1
|
Kim A, Kim YR, Park SM, Lee H, Park M, Yi JM, Cha S, Kim NS. Jakyak-gamcho-tang, a decoction of Paeoniae Radix and Glycyrrhizae Radix et Rhizoma, ameliorates dexamethasone-induced muscle atrophy and muscle dysfunction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155057. [PMID: 37984121 DOI: 10.1016/j.phymed.2023.155057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Although chronic treatment with glucocorticoids, such as dexamethasone, is frequently associated with muscle atrophy, effective and safe therapeutics for treating muscle atrophy remain elusive. Jakyak-gamcho-tang (JGT), a decoction of Paeoniae Radix and Glycyrrhizae Radix et Rhizoma, has long been used to relieve muscle tension and control muscle cramp-related pain. However, the effects of JGT on glucocorticoid-induced muscle atrophy are yet to be comprehensively clarified. PURPOSE The objective of the current study was to validate the protective effect of JGT in dexamethasone-induced muscle atrophy models and elucidate its underlying mechanism through integrated in silico - in vitro - in vivo studies. STUDY DESIGN AND METHODS Differential gene expression was preliminarily analyzed using the RNA-seq data to determine the effects of JGT on C2C12 myotubes. The protective effects of JGT were further validated in dexamethasone-treated C2C12 myotubes by assessing cell viability, myotube integrity, and mitochondrial function or in C57BL/6 N male mice with dexamethasone-induced muscle atrophy by evaluating muscle mass and physical performance. Transcriptomic pathway analysis was also performed to elucidate the underlying mechanism. RESULTS Based on preliminary gene set enrichment analysis using the RNA-seq data, JGT regulated various pathways related to muscle differentiation and regeneration. Dexamethasone-treated C2C12 myotubes and muscle tissues of atrophic mice displayed substantial muscle protein degradation and muscle loss, respectively, which was efficiently alleviated by JGT treatment. Importantly, JGT-mediated protective effects were associated with observations such as preservation of mitochondrial function, upregulation of myogenic signaling pathways, including protein kinase B/mammalian target of rapamycin/forkhead box O3, inhibition of ubiquitin-mediated muscle protein breakdown, and downregulation of inflammatory and apoptotic pathways induced by dexamethasone. CONCLUSION To the best of our knowledge, this is the first report to demonstrate that JGT could be a potential pharmaceutical candidate to prevent muscle atrophy induced by chronic glucocorticoid treatment, highlighting its known effects for relieving muscle spasms and pain. Moreover, transcriptomic pathway analysis can be employed as an efficient in silico tool to predict novel pharmacological candidates and elucidate molecular mechanisms underlying the effects of herbal medications comprising diverse biologically active ingredients.
Collapse
Affiliation(s)
- Aeyung Kim
- KM Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Yu Ri Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Sang-Min Park
- KM Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Haeseung Lee
- KM Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Musun Park
- KM Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Jin-Mu Yi
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Seongwon Cha
- KM Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| | - No Soo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| |
Collapse
|
2
|
Spasov AA, Zhukovskaya ON, Rashchenko AI, Brigadirova AA, Litvinov RA, Gurova NA, Smirnov AV, Pan’shin NG, Abbas HS, Morkovnik AS. DF-5 COMPOUND DELAYS DEVELOPMENT OF DIABETIC NEPHROPATHY IN RATS. PHARMACY & PHARMACOLOGY 2023. [DOI: 10.19163/2307-9266-2022-10-6-549-561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Advanced glycation end-products play an important role in the development of diabetic complications, so slowing down of glycated proteins’ cross-links formation have been suggested as a potential therapeutic option for the treatment of vascular diabetic complications and preventing their progression.The aim of the work was to assess the influence of novel anticrosslinking agent DF-5 on the renal advanced glycation end-products and collagen contents, body weight, blood glucose and glycated hemoglobin levels and the development of early renal disease in streptozotocin-induced diabetic rats.Materials and methods. 40 male Sprague-Dawley rats were used in the study. Two months after inducing diabetes, the study substance was administered intragastrically once a day for 28 days (12.5 mg/kg). Measurements included the assessment of blood glucose and HbA1c levels, the evaluation of the renal function, and the results of histology and immunohistochemical staining of kidneys.Results. A repeated intragastric administration of DF-5 for 30 days significantly reduced the level of HbA1c in the blood, but did not affect the level of fasting blood glucose. DF-5 compound significantly reduced proteinuria and prevented kidney damage in experimental animals by limiting damage of the glomeruli and tubules. It was found that DF-5 inhibits the progression of an early renal dysfunction in rats with streptozotocin-induced diabetic nephropathy. This was associated with a decreased accumulation of advanced glycation end-products in the kidney, accompanied by the improvement of both renal morphology and function.Conclusion. The results obtained provide investigators with additional therapeutic options for the treatment of diabetic nephropathy and possibly other complications of diabetes.
Collapse
Affiliation(s)
- A. A. Spasov
- Volgograd State Medical University;
Volgograd Medical Research Center
| | - O. N. Zhukovskaya
- Institute of Physical and Organic Chemistry, Southern Federal University
| | | | - A. A. Brigadirova
- Volgograd State Medical University;
Volgograd Medical Research Center
| | - R. A. Litvinov
- Volgograd State Medical University;
Volgograd Medical Research Center
| | | | - A. V. Smirnov
- Volgograd State Medical University;
Volgograd Medical Research Center
| | | | - H. S.A. Abbas
- Institute of Physical and Organic Chemistry, Southern Federal University
| | - A. S. Morkovnik
- Institute of Physical and Organic Chemistry, Southern Federal University
| |
Collapse
|
3
|
Kim JY, Kim M, Kim RY, Park WK, Park YH. A 12-week, randomized, double-blind, placebo-controlled study assessing the efficacy of EGHB010, a standardized extract of Paeoniae radix and Glycyrrhizae radix, in patients with early age-related macular degeneration. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:541. [PMID: 33987239 PMCID: PMC8105837 DOI: 10.21037/atm-20-4701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/18/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND EGHB010, a standardized extract of Paeoniae radix and Glycyrrhizae radix, inhibits choroidal neovascularization. The aim of this study is to evaluate the efficacy and safety of EGHB010 on early age-related macular degeneration (AMD) progression inhibition. METHODS The study was designed as a randomized, double-blind, single-center, placebo-controlled study. Subjects were 50 years of age or older, and early AMD satisfied the criteria of more than 15 small (<63 µm) drusen, less than 20 intermediate (≥63, <125 µm) drusen, or pigment abnormalities. For 12 weeks, the treatment group received EGHB010 and the control received the placebo. The main outcomes were changes in macular pigment optical density (MPOD), central macular thickness (CMT), and central choroidal thickness (CCT). Subgroup analysis was performed on subjects with MPOD <0.75 at baseline. RESULTS Forty-eight subjects out of 94 were assigned to the treatment group, and 46 to the control group. At 12 weeks, mean MPOD of the treatment group increased by 0.04±0.27 (P=0.2730), and that of the control group decreased by 0.03±0.21 (P=0.7240), but there was no significant difference between the two groups (P=0.1234). There were no significant differences between the two groups in mean CMT and CCT (P=0.6718 and 0.6608, respectively). In subgroup analysis, there were 39 subjects with MPOD <0.75 in the treatment group and 36 in the control. Mean MPOD of the treatment group significantly increased by 0.09±0.25 (P=0.0218), and there was a significant difference in mean MPOD at 12 weeks between the two groups (P=0.0248). Adverse reactions were similar in both groups, and no subjects had serious adverse events. CONCLUSIONS EGHB010 is expected to increase MPOD when administered to subjects with MPOD <0.75. EGHB010 is worth considering as a substance that inhibits the progression of early AMD.
Collapse
Affiliation(s)
- Joo Young Kim
- Department of Ophthalmology and Visual Science, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mirinae Kim
- Department of Ophthalmology and Visual Science, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Rae Young Kim
- Department of Ophthalmology and Visual Science, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Woo Kyung Park
- Department of Ophthalmology and Visual Science, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young-Hoon Park
- Department of Ophthalmology and Visual Science, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
4
|
Effect of Jakyakgamcho-Tang Extracts on H 2O 2-Induced C2C12 Myoblasts. Molecules 2021; 26:molecules26010215. [PMID: 33406609 PMCID: PMC7795328 DOI: 10.3390/molecules26010215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress is a major contributor to muscle aging and loss of muscle tissue. Jakyakgamcho-tang (JGT) has been used in traditional Eastern medicine to treat muscle pain. Here, we compared the total phenolic and flavonoid contents in 30% ethanol and water extracts of JGT and tested the preventive effects against oxidative stress (hydrogen peroxide)-induced cell death in murine C2C12 skeletal muscle cells. The total phenolic content and total flavonoid content in 30% ethanol extracts of JGT were higher than those of water extracts of JGT. Ethanol extracts of JGT (JGT-E) had stronger antioxidant activities of 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2,2′-diphenyl-1-picrylhydrazyl-scavenging activity (DPPH) than water extracts of JGT (JGT-W). JGT-E contained 19–53% (1.8 to 4.9-fold) more active compounds (i.e., albiflorin, liquiritin, pentagalloylglucose, isoliquiritin apioside, isoliquiritin, liquiritigenin, and glycyrrhizin) than JGT-W. The ethanol extracts of JGT inhibited hydrogen peroxide-induced cell death and intracellular reactive oxygen species generation more effectively than the water extract of JGT in a dose-dependent manner. For the first time, these results suggest that ethanol extract of JGT is relatively more efficacious at protecting against oxidative stress-induced muscle cell death.
Collapse
|
5
|
The Herbal Combination CPA4-1 Inhibits Changes in Retinal Capillaries and Reduction of Retinal Occludin in db/db Mice. Antioxidants (Basel) 2020; 9:antiox9070627. [PMID: 32708791 PMCID: PMC7402168 DOI: 10.3390/antiox9070627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Increased formation of advanced glycation end products (AGEs) plays an important role in the development of diabetic retinopathy (DR) via blood-retinal barrier (BRB) dysfunction, and reduction of AGEs has been suggested as a therapeutic target for DR. In this study, we examined whether CPA4-1, a herbal combination of Cinnamomi Ramulus and Paeoniae Radix, inhibits AGE formation. CPA4-1 and fenofibrate were tested to ameliorate changes in retinal capillaries and retinal occludin expression in db/db mice, a mouse model of obesity-induced type 2 diabetes. CPA4-1 (100 mg/kg) or fenofibrate (100 mg/kg) were orally administered once a day for 12 weeks. CPA4-1 (the half maximal inhibitory concentration, IC50 = 6.84 ± 0.08 μg/mL) showed approximately 11.44-fold higher inhibitory effect on AGE formation than that of aminoguanidine (AG, the inhibitor of AGEs, IC50 = 78.28 ± 4.24 μg/mL), as well as breaking effect on AGE-bovine serum albumin crosslinking with collagen (IC50 = 1.30 ± 0.37 μg/mL). CPA4-1 treatment ameliorated BRB leakage and tended to increase retinal occludin expression in db/db mice. CPA4-1 or fenofibrate treatment significantly reduced retinal acellular capillary formation in db/db mice. These findings suggested the potential of CPA4-1 as a therapeutic supplement for protection against retinal vascular permeability diseases.
Collapse
|
6
|
Lee HS, Shin HJ, Cho M, Lee SH, Oh DS. Inhibitory effects of Kampo medicines, Keishibukuryogan and Shakuyakukanzoto, on the substrate uptake activities of solute carrier organic anion transporters. J Pharmacol Sci 2018; 138:279-283. [PMID: 30424926 DOI: 10.1016/j.jphs.2018.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to assess the effects of Keishibukuryogan (K-06) and Shakuyakukanzoto (TJ-68), commercial herbal medicines, on the substrate uptake activities of renal organic anion transporters. We performed transporter uptake and cell viability assays in Xenopus oocytes and HEK293 human kidney embryonic cells treated with K-06 or TJ-68. K-06 and TJ-68 markedly inhibited the substrate uptake activities of URAT1, OAT1, and OAT3, while they did not exhibit non-cytotoxic effects. Our findings demonstrated that K-06 and TJ-68 inhibited the substrate uptake activities of renal transporters, suggesting their mechanism of action as nephroprotective agents.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The K-herb Research Center, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Ho Jung Shin
- Department of Pharmacology and PharmacoGenomics Research Center, College of Medicine, Inje University, Busan 47392, Republic of Korea; SPMED Co., Ltd., Busan 46508, Republic of Korea
| | - Munju Cho
- Department of Pharmacology and PharmacoGenomics Research Center, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Seung Hoon Lee
- The K-herb Research Center, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Dal-Seok Oh
- The K-herb Research Center, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea.
| |
Collapse
|
7
|
Parveen A, Kim JH, Oh BG, Subedi L, Khan Z, Kim SY. Phytochemicals: Target-Based Therapeutic Strategies for Diabetic Retinopathy. Molecules 2018; 23:E1519. [PMID: 29937497 PMCID: PMC6100391 DOI: 10.3390/molecules23071519] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 02/07/2023] Open
Abstract
Background: A variety of causative factors are involved in the initiation of diabetic retinopathy (DR). Current antidiabetic therapies are expensive and not easily accessible by the public. Furthermore, the use of multiple synthetic drugs leads to severe side effects, which worsen the diabetic patient’s condition. Medicinal plants and their derived phytochemicals are considered safe and effective treatment and their consumption can reduce the DR risk. In this article, we discuss a variety of medicinal plants, and their noteworthy bio-active constituents, that will be utilized as target based therapeutic strategies for DR. Methods: A broad-spectrum study was conducted using published English works in various electronic databases including Science Direct, PubMed, Scopus, and Google Scholar. Results: Targeting the multiple pathological factors including ROS, AGEs formation, hexosamine flux, PARP, PKC, and MAPK activation through variety of bioactive constituents in medicinal plants, diabetes progression can be delayed with improved loss of vision. Conclusions: Data reveals that traditional herbs and their prominent bioactive components control and normalize pathological cellular factors involved in DR progression. Therefore, studies should be carried out to explore the protective retinopathy effects of medicinal plants using experimental animal and humans models.
Collapse
Affiliation(s)
- Amna Parveen
- Department of Pharmacognosy, College of Pharmacy, Government College University Faisalabad, Faisalabad 3800, Pakistan.
- College of Pharmacy, Gachon University, Hambakmoero, Yeonsu-gu, Incheon 406-799, Korea.
| | - Jin Hyun Kim
- College of Pharmacy, Gachon University, Hambakmoero, Yeonsu-gu, Incheon 406-799, Korea.
| | - Byeong Gyu Oh
- College of Pharmacy, Gachon University, Hambakmoero, Yeonsu-gu, Incheon 406-799, Korea.
| | - Lalita Subedi
- College of Pharmacy, Gachon University, Hambakmoero, Yeonsu-gu, Incheon 406-799, Korea.
| | - Zahra Khan
- College of Pharmacy, Gachon University, Hambakmoero, Yeonsu-gu, Incheon 406-799, Korea.
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, Hambakmoero, Yeonsu-gu, Incheon 406-799, Korea.
- Gachon Institute of Pharmaceutical Science, Gachon University, Hambakmoe-ro, Yeonsu-gu, Incheon 406-799, Korea.
| |
Collapse
|
8
|
EGHB010, a Standardized Extract of Paeoniae Radix and Glycyrrhizae Radix, Inhibits VEGF-Induced Tube Formation In Vitro and Retinal Vascular Leakage and Choroidal Neovascularization In Vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:1568702. [PMID: 29234364 PMCID: PMC5646325 DOI: 10.1155/2017/1568702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/29/2017] [Indexed: 11/18/2022]
Abstract
EGHB010 is a hot water extract of the rhizome mixture of Paeonia lactiflora Pallas and Glycyrrhiza uralensis Fisch. Choroidal neovascularization (CNV) and vascular leakage are the common pathophysiologies of age-related macular degeneration. In this study, we aimed to evaluate the effect of EGHB010 on retinal vascular leakage and laser-induced CNV in a rat model. Vascular endothelial growth factor- (VEGF-) induced tube formation was assayed in human retinal microvascular endothelial cells. Intravitreal VEGF-induced blood-retinal barrier breakdown was assayed in Sprague-Dawley rats. Experimental CNV was induced by laser photocoagulation in Brown Norway rats. EGHB010 (50 and 100 mg/kg/day) was administered orally for 10 days after laser photocoagulation. Choroidal flat mounts were prepared to measure the lesion size of CNV. Incubation of retinal vascular endothelial cells with EGHB010 (12.5 and 25 μg/mL) resulted in the inhibition of VEGF-induced tube formation in a dose-dependent manner. VEGF-mediated retinal vascular leakage was blocked by the oral administration of EGHB010. The CNV area was significantly lower in EGHB010-treated rats than in vehicle-treated rats. These results suggest that EGHB010 is a potent antiangiogenic agent. Thus, the oral administration of EGHB010 may have a beneficial effect in the treatment of vascular leakage and CNV in patients with age-related macular degeneration.
Collapse
|