1
|
Kembou-Ringert JE, Hotio FN, Steinhagen D, Thompson KD, Surachetpong W, Rakus K, Daly JM, Goonawardane N, Adamek M. Knowns and unknowns of TiLV-associated neuronal disease. Virulence 2024; 15:2329568. [PMID: 38555518 PMCID: PMC10984141 DOI: 10.1080/21505594.2024.2329568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/07/2024] [Indexed: 04/02/2024] Open
Abstract
Tilapia Lake Virus (TiLV) is associated with pathological changes in the brain of infected fish, but the mechanisms driving the virus's neuropathogenesis remain poorly characterized. TiLV establishes a persistent infection in the brain of infected fish even when the virus is no longer detectable in the peripheral organs, rendering therapeutic interventions and disease management challenging. Moreover, the persistence of the virus in the brain may pose a risk for viral reinfection and spread and contribute to ongoing tissue damage and neuroinflammatory processes. In this review, we explore TiLV-associated neurological disease. We discuss the possible mechanism(s) used by TiLV to enter the central nervous system (CNS) and examine TiLV-induced neuroinflammation and brain immune responses. Lastly, we discuss future research questions and knowledge gaps to be addressed to significantly advance this field.
Collapse
Affiliation(s)
- Japhette E. Kembou-Ringert
- Department of infection, immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Fortune N. Hotio
- Department of Animal Biology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kim D. Thompson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, UK
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Janet M. Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Niluka Goonawardane
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
2
|
Park J, Kim H, Alabdalla L, Mishra S, Mchaourab H. Generation and characterization of a zebrafish knockout model of abcb4, a homolog of the human multidrug efflux transporter P-glycoprotein. Hum Genomics 2023; 17:84. [PMID: 37674192 PMCID: PMC10481557 DOI: 10.1186/s40246-023-00530-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023] Open
Abstract
The ATP-binding cassette subfamily B member 1 (ABCB1), encoding a multidrug transporter referred to as P-glycoprotein (Pgp), plays a critical role in the efflux of xenobiotics in humans and is implicated in cancer resistance to chemotherapy. Therefore, developing high-throughput animal models to screen for Pgp function and bioavailability of substrates and inhibitors is paramount. Here, we generated and validated a zebrafish knockout line of abcb4, a human Pgp transporter homolog. CRISPR/Cas9 genome editing technology was deployed to generate a frameshift mutation in exon 4 of zebrafish abcb4. The zebrafish abcb4 homozygous mutant exhibited elevated accumulation of fluorescent rhodamine 123, a substrate of human Pgp, in the intestine and brain area of embryos. Moreover, abcb4 knockout embryos were sensitized toward toxic compounds such as doxorubicin and vinblastine compared to the WT zebrafish. Immunostaining for zebrafish Abcb4 colocalized in the endothelial brain cells of adult zebrafish. Transcriptome profiling using Gene Set Enrichment Analysis uncovered that the 'cell cycle process,' 'mitotic cell cycles,' and 'microtubule-based process' were significantly downregulated in the abcb4 knockout brain with age. This study establishes and validates the abcb4 knockout zebrafish as an animal model to study Pgp function in vivo. Unexpectedly it reveals a potentially novel role for zebrafish abcb4 in age-related changes in the brain. The zebrafish lines generated here will provide a platform to aid in the discovery of modulators of Pgp function as well as the characterization of human mutants thereof.
Collapse
Affiliation(s)
- Jinhee Park
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37240, USA
| | - Hyosung Kim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Leen Alabdalla
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37240, USA
| | - Smriti Mishra
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37240, USA
| | - Hassane Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37240, USA.
| |
Collapse
|
3
|
Gottesman MM, Robey RW, Ambudkar SV. New mechanisms of multidrug resistance: an introduction to the Cancer Drug Resistance special collection. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:590-595. [PMID: 37842242 PMCID: PMC10571052 DOI: 10.20517/cdr.2023.86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 10/17/2023]
Abstract
Cancer Drug Resistance publishes contributions to understanding the biology and consequences of mechanisms that interfere with successful treatment of cancer. Since virtually all patients who die of metastatic cancer have multidrug-resistant tumors, improved treatment will require an understanding of the mechanisms of resistance to design therapies that circumvent these mechanisms, exploit these mechanisms, or inactivate these multidrug resistance mechanisms. One example of a resistance mechanism is the expression of ATP-binding cassette efflux pumps, but unfortunately, inhibition of these transporters has not proved to be the solution to overcome multidrug resistance in cancer. Other mechanisms that confer multidrug resistance, and the confluence of multiple different mechanisms (multifactorial multidrug resistance) have been identified, and it is the goal of this Special Collection to expand this catalog of potential multidrug resistance mechanisms, to explore novel ways to overcome resistance, and to present thoughtful reviews on the problem of multidrug resistance in cancer.
Collapse
Affiliation(s)
- Michael M. Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
4
|
Current Strategies to Enhance Delivery of Drugs across the Blood–Brain Barrier. Pharmaceutics 2022; 14:pharmaceutics14050987. [PMID: 35631573 PMCID: PMC9145636 DOI: 10.3390/pharmaceutics14050987] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/18/2022] [Accepted: 04/29/2022] [Indexed: 12/13/2022] Open
Abstract
The blood–brain barrier (BBB) has shown to be a significant obstacle to brain medication delivery. The BBB in a healthy brain is a diffusion barrier that prevents most substances from passing from the blood to the brain; only tiny molecules can pass across the BBB. The BBB is disturbed in specific pathological illnesses such as stroke, diabetes, seizures, multiple sclerosis, Parkinson’s disease, and Alzheimer’s disease. The goal of this study is to offer a general overview of current brain medication delivery techniques and associated topics from the last five years. It is anticipated that this review will stimulate readers to look into new ways to deliver medications to the brain. Following an introduction of the construction and function of the BBB in both healthy and pathological conditions, this review revisits certain contested questions, such as whether nanoparticles may cross the BBB on their own and if medications are selectively delivered to the brain by deliberately targeted nanoparticles. Current non-nanoparticle options are also discussed, including drug delivery via the permeable BBB under pathological circumstances and the use of non-invasive approaches to improve brain medication absorption.
Collapse
|
5
|
Fan RY, Wu JQ, Liu YY, Liu XY, Qian ST, Li CY, Wei P, Song Z, He MF. Zebrafish xenograft model for studying mechanism and treatment of non-small cell lung cancer brain metastasis. J Exp Clin Cancer Res 2021; 40:371. [PMID: 34801071 PMCID: PMC8605597 DOI: 10.1186/s13046-021-02173-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
Background Brain metastasis (BM) is thought to be related to the mortality and poor prognosis of non-small cell lung cancer (NSCLC). Despite promising development of NSCLC treatment, the treatment of NSCLC BM is still not optimistic due to the existence of the blood-brain barrier (BBB) that prevent drug penetration, as well as the short median survival time of the patients left for treatment. In this context, further development of quick and effective pre-clinical models is needed in NSCLC BM treatment. Here, we report a model system using zebrafish to promote the development of drugs for patients with NSCLC BM. Methods Three different NSCLC cell lines (H1975, A549 and H1299) were used to establish zebrafish BM models. The embryo age and cell number for injection were first optimized. Metastatic cells were observed in the brain blood vessels of zebrafish and were verified by hematoxylin-eosin (HE) staining. Then, the metastasis potentials of H1975 and A549 with manipulated microRNA-330-3p (miR-330-3p) expression were also investigated. Finally, sensitivities of H1975 and A549 to osimertinib and gefitinib were tested. Results This zebrafish BM model could distinguish NSCLC cell lines with different BM potential. Over-expressed miR-330-p significantly improved the BM potential of the A549 cells while knockdown miR-330-p reduced the BM ability of the H1975 cells. Both osimertinib and gefitinib showed inhibition effect in zebrafish BM model with the inhibition rate higher than 50 %. H1975 cell showed much higher sensitivity to osimertinib rather than gefitinib both in vivo and in vitro. Conclusions We established zebrafish brain metastasis model for studying mechanism and treatment of NSCLC BM. This study provided a useful model for NSCLC brain metastasis that could be used to study the mechanism that drive NSCLC cells to the brain as well as identify potential therapeutic options. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02173-5.
Collapse
Affiliation(s)
- Ruo-Yue Fan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, 211816, Nanjing, P. R. China
| | - Jia-Qi Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, 211816, Nanjing, P. R. China
| | - Yu-Yang Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, 211816, Nanjing, P. R. China.,Jiangsu Tripod Preclinical Research Laboratory Co. Ltd, 211816, Nanjing, China
| | - Xiang-Yu Liu
- Department of Neurosurgery, The Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, 210023, Nanjing, China
| | - Si-Tong Qian
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, 211816, Nanjing, P. R. China
| | - Chong-Yong Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, 211816, Nanjing, P. R. China
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, 211816, Nanjing, P. R. China
| | - Zhe Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 210009, Nanjing, China
| | - Ming-Fang He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, 211816, Nanjing, P. R. China.
| |
Collapse
|
6
|
Dunton AD, Göpel T, Ho DH, Burggren W. Form and Function of the Vertebrate and Invertebrate Blood-Brain Barriers. Int J Mol Sci 2021; 22:ijms222212111. [PMID: 34829989 PMCID: PMC8618301 DOI: 10.3390/ijms222212111] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/23/2021] [Accepted: 10/28/2021] [Indexed: 12/25/2022] Open
Abstract
The need to protect neural tissue from toxins or other substances is as old as neural tissue itself. Early recognition of this need has led to more than a century of investigation of the blood-brain barrier (BBB). Many aspects of this important neuroprotective barrier have now been well established, including its cellular architecture and barrier and transport functions. Unsurprisingly, most research has had a human orientation, using mammalian and other animal models to develop translational research findings. However, cell layers forming a barrier between vascular spaces and neural tissues are found broadly throughout the invertebrates as well as in all vertebrates. Unfortunately, previous scenarios for the evolution of the BBB typically adopt a classic, now discredited 'scala naturae' approach, which inaccurately describes a putative evolutionary progression of the mammalian BBB from simple invertebrates to mammals. In fact, BBB-like structures have evolved independently numerous times, complicating simplistic views of the evolution of the BBB as a linear process. Here, we review BBBs in their various forms in both invertebrates and vertebrates, with an emphasis on the function, evolution, and conditional relevance of popular animal models such as the fruit fly and the zebrafish to mammalian BBB research.
Collapse
Affiliation(s)
- Alicia D. Dunton
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; (T.G.); (W.B.)
- Correspondence:
| | - Torben Göpel
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; (T.G.); (W.B.)
| | - Dao H. Ho
- Department of Clinical Investigation, Tripler Army Medical Center, Honolulu, HI 96859, USA;
| | - Warren Burggren
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; (T.G.); (W.B.)
| |
Collapse
|