1
|
Lachapelle V, Comeau G, Quessy S, Zanabria R, Rhouma M, van Vonderen T, Snelgrove P, Kashi D, Bosch ML, Smillie J, Holley R, Brockhoff E, Costa M, Gaucher ML, Chorfi Y, Racicot M. The Development of a Risk Assessment Model for Inedible Rendering Plants in Canada: Identifying and Selecting Feed Safety-Related Factors. Animals (Basel) 2024; 14:1020. [PMID: 38612259 PMCID: PMC11011131 DOI: 10.3390/ani14071020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 04/14/2024] Open
Abstract
The Canadian Food Inspection Agency (CFIA) is developing an establishment-based risk assessment model to categorize rendering plants that produce livestock feed ingredients (ERA-Renderer model) according to animal and human health risks (i.e., feed safety risks) and help in determining the allocation of inspection resources based on risk. The aim of the present study was to identify and select feed-safety-related factors and assessment criteria for inclusion in the ERA-Renderer model. First, a literature review was performed to identify evidence-based factors that impact the feed safety risk of livestock feed during its rendering processes. Secondly, a refinement process was applied to retain only those that met the inclusion conditions, such as data availability, lack of ambiguity, and measurability. Finally, an expert panel helped in selecting factors and assessment criteria based on their knowledge and experience in the rendering industry. A final list of 32 factors was developed, of which 4 pertained to the inherent risk of a rendering plant, 8 were related to risk mitigation strategies, and 20 referred to the regulatory compliance of a rendering plant. A total of 179 criteria were defined to assess factors based on practices in the Canadian rendering industry. The results of this study will be used in the next step of the model development to estimate the relative risks of the assessment criteria considering their impact on feed safety. Once implemented, the CFIA's ERA-Renderer model will provide an evidence-based, standardized, and transparent approach to help manage the feed safety risks in Canada's rendering sector.
Collapse
Affiliation(s)
- Virginie Lachapelle
- Canadian Food Inspection Agency, 3200 Sicotte, St-Hyacinthe, QC J2S 2M2, Canada; (G.C.); (M.R.)
| | - Geneviève Comeau
- Canadian Food Inspection Agency, 3200 Sicotte, St-Hyacinthe, QC J2S 2M2, Canada; (G.C.); (M.R.)
| | - Sylvain Quessy
- Faculty of Veterinary Medicine, Université de Montréal, 3200 Sicotte, St-Hyacinthe, QC J2S 2M2, Canada; (S.Q.); (M.R.); (M.C.); (M.-L.G.); (Y.C.)
| | - Romina Zanabria
- Canadian Food Inspection Agency, 1400 Merivale, Ottawa, ON K1A 0Y9, Canada;
| | - Mohamed Rhouma
- Faculty of Veterinary Medicine, Université de Montréal, 3200 Sicotte, St-Hyacinthe, QC J2S 2M2, Canada; (S.Q.); (M.R.); (M.C.); (M.-L.G.); (Y.C.)
| | - Tony van Vonderen
- Canadian Food Inspection Agency, 59 Camelot Drive, Ottawa, ON K1A 0Y9, Canada; (T.v.V.); (P.S.)
| | - Philip Snelgrove
- Canadian Food Inspection Agency, 59 Camelot Drive, Ottawa, ON K1A 0Y9, Canada; (T.v.V.); (P.S.)
| | - Djillali Kashi
- Sanimax, 2001 Av. de La Rotonde, Lévis, QC G6X 2L9, Canada;
| | - My-Lien Bosch
- Animal Nutrition Association of Canada, 300 Sparks St., Suite 1301, Ottawa, ON K1R 7S3, Canada;
| | - John Smillie
- College of Agriculture and Bioresources, University of Saskatchewan, Agriculture Building 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada;
| | - Rick Holley
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Egan Brockhoff
- Canadian Pork Council, 900-220 Laurier Ave. W., Ottawa, ON K1P 5Z9, Canada;
| | - Marcio Costa
- Faculty of Veterinary Medicine, Université de Montréal, 3200 Sicotte, St-Hyacinthe, QC J2S 2M2, Canada; (S.Q.); (M.R.); (M.C.); (M.-L.G.); (Y.C.)
| | - Marie-Lou Gaucher
- Faculty of Veterinary Medicine, Université de Montréal, 3200 Sicotte, St-Hyacinthe, QC J2S 2M2, Canada; (S.Q.); (M.R.); (M.C.); (M.-L.G.); (Y.C.)
| | - Younes Chorfi
- Faculty of Veterinary Medicine, Université de Montréal, 3200 Sicotte, St-Hyacinthe, QC J2S 2M2, Canada; (S.Q.); (M.R.); (M.C.); (M.-L.G.); (Y.C.)
| | - Manon Racicot
- Canadian Food Inspection Agency, 3200 Sicotte, St-Hyacinthe, QC J2S 2M2, Canada; (G.C.); (M.R.)
| |
Collapse
|
2
|
Hiraishi N, Gondo T, Shimada Y, Hill R, Hayashi F. Crystallographic and Physicochemical Analysis of Bovine and Human Teeth Using X-ray Diffraction and Solid-State Nuclear Magnetic Resonance. J Funct Biomater 2022; 13:jfb13040254. [PMID: 36412897 PMCID: PMC9680385 DOI: 10.3390/jfb13040254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Dental research often uses bovine teeth as a substitute for human teeth. The aim of this study was to evaluate differences in the crystalline nanostructures of enamel and dentin between bovine and human teeth, using X-ray diffraction (XRD) and solid-state nuclear magnetic resonance (NMR). The crystallite size (crystallinity) and microstrains were analyzed using XRD with the Rietveld refinement technique and the Halder-Wagner method. The 31P and 1H NMR chemical environments were analyzed by two-dimensional (2D) 1H-31P heteronuclear-correlation (HETCOR) magic-angle spinning (MAS) NMR spectroscopy. Enamel had a greater crystallite size and fewer microstrains than dentin for both bovine and human teeth. When compared between the species, the bovine apatite had a smaller crystallite size with more microstrains than the human apatite for both dentin and enamel. The 2D HETCOR spectra demonstrated that a water-rich layer and inorganic HPO4- ions were abundant in dentin; meanwhile, the hydroxyl group in the lattice site was more dominant in enamel. A greater intensity of the hydroxyl group was detected in human than in bovine for both dentin and enamel. For 31P projections, bovine dentin and bovine enamel have wider linewidths than human dentin and human enamel, respectively. There are differences in the crystallite profile between human and bovine. The results of dental research should be interpreted with caution when bovine teeth are substituted for human teeth.
Collapse
Affiliation(s)
- Noriko Hiraishi
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
- Correspondence:
| | - Tadamu Gondo
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Yasushi Shimada
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Robert Hill
- Dental Physical Sciences Unit, Institute of Dentistry, Queen Mary University of London, London E1 4NS, UK
| | - Fumiaki Hayashi
- NMR Operation Team, Laboratory for Advanced NMR Application and Development, RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| |
Collapse
|
3
|
ONODERA T. Dual role of cellular prion protein in normal host and Alzheimer's disease. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:155-173. [PMID: 28413194 PMCID: PMC5489426 DOI: 10.2183/pjab.93.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/26/2017] [Indexed: 06/07/2023]
Abstract
Using PrPC-knockout cell lines, it has been shown that the inhibition of apoptosis through STI1 is mediated by PrPC-dependent SOD activation. Antioxidant PrPC may contribute to suppression of inflammasome activation. PrPC is functionally involved in copper metabolism, signal transduction, neuroprotection, and cell maturation. Recently several reports have shown that PrPC participates in trans-membrane signaling processes associated with hematopoietic stem cell replication and neuronal differentiation. In another role, PrPC also tends to function as a neurotoxic protein. Aβ oligomer, which is associated with neurodegeneration in Alzheimer's disease (AD), has also been reported to act as a ligand of PrPC. However, the physiological role of PrPC as an Aβ42-binding protein is not clear. Actually, PrPC is critical in Aβ42-mediated autophagy in neurons. PrPC shows a beneficial role in lipid rafts to promote autophagy. Further search for PrPC-interaction molecules using Prnp-/- mice and various types of Prnp-/- cell lines under various conditions may elucidate other important PrPC important functions.
Collapse
Affiliation(s)
- Takashi ONODERA
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Onodera T, Sakudo A, Wu G, Saeki K. Bovine Spongiform Encephalopathy in Japan: History and Recent Studies on Oxidative Stress in Prion Diseases. Microbiol Immunol 2013; 50:565-78. [PMID: 16924141 DOI: 10.1111/j.1348-0421.2006.tb03831.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
With the respect to BSE and vCJD, compliance with the following three rules should strictly be observed: (i) Identification and destruction of all clinically affected cattle; (ii) destruction of all mammalian proteins used in feeding ruminant livestock; and (iii) destruction of all high-risk tissues for use in human consumption. Scrapie in sheep has been documented in the 18th century in the United Kingdom. Through studies of brain-to-brain transmission in the same species in 1935, Cuille et al. successfully isolated the culprit protein from the sheep brain. To transmit said protein from an animal to another, intracerebral inoculation was much more efficient than intraperitoneal or oral route in certain species; i.e. the hamster and mouse. Since discovery of the more efficacious infection route, studies and development of prion research have undergone 4 developmental phases. Phase I depicted discoveries of the pathological features of Creutzfeldt-Jakob disease (CJD) and scrapie with typical lesions of spongiform encephalopathy, while Phase II revealed individual-to-individual (or cross-species) transmissions of CJD, kuru and scrapie in animals. Phases I and II suggested the possible participation of a slow virus in the infection process. In Phase III, Prusiner et al. proposed the 'prion' theory in 1982, followed by the milestone development of the transgenic or gene-targeted mouse in prion research in Phase IV. By strain-typing of prions, CJD has been classified as type 2 or 4 by Parchi et al. and Wadsworth as type-2 or -4 and type-1 or -2, respectively. Wadsworth type 1 is detected in the cerebellum, while Wadsworth type 2 was detected in the prefrontal cortex of 10% of sporadic CJD patients. In 1999, Puoti et al. have reported the co-existence of two types of PrP(res) in a same patient. These reports indicated that PrP(res)-typing is a quantitative rather than a qualitative process, and the relationship between the molecular type and the prion strain is rather complex. In fact, previous findings of Truchot have correlated type-1 distribution with synaptic deposits, and type-2 with arrangement of diffuse deposits in neurons. Although the normal function of PrP(C) has not been fully understood, recent studies have shown that PrP(C) plays a role in copper metabolism, signal transduction, neuroprotection and cell maturation. Further search of PrP(C)-interacting molecules and detailed studies using Prnp(-/-) mice and various type of Prnp(-/-) cell lines under various conditions are the prerequisites in elucidating PrP functions. In the pathogenesis of prion diseases, present results support the hypothesis that 'loss-of-function' of PrP(C) decreases resistance to oxidative stress, and 'gain-of-function' of PrP(Sc) increases oxidative stress. The mechanisms of (i) the 'loss-of-function' of PrP(C) in enhanced susceptibility to oxidative stress and (ii) the 'gain-of-function' of PrP(Sc) in generation of oxidative stress remain to be elucidated, although their mechanisms of action, at least in part, involve the decrease and increase in SOD activity, respectively.
Collapse
Affiliation(s)
- Takashi Onodera
- Department of Molecular Immunology, School of Agricultural and Life Sciences, University of Tokyo
| | | | | | | |
Collapse
|
5
|
Kadohira M, Stevenson MA, Høgåsen HR, de Koeijer A. A quantitative risk assessment for bovine spongiform encephalopathy in Japan. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2012; 32:2198-2208. [PMID: 22642297 DOI: 10.1111/j.1539-6924.2012.01846.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A predictive case-cohort model was applied to Japanese data to analyze the interaction between challenge and stability factors for bovine spongiform encephalopathy (BSE) for the period 1985-2020. BSE risk in cattle was estimated as the expected number of detectable cases per year. The model was comprised of a stochastic spreadsheet calculation model with the following inputs: (1) the origin and quantity of live cattle and meat and bone meal imported into Japan, (2) the age distribution of native cattle, and (3) the estimated annual basic reproduction ratio (R(0) ) for BSE. The estimated probability of having zero detectable cases in Japan in 2015 was 0.90 (95% CI 0.83-0.95). The corresponding value for 2020 was 0.99 (95% CI 0.98-0.99). The model predicted that detectable cases may occur in Japan beyond 2015 because of the assumption that continued transmission was permitted to occur (albeit at a very low level) after the 2001 ban on the importation and domestic use of all processed animal proteins for the production of animal feed and for fertilizer. These results reinforce the need for animal health authorities to monitor the efficacy of control measures so that the future course of the BSE epidemic in Japan can be predicted with greater certainty.
Collapse
Affiliation(s)
- M Kadohira
- Field Center of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine,W2 - 11, Inada-cho, Obihiro, 080-8555, Japan
| | | | | | | |
Collapse
|
6
|
Sugiura K, Murray N. Estimating the prevalence of BSE in dairy birth cohorts and predicting the incidence of BSE cases in Japan. Prev Vet Med 2007; 82:213-35. [PMID: 17617479 DOI: 10.1016/j.prevetmed.2007.05.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 05/13/2007] [Accepted: 05/22/2007] [Indexed: 11/25/2022]
Abstract
Following the detection of the first case of BSE in Japan in September 2001, four million cattle were subjected to a rapid test for BSE up to the end of 2004. A further 10 cases were detected in the dairy cattle population and two cases in Holstein steers. We focused on the dairy population and estimated the prevalence of BSE infected animals within each birth cohort for the years 1992-2001 using Bayesian inference. From this we were able to predict historic and future trends in the number of infected animals culled from each cohort and whether or not they could be detected using a rapid test. Assuming that BSE infectivity entered Japan in 1995, 225 (95%CI: 111-418) infected animals were predicted to have been culled from 1995 to 2001, of which 116 (56-219) would have been slaughtered for human consumption, and 33 (12-65) cases would have been detected during this period if a BSE surveillance program as comprehensive as the one in place as of April 2004 was applied. Assuming that BSE infectivity entered Japan in 1992, 905 (366-4633) infected animals were predicted to have been culled from 1992 to 2001, of which 694 (190-2473) would have been slaughtered for human consumption, and 201 (53-693) cases would have been detected during this period. Assuming the April 2004 level of surveillance continues and that the feed ban introduced in 2001 is completely effective, 18 (3-111) BSE cases are likely to be detected in the future. The BSE epidemic in Japan most likely reached a peak between 1998 and 2001 and should be eradicated around 2012.
Collapse
Affiliation(s)
- Katsuaki Sugiura
- Food and Agricultural Materials Inspection Center, Shintoshin 2-1, Chuo-ku, Saitama-shi, Saitama-prefecture 330-9731, Japan.
| | | |
Collapse
|
7
|
Heim D, Mumford E. The future of BSE from the global perspective. Meat Sci 2005; 70:555-62. [PMID: 22063753 DOI: 10.1016/j.meatsci.2004.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 06/30/2004] [Accepted: 07/15/2004] [Indexed: 11/17/2022]
Abstract
Although, the bovine spongiform encephalopathy (BSE) risk of most countries in Europe has been assessed and they have implemented both measures to control BSE and extensive surveillance systems, complete and valid data is still not consistently available. Globally, data is largely unavailable. Assessments based on incomplete or invalid information could lead to false conclusions. The BSE risk of countries throughout the world must continue to be assessed, and improvements in collection of surveillance data must be made, both in countries already reporting BSE cases and worldwide, in order to evaluate the global BSE picture and assure that cattle and products can be safely traded.
Collapse
Affiliation(s)
- D Heim
- Swiss Federal Veterinary Office Schwarzenburgstrasse 161 3003 Bern Switzerland
| | | |
Collapse
|
8
|
Sugiura K. Risk of introduction of BSE into Japan by the historical importation of cattle from the United Kingdom and Germany. Prev Vet Med 2004; 64:191-200. [PMID: 15325772 DOI: 10.1016/j.prevetmed.2004.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2003] [Revised: 03/22/2004] [Accepted: 05/02/2004] [Indexed: 11/22/2022]
Abstract
All cattle of UK and German origin imported to Japan since 1980 and slaughtered before 2002 were traced (n = 33 and 15 respectively) and the probability that none, one, two or three of these imported cattle had developed BSE (reached the end or last stage of incubation period) at the year of slaughter/death was calculated. The predicted risk that BSE was introduced into Japan by imported cattle was 0.18. Among cattle imported from these countries in various years, cattle imported from the UK in 1987 and 1988 presented the highest risk, while the risk that BSE entered Japan by live cattle imported from the UK in 1982 and from Germany in 1993 was negligible. Because there was no effective system to avoid the recycling of the BSE agent, those infected cattle imported from the UK in 1987 and 1988 most probably entered the feed chain in Japan in 1992 and 1993.
Collapse
Affiliation(s)
- Katsuaki Sugiura
- Food Safety Commission, Cabinet Office, 2-13-10 Nagata-cho, Chiyoda-ku, Tokyo 100-8989, Japan.
| |
Collapse
|