The aim of this study was to analyse the differences in the phenotypes of missing teeth between a pair of brothers with hypohidrotic ectodermal dysplasia (HED) and to investigate the underlying mechanism by comparing the mutated gene loci between the brothers with whole-exome sequencing. METHODS The clinical data of the patients and their mother were collected, and genomic DNA was extracted from peripheral blood samples. By Whole-exome sequencing filtered for a minor allele frequency (MAF) ≤0.05 non-synonymous single-nucleotide variations and insertions/deletions variations in genes previously associated with tooth agenesis, and variations considered as potentially pathogenic were assessed by SIFT, Polyphen-2, CADD and ACMG. Sanger sequencing was performed to detect gene variations. The secondary and tertiary structures of the mutated proteins were predicted by PsiPred 4.0 and AlphaFold 2. RESULTS Both brothers were clinically diagnosed with HED, but the younger brother had more teeth than the elder brother. An EDA variation (c.878 T > G) was identified in both brothers. Additionally, compound heterozygous variations of WNT10A (c.511C > T and c.637G > A) were identified in the elder brother. Digenic variations in EDA (c.878 T > G) and WNT10A (c.511C > T and c.637G > A) in the same patient have not been reported previously. The secondary structure of the variant WNT10A protein showed changes in the number and position of α-helices and β-folds compared to the wild-type protein. The tertiary structure of the WNT10A variant and molecular simulation docking showed that the site and direction where WNT10A binds to FZD5 was changed. CONCLUSIONS Compound heterozygous WNT10A missense variations may exacerbate the number of missing teeth in HED caused by EDA variation.
Collapse
Affiliation(s)
- Yiting Liu
- The Stomatology Center of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Central South University, Changsha, Hunan Province, China
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jing Sun
- The Stomatology Center of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Central South University, Changsha, Hunan Province, China
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Caiqi Zhang
- The Stomatology Center of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Central South University, Changsha, Hunan Province, China
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yi Wu
- The Stomatology Center of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Central South University, Changsha, Hunan Province, China
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Siyuan Ma
- The Stomatology Center of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Central South University, Changsha, Hunan Province, China
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xuechun Li
- The Stomatology Center of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Central South University, Changsha, Hunan Province, China
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiaoshan Wu
- The Stomatology Center of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
- Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Central South University, Changsha, Hunan Province, China.
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.
| | - Qingping Gao
- The Stomatology Center of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
- Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Central South University, Changsha, Hunan Province, China.
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
3
|
Wu Y, Sun J, Zhang C, Ma S, Liu Y, Wu X, Gao Q. The oligodontia phenotype in a X-linked hypohidrotic ectodermal dysplasia patient with a novel EVC2 variant. Heliyon 2024; 10:e23056. [PMID: 38163170 PMCID: PMC10756976 DOI: 10.1016/j.heliyon.2023.e23056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 10/27/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024] Open
Abstract
Objectives To analyse the pathogenic genes in a patient with hypohidrotic ectodermal dysplasia (HED) and explore the relationship between pathogenic genes and the oligodontia phenotype. Methods Clinical data and peripheral blood were collected from a patient with HED. Pathogenic genes were analysed by whole-exon sequencing (WES) and verified by Singer sequencing. The secondary and tertiary structures of the variant proteins were predicted to analyse their toxicity. Results The patient exhibited a severe oligodontia phenotype, wherein only two deciduous canines were left in the upper jaw. WES revealed a hemizygous EDA variant c.466C > T p.(Arg156Cys) and a novel heterozygous EVC2 variant c.1772T > C p.(Leu591Ser). Prediction of the secondary and tertiary structures of the EDA variant p.(Arg156Cys) and EVC2 variant p.(Leu591Ser) indicated impaired function of both molecules. Conclusion The patient demonstrated a more severe oligodontia phenotype when compared with the other patients caused by the EDA variant c.466C > T. Since Evc2 is a positive regulator of the Sonic Hedgehog (Shh) signal pathway, we speculated that the EVC2 variant p.(Leu591Ser) may play a synergistic role in the oligodontia phenotype of HED, thereby exacerbating the oligodontia phenotype. Knowledge of oligodontia caused by multiple gene variants is of great significance for understanding individual differences in oligodontia phenotypes.
Collapse
Affiliation(s)
- Yi Wu
- The Stomatology Center of Xiangya Hospital, Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Research Center of Oral and Maxillofacial Development and Regeneration, National Clinical Research Center for Geriatric Diseases, Central South Universtiy, Changsha, Hunan Province, China
| | - Jing Sun
- The Stomatology Center of Xiangya Hospital, Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Research Center of Oral and Maxillofacial Development and Regeneration, National Clinical Research Center for Geriatric Diseases, Central South Universtiy, Changsha, Hunan Province, China
| | - Caiqi Zhang
- The Stomatology Center of Xiangya Hospital, Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Research Center of Oral and Maxillofacial Development and Regeneration, National Clinical Research Center for Geriatric Diseases, Central South Universtiy, Changsha, Hunan Province, China
| | - Siyuan Ma
- The Stomatology Center of Xiangya Hospital, Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Research Center of Oral and Maxillofacial Development and Regeneration, National Clinical Research Center for Geriatric Diseases, Central South Universtiy, Changsha, Hunan Province, China
| | - Yiting Liu
- The Stomatology Center of Xiangya Hospital, Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Research Center of Oral and Maxillofacial Development and Regeneration, National Clinical Research Center for Geriatric Diseases, Central South Universtiy, Changsha, Hunan Province, China
| | - Xiaoshan Wu
- The Stomatology Center of Xiangya Hospital, Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Research Center of Oral and Maxillofacial Development and Regeneration, National Clinical Research Center for Geriatric Diseases, Central South Universtiy, Changsha, Hunan Province, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qingping Gao
- The Stomatology Center of Xiangya Hospital, Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Research Center of Oral and Maxillofacial Development and Regeneration, National Clinical Research Center for Geriatric Diseases, Central South Universtiy, Changsha, Hunan Province, China
| |
Collapse
|