1
|
Islam SMS, Singh S, Keshavarzian A, Abdel-Mohsen M. Intestinal Microbiota and Aging in People with HIV-What We Know and What We Don't. Curr HIV/AIDS Rep 2024; 22:9. [PMID: 39666149 DOI: 10.1007/s11904-024-00717-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2024] [Indexed: 12/13/2024]
Abstract
PURPOSE OF REVIEW People with HIV (PWH) experience premature aging and an elevated risk of age-related comorbidities, even with viral suppression through antiretroviral therapy (ART). We examine gastrointestinal disruptions, specifically impaired intestinal barrier integrity and microbial dysbiosis, as contributors to these comorbidities. RECENT FINDINGS HIV infection compromises the intestinal epithelial barrier, increasing permeability and microbial translocation, which trigger inflammation and cellular stress. ART does not fully restore gut barrier integrity, leading to persistent inflammation and cellular stress. Additionally, HIV-associated microbial dysbiosis favors pro-inflammatory bacteria, intensifying inflammation and tissue damage, which may contribute to premature aging in PWH. Understanding the interactions between intestinal microbiota, chronic inflammation, cellular stress, and aging is essential to developing therapies aimed at reducing inflammation and slowing age-related diseases in PWH. In this review, we discuss critical knowledge gaps and highlight the therapeutic potential of microbiota-targeted interventions to mitigate inflammation and delay age-associated pathologies in PWH.
Collapse
Affiliation(s)
| | - Shalini Singh
- Northwestern University, 300 E Superior St, Chicago, IL, 60611, USA
| | - Ali Keshavarzian
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, USA
- Departments of Internal Medicine, physiology Rush University Medical Center, Anatomy & Cell Biology, Chicago, IL, USA
| | | |
Collapse
|
2
|
Díaz-García C, Moreno E, Talavera-Rodríguez A, Martín-Fernández L, González-Bodí S, Martín-Pedraza L, Pérez-Molina JA, Dronda F, Gosalbes MJ, Luna L, Vivancos MJ, Huerta-Cepas J, Moreno S, Serrano-Villar S. Fecal microbiota transplantation alters the proteomic landscape of inflammation in HIV: identifying bacterial drivers. MICROBIOME 2024; 12:214. [PMID: 39438902 PMCID: PMC11494993 DOI: 10.1186/s40168-024-01919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/26/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Despite effective antiretroviral therapy, people with HIV (PWH) experience persistent systemic inflammation and increased morbidity and mortality. Modulating the gut microbiome through fecal microbiota transplantation (FMT) represents a novel therapeutic strategy. We aimed to evaluate proteomic changes in inflammatory pathways following repeated, low-dose FMT versus placebo. METHODS This double-masked, placebo-controlled pilot study assessed the proteomic impacts of weekly FMT versus placebo treatment over 8 weeks on systemic inflammation in 29 PWH receiving stable antiretroviral therapy (ART). Three stool donors with high Faecalibacterium and butyrate profiles were selected, and their individual stools were used for FMT capsule preparation. Proteomic changes in 345 inflammatory proteins in plasma were quantified using the proximity extension assay, with samples collected at baseline and at weeks 1, 8, and 24. Concurrently, we characterized shifts in the gut microbiota composition and annotated functions through shotgun metagenomics. We fitted generalized additive models to evaluate the dynamics of protein expression. We selected the most relevant proteins to explore their correlations with microbiome composition and functionality over time using linear mixed models. RESULTS FMT significantly reduced the plasma levels of 45 inflammatory proteins, including established mortality predictors such as IL6 and TNF-α. We found notable reductions persisting up to 16 weeks after the final FMT procedure, including in the expression of proteins such as CCL20 and CD22. We identified changes in 46 proteins, including decreases in FT3LG, IL6, IL10RB, IL12B, and IL17A, which correlated with multiple bacterial species. We found that specific bacterial species within the Ruminococcaceae, Succinivibrionaceae, Prevotellaceae families, and the Clostridium genus, in addition to their associated genes and functions, were significantly correlated with changes in inflammatory markers. CONCLUSIONS Targeting the gut microbiome through FMT effectively decreased inflammatory proteins in PWH, with sustained effects. These findings suggest the potential of the microbiome as a therapeutic target to mitigate inflammation-related complications in this population, encouraging further research and development of microbiome-based interventions. Video Abstract.
Collapse
Affiliation(s)
- Claudio Díaz-García
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Elena Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain.
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Alba Talavera-Rodríguez
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Lucía Martín-Fernández
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Sara González-Bodí
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Laura Martín-Pedraza
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - José A Pérez-Molina
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Fernando Dronda
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María José Gosalbes
- Área de Genómica y Salud, Fundación Para El Fomento de La Investigación Sanitaria y Biomédica de La Comunidad Valenciana-Salud Pública, Valencia, Spain
- CIBERESP, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Laura Luna
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María Jesús Vivancos
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Jaime Huerta-Cepas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28223, Madrid, Spain
| | - Santiago Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain.
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
3
|
Ebrahimi R, Masouri MM, Salehi Amniyeh Khozani AA, Ramadhan Hussein D, Nejadghaderi SA. Safety and efficacy of fecal microbiota transplantation for viral diseases: A systematic review of clinical trials. PLoS One 2024; 19:e0311731. [PMID: 39432486 PMCID: PMC11493255 DOI: 10.1371/journal.pone.0311731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/21/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Gut microbiota play important roles in several diseases like viral infections. In this systematic review, our objective was to assess the efficacy and safety of fecal microbiota transplantation (FMT) in treating various viral diseases. METHODS We conducted searches on databases including PubMed, Web of Science, Scopus, and Google Scholar until November 2023. Clinical trials reported outcomes related to safety of FMT or its efficacy in patients with viral diseases were included. We excluded other types of studies that enrolled healthy individuals or patients with other disorders and did not use FMT. The assessment of bias risk was conducted using the National Institutes of Health (NIH) study quality evaluation tool. RESULTS Eight studies with total 196 participants were included. Viral diseases were human immunodeficiency virus (HIV), hepatitis B, COVID-19 and Clostridioides difficile coinfection, and cytomegalovirus colitis. In hepatitis B cases, HBeAg clearance was significant in those received FMT (p<0.01), while it was not significant in another one (p = 0.19). A clinical response was noted in 37.5% of patients with cytomegalovirus colitis, with an equal percentage achieving clinical remission post-FMT. There was a significant reduction in Clostridioides difficile relapse rate in FMT group than controls in coinfection of Clostridioides difficile and COVID-19 (2.17% vs. 42.5%, p<0.05). In patients with HIV, partial engraftment of the donor microbiome and increases in alpha diversity were observed after FMT. No severe adverse events were reported. Most studies had fair or good qualities. CONCLUSIONS Our findings revealed FMT as a promising, safe treatment for some viral diseases. It improved viral clearance, clinical outcomes, and inflammation. However, the varying responses and small sample sizes call for more trials on FMT in viral diseases.
Collapse
Affiliation(s)
- Rasoul Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | - Seyed Aria Nejadghaderi
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
4
|
Soo N, Farinre O, Chahroudi A, Boliar S, Goswami R. A gut check: understanding the interplay of the gastrointestinal microbiome and the developing immune system towards the goal of pediatric HIV remission. Retrovirology 2024; 21:15. [PMID: 39425183 PMCID: PMC11490017 DOI: 10.1186/s12977-024-00648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Despite the efficacy of antiretroviral therapy (ART) in reducing the global incidence of vertical HIV transmissions, more than 120,000 children are still infected with the virus each year. Since ART cannot clear the HIV reservoir that is established soon after infection, children living with HIV (CLWH) are forced to rely on therapy for their lives and suffer from long-term drug-related complications. Pediatric HIV infection, like adult infection, is associated with gut microbial dysbiosis, loss of gut epithelial integrity, bacterial translocation, CD4 + T cell depletion, systemic immune activation, and viral reservoir establishment. However, unlike in adults, HIV that is vertically acquired by infants interacts with a gut microbiome that is continuously evolving while concomitantly shaping the infant's immune ontogeny. Therefore, to determine whether there may be interventions that target the HIV reservoir through microbiome-directed approaches, understanding the complex tripartite interactions between the transmitted HIV, the maturing gut microbiome, and the developing immune system during early life is crucial. Importantly, early life is the time when the gut microbiome of an individual is highly dynamic, and this temporal development of the gut microbiome plays a crucial role in educating the maturing immune system of a child. Therefore, manipulation of the gut microbiome of CLWH to a phenotype that can reduce HIV persistence by fostering an antiviral immune system might be an opportune strategy to achieve ART-free viral suppression in CLWH. This review summarizes the current state of knowledge on the vertical transmission of HIV, the developing gut microbiome of CLWH, and the immune landscape of pediatric elite controllers, and explores the prospect of employing microbial modulation as a potential therapeutic approach to achieve ART-free viral suppression in the pediatric population.
Collapse
Affiliation(s)
- Nicole Soo
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Omotayo Farinre
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA, 30322, USA
| | - Saikat Boliar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Ria Goswami
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, 10021, USA.
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
5
|
Bulnes R, Utay NS. Therapeutic microbiome modulation: new frontiers in HIV treatment. Curr Opin HIV AIDS 2024; 19:268-275. [PMID: 38874442 DOI: 10.1097/coh.0000000000000864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
PURPOSE OF REVIEW Dysbiosis may be a key driver of systemic inflammation, which increases the risk of non-AIDS events in people living with HIV (PLWH). Modulation of the microbiome to reverse this dysbiosis may be a novel approach to decrease inflammation and therefore morbidity and mortality in PLWH. RECENT FINDINGS Fecal microbiota transplantation (FMT), probiotics, prebiotics, synbiotics, postbiotics, and dietary modifications have the potential to modulate the microbiome. These interventions have been well tolerated in clinical trials to date. However, these interventions have not resulted in consistent or lasting changes to the microbiome or consistent changes in biomarkers of intestinal permeability, microbial translocation, inflammation, immune activation, or CD4 + T cell counts. Sustained engraftment may require prebiotics and/or dietary modifications added to either probiotics or FMT. SUMMARY Adequately powered randomized controlled trials are needed to elucidate whether microbiome modulation can be achieved and impact systemic inflammation in PLWH.
Collapse
Affiliation(s)
- Rene Bulnes
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | |
Collapse
|
6
|
Ortiz AM, Brenchley JM. Untangling the role of the microbiome across the stages of HIV disease. Curr Opin HIV AIDS 2024; 19:221-227. [PMID: 38935047 PMCID: PMC11305932 DOI: 10.1097/coh.0000000000000870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
PURPOSE OF REVIEW The primate microbiome consists of bacteria, eukaryotes, and viruses that dynamically shape and respond to host health and disease. Understanding how the symbiotic relationship between the host and microbiome responds to HIV has implications for therapeutic design. RECENT FINDINGS Advances in microbiome identification technologies have expanded our ability to identify constituents of the microbiome and to infer their functional capacity. The dual use of these technologies and animal models has allowed interrogation into the role of the microbiome in lentiviral acquisition, vaccine efficacy, and the response to antiretrovirals. Lessons learned from such studies are now being harnessed to design microbiome-based interventions. SUMMARY Previous studies considering the role of the microbiome in people living with HIV largely described viral acquisition as an intrusion on the host:microbiome interface. Re-framing this view to consider HIV as a novel, albeit unwelcome, component of the microbiome may better inform the research and development of pre and postexposure prophylaxes.
Collapse
Affiliation(s)
- Alexandra M Ortiz
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, NIAID, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
7
|
Brenchley JM, Serrano-Villar S. From dysbiosis to defense: harnessing the gut microbiome in HIV/SIV therapy. MICROBIOME 2024; 12:113. [PMID: 38907315 PMCID: PMC11193286 DOI: 10.1186/s40168-024-01825-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/26/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Although the microbiota has been extensively associated with HIV pathogenesis, the majority of studies, particularly those using omics techniques, are largely correlative and serve primarily as a basis for hypothesis generation. Furthermore, most have focused on characterizing the taxonomic composition of the bacterial component, often overlooking other levels of the microbiome. The intricate mechanisms by which the microbiota influences immune responses to HIV are still poorly understood. Interventional studies on gut microbiota provide a powerful tool to test the hypothesis of whether we can harness the microbiota to improve health outcomes in people with HIV. RESULTS Here, we review the multifaceted role of the gut microbiome in HIV/SIV disease progression and its potential as a therapeutic target. We explore the complex interplay between gut microbial dysbiosis and systemic inflammation, highlighting the potential for microbiome-based therapeutics to open new avenues in HIV management. These include exploring the efficacy of probiotics, prebiotics, fecal microbiota transplantation, and targeted dietary modifications. We also address the challenges inherent in this research area, such as the difficulty in inducing long-lasting microbiome alterations and the complexities of study designs, including variations in probiotic strains, donor selection for FMT, antibiotic conditioning regimens, and the hurdles in translating findings into clinical practice. Finally, we speculate on future directions for this rapidly evolving field, emphasizing the need for a more granular understanding of microbiome-immune interactions, the development of personalized microbiome-based therapies, and the application of novel technologies to identify potential therapeutic agents. CONCLUSIONS Our review underscores the importance of the gut microbiome in HIV/SIV disease and its potential as a target for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Jason M Brenchley
- Barrier Immunity Section, Lab of Viral Diseases, NIAID, NIH, Bethesda, MA, USA.
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, IRYCIS and CIBERInfec, Madrid, Spain.
| |
Collapse
|
8
|
Wu D, Zhang C, Liu Y, Yao J, Yang X, Wu S, Du J, Yang X. Beyond faecal microbiota transplantation, the non-negligible role of faecal virome or bacteriophage transplantation. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:893-908. [PMID: 36890066 DOI: 10.1016/j.jmii.2023.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/09/2023] [Accepted: 02/18/2023] [Indexed: 02/27/2023]
Abstract
Intestinal microbiota, which contains bacteria, archaea, fungi, protists, and viruses including bacteriophages, is symbiotic and evolves together with humans. The balanced intestinal microbiota plays indispensable roles in maintaining and regulating host metabolism and health. Dysbiosis has been associated with not only intestinal diseases but other diseases such as neurology disorders and cancers. Faecal microbiota transplantation (FMT) or faecal virome or bacteriophage transplantation (FVT or FBT), transfers faecal bacteria or viruses, with a focus on bacteriophage, from one healthy individual to another individual (normally unhealthy condition), and aims to restore the balanced gut microbiota and assist in subduing diseases. In this review, we summarized the applications of FMT and FVT in clinical settings, discussed the advantages and challenges of FMT and FVT currently and proposed several considerations prospectively. We further provided our understanding of why FMT and FVT have their limitations and raised the possible future development strategy of FMT and FVT.
Collapse
Affiliation(s)
- Dengyu Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| | - Chenguang Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| | - Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| | - Juan Du
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Xin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| |
Collapse
|
9
|
Malik A, Malik MI. Fecal Microbiota Transplantation in Human Immunodeficiency Virus-Infected Patient Population: A Systematic Review and Meta-Analysis. Gastroenterology Res 2023; 16:209-216. [PMID: 37691753 PMCID: PMC10482600 DOI: 10.14740/gr1624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/22/2023] [Indexed: 09/12/2023] Open
Abstract
Background Patients with human immunodeficiency virus (HIV) infection suffer from alterations in gut microbiota due to recurrent gastrointestinal infections and systemic inflammation. Fecal microbiota transplantation (FMT) appears to be a potential therapy; however, there are concerns about its safety. Likewise, no previous meta-analysis evaluated FMT efficacy in HIV-infected patients. Methods We conducted a thorough electronic search on PubMed, Scopus, OVID, Web of Science, and Cochrane CENTRAL for clinical studies assessing the safety and efficacy of FMT in patients with HIV and gastrointestinal dysbiosis, where FMT was indicated to restore the disrupted microbiota. Results FMT significantly restored the typical microbiome in patients with Clostridium difficile (C. difficile) and non-C. difficile and reduced the risk of gastrointestinal infections in HIV patients receiving antiretroviral therapy (odds ratio (OR) = 0.774, 95% confidence interval (CI): (0.62, 0.966)). Furthermore, adverse events, such as distention and bloating, associated with FMT were comparable between HIV and health controls (OR = 0.60, 95% CI: (0.07, 4.6)), with no statistical difference. Conclusions Current evidence demonstrated that FMT is safe and effective in HIV patients suffering from alterations in gut microbiota. We recommend further multi-centric clinical studies to address the optimal transplant amount and source for FMT. To the best of our knowledge, this is the first meta-analysis to assess the safety and efficacy of FMT in patients with HIV.
Collapse
Affiliation(s)
- Adnan Malik
- Mountain Vista Medical Center, Mesa, AZ, USA
| | | |
Collapse
|
10
|
Fakharian F, Thirugnanam S, Welsh DA, Kim WK, Rappaport J, Bittinger K, Rout N. The Role of Gut Dysbiosis in the Loss of Intestinal Immune Cell Functions and Viral Pathogenesis. Microorganisms 2023; 11:1849. [PMID: 37513022 PMCID: PMC10384393 DOI: 10.3390/microorganisms11071849] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The gut microbiome plays a critical role in maintaining overall health and immune function. However, dysbiosis, an imbalance in microbiome composition, can have profound effects on various aspects of human health, including susceptibility to viral infections. Despite numerous studies investigating the influence of viral infections on gut microbiome, the impact of gut dysbiosis on viral infection and pathogenesis remains relatively understudied. The clinical variability observed in SARS-CoV-2 and seasonal influenza infections, and the presence of natural HIV suppressors, suggests that host-intrinsic factors, including the gut microbiome, may contribute to viral pathogenesis. The gut microbiome has been shown to influence the host immune system by regulating intestinal homeostasis through interactions with immune cells. This review aims to enhance our understanding of how viral infections perturb the gut microbiome and mucosal immune cells, affecting host susceptibility and response to viral infections. Specifically, we focus on exploring the interactions between gamma delta (γδ) T cells and gut microbes in the context of inflammatory viral pathogenesis and examine studies highlighting the role of the gut microbiome in viral disease outcomes. Furthermore, we discuss emerging evidence and potential future directions for microbiome modulation therapy in the context of viral pathogenesis.
Collapse
Affiliation(s)
- Farzaneh Fakharian
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Siva Thirugnanam
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - David A. Welsh
- Department of Microbiology, Immunology and Parasitology, Louisiana State University School of Medicine, New Orleans, LA 70806, USA
| | - Woong-Ki Kim
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jay Rappaport
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Namita Rout
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
11
|
Moreno E, Ron R, Serrano-Villar S. The microbiota as a modulator of mucosal inflammation and HIV/HPV pathogenesis: From association to causation. Front Immunol 2023; 14:1072655. [PMID: 36756132 PMCID: PMC9900135 DOI: 10.3389/fimmu.2023.1072655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023] Open
Abstract
Although the microbiota has largely been associated with the pathogenesis of viral infections, most studies using omics techniques are correlational and hypothesis-generating. The mechanisms affecting the immune responses to viral infections are still being fully understood. Here we focus on the two most important sexually transmitted persistent viruses, HPV and HIV. Sophisticated omics techniques are boosting our ability to understand microbiota-pathogen-host interactions from a functional perspective by surveying the host and bacterial protein and metabolite production using systems biology approaches. However, while these strategies have allowed describing interaction networks to identify potential novel microbiota-associated biomarkers or therapeutic targets to prevent or treat infectious diseases, the analyses are typically based on highly dimensional datasets -thousands of features in small cohorts of patients-. As a result, we are far from getting to their clinical use. Here we provide a broad overview of how the microbiota influences the immune responses to HIV and HPV disease. Furthermore, we highlight experimental approaches to understand better the microbiota-host-virus interactions that might increase our potential to identify biomarkers and therapeutic agents with clinical applications.
Collapse
Affiliation(s)
- Elena Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Facultad de Medicina, Universidad de Alcalá, IRYCIS, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel Ron
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Facultad de Medicina, Universidad de Alcalá, IRYCIS, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Facultad de Medicina, Universidad de Alcalá, IRYCIS, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
12
|
Caira-Chuquineyra B, Fernandez-Guzman D, Soriano-Moreno DR, Fernandez-Morales J, Flores-Lovon K, Medina-Ramírez SA, Gonzales-Uribe AG, Pelayo-Luis IP, Gonzales-Zamora JA, Huaringa-Marcelo J. Fecal Microbiota Transplantation for People Living with Human Immunodeficiency Virus: A Scoping Review. AIDS Res Hum Retroviruses 2022; 38:700-708. [PMID: 35451337 DOI: 10.1089/aid.2022.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The aim of this scoping review was to determine the characteristics of studies evaluating fecal microbiota transplantation (FMT), as well as its effects and safety as a therapeutic intervention for people living with human immunodeficiency virus (HIV). We conducted a scoping review following the methodology of the Joanna Briggs Institute. We searched the following databases: PubMed, Web of Science, Scopus, Embase, Cochrane Library, and Medline until September 19, 2021. Studies that used FMT in people living with HIV and explored its effects on the health of these people were included. Two randomized and 2 uncontrolled clinical trials with a total of 55 participants were included. Participants were well-controlled HIV-infected people. Regarding microbiota changes, three studies found significant post-FMT increases in Fusobacterium, Prevotella, α-diversity, Chao index, and/or Shannon index, and/or decreases in Bacteroides. Regarding markers of intestinal damage, one study found a decrease in intestinal fatty acid binding protein post-FMT, and another study found an increase in zonulin. Other outcomes evaluated by the studies were as follows: markers of immune and inflammatory activation, markers of immunocompetence (CD4+, and CD8+ T lymphocytes), and HIV viral load; however, none showed significant changes. Clinical outcomes were not evaluated by these studies. Regarding the safety of FMT, only mild adverse events were appreciated. No serious adverse event was reported. The clinical evidence for FMT in people living with HIV is sparse. FMT appears to have good tolerability and, no serious adverse event has been reported so far. Further clinical trials and evaluation of clinically important biomedical outcomes for FMT in people living with HIV are needed.
Collapse
Affiliation(s)
- Brenda Caira-Chuquineyra
- Peruvian Epidemiological Research Group, Unit for the Generation and Synthesis of Health Evidence, San Ignacio de Loyola University, Lima, Peru.,Faculty of Medicine, National University of San Agustín, Arequipa, Peru
| | - Daniel Fernandez-Guzman
- Peruvian Epidemiological Research Group, Unit for the Generation and Synthesis of Health Evidence, San Ignacio de Loyola University, Lima, Peru.,Professional School of Human Medicine, National University of San Antonio Abad del Cusco, Cusco, Peru
| | - David R Soriano-Moreno
- Clinical and Epidemiological Research Unit, School of Medicine, Peruvian Union University, Lima, Peru
| | - Jared Fernandez-Morales
- Clinical and Epidemiological Research Unit, School of Medicine, Peruvian Union University, Lima, Peru
| | | | | | - Antony G Gonzales-Uribe
- Clinical and Epidemiological Research Unit, School of Medicine, Peruvian Union University, Lima, Peru
| | - Isabel P Pelayo-Luis
- Clinical and Epidemiological Research Unit, School of Medicine, Peruvian Union University, Lima, Peru
| | - Jose A Gonzales-Zamora
- Division of Infectious Diseases, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida, USA.,Peruvian American Medical Society, Albuquerque, New Mexico, USA
| | - Jorge Huaringa-Marcelo
- Faculty of Human Medicine, Scientific University of the South, Lima, Peru.,Archbishop Loayza National Hospital, Lima, Peru
| |
Collapse
|
13
|
Fert A, Raymond Marchand L, Wiche Salinas TR, Ancuta P. Targeting Th17 cells in HIV-1 remission/cure interventions. Trends Immunol 2022; 43:580-594. [PMID: 35659433 DOI: 10.1016/j.it.2022.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 12/14/2022]
Abstract
Since the discovery of HIV-1, progress has been made in deciphering the viral replication cycle and mechanisms of host-pathogen interactions that has facilitated the implementation of effective antiretroviral therapies (ARTs). Major barriers to HIV-1 remission/cure include the persistence of viral reservoirs (VRs) in long-lived CD4+ T cells, residual viral transcription, and lack of mucosal immunity restoration during ART, which together fuel systemic inflammation. Recently, T helper (Th)17-polarized cells were identified as major contributors to the pool of transcriptionally/translationally competent VRs. In this review, we discuss the functional features of Th17 cells that were elucidated by fundamental immunology studies in the context of autoimmunity. We also highlight recent discoveries supporting the possibility of extrapolating this knowledge toward the identification of new putative Th17-targeted HIV-1 remission/cure strategies.
Collapse
Affiliation(s)
- Augustine Fert
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Laurence Raymond Marchand
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Tomas Raul Wiche Salinas
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Petronela Ancuta
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada; Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania; The Research Institute of the University of Bucharest, Bucharest, Romania.
| |
Collapse
|
14
|
Isnard S, Lin J, Bu S, Fombuena B, Royston L, Routy JP. Gut Leakage of Fungal-Related Products: Turning Up the Heat for HIV Infection. Front Immunol 2021; 12:656414. [PMID: 33912183 PMCID: PMC8071945 DOI: 10.3389/fimmu.2021.656414] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
The intestinal epithelial layer serves as a physical and functional barrier between the microbiota in the lumen and immunologically active submucosa. Th17 T-cell function protects the gut epithelium from aggression from microbes and their by-products. Loss of barrier function has been associated with enhanced translocation of microbial products which act as endotoxins, leading to local and systemic immune activation. Whereas the inflammatory role of LPS produced by Gram-negative bacteria has been extensively studied, the role of fungal products such as β-D-glucan remains only partially understood. As HIV infection is characterized by impaired gut Th17 function and increased gut permeability, we critically review mechanisms of immune activation related to fungal translocation in this viral infection. Additionally, we discuss markers of fungal translocation for diagnosis and monitoring of experimental treatment responses. Targeting gut barrier dysfunction and reducing fungal translocation are emerging strategies for the prevention and treatment of HIV-associated inflammation and may prove useful in other inflammatory chronic diseases.
Collapse
Affiliation(s)
- Stéphane Isnard
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
- CIHR Canadian HIV Trials Network, Vancouver, BC, Canada
| | - John Lin
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Simeng Bu
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Brandon Fombuena
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Léna Royston
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
- Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|