1
|
Lleshi E, Milne-Clark T, Lee Yu H, Martin HW, Hanson R, Lach R, Rossi SH, Riediger AL, Görtz M, Sültmann H, Flewitt A, Lynch AG, Gnanapragasam VJ, Massie CE, Dev HS. Prostate cancer detection through unbiased capture of methylated cell-free DNA. iScience 2024; 27:110330. [PMID: 39055933 PMCID: PMC11269940 DOI: 10.1016/j.isci.2024.110330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 05/02/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Prostate cancer screening using prostate-specific antigen (PSA) has been shown to reduce mortality but with substantial overdiagnosis, leading to unnecessary biopsies. The identification of a highly specific biomarker using liquid biopsies, represents an unmet need in the diagnostic pathway for prostate cancer. In this study, we employed a method that enriches for methylated cell-free DNA fragments coupled with a machine learning algorithm which enabled the detection of metastatic and localized cancers with AUCs of 0.96 and 0.74, respectively. The model also detected 51.8% (14/27) of localized and 88.7% (79/89) of patients with metastatic cancer in an external dataset. Furthermore, we show that the differentially methylated regions reflect epigenetic and transcriptomic changes at the tissue level. Notably, these regions are significantly enriched for biologically relevant pathways associated with the regulation of cellular proliferation and TGF-beta signaling. This demonstrates the potential of circulating tumor DNA methylation for prostate cancer detection and prognostication.
Collapse
Affiliation(s)
- Ermira Lleshi
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
- Department of Engineering, University of Cambridge, Cambridge, UK
| | - Toby Milne-Clark
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Henson Lee Yu
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Henno W. Martin
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Robert Hanson
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Radoslaw Lach
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Sabrina H. Rossi
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Anja Lisa Riediger
- University Hospital Heidelberg, 69120 Heidelberg, Germany
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | | | - Holger Sültmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Andrew Flewitt
- Department of Engineering, University of Cambridge, Cambridge, UK
| | - Andy G. Lynch
- School of Mathematics and Statistics, University of St Andrews, St Andrews KY16 9SS, UK
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
| | | | - Charlie E. Massie
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Harveer S. Dev
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| |
Collapse
|
2
|
Velez J, Han Y, Yim H, Yang P, Deng Z, Park KS, Kabir M, Kaniskan HÜ, Xiong Y, Jin J. Discovery of the First-in-Class G9a/GLP PROTAC Degrader. J Med Chem 2024; 67:6397-6409. [PMID: 38602846 PMCID: PMC11069390 DOI: 10.1021/acs.jmedchem.3c02394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Aberrantly expressed lysine methyltransferases G9a and GLP, which catalyze mono- and dimethylation of histone H3 lysine 9 (H3K9), have been implicated in numerous cancers. Recent studies have uncovered both catalytic and noncatalytic oncogenic functions of G9a/GLP. As such, G9a/GLP catalytic inhibitors have displayed limited anticancer activity. Here, we report the discovery of the first-in-class G9a/GLP proteolysis targeting chimera (PROTAC) degrader 10 (MS8709), as a potential anticancer therapeutic. 10 induces G9a/GLP degradation in a concentration-, time-, and ubiquitin-proteasome system (UPS)-dependent manner. Futhermore, 10 does not alter the mRNA expression of G9a/GLP and is selective for G9a/GLP over other methyltransferases. Moreover, 10 displays superior cell growth inhibition to the parent G9a/GLP inhibitor UNC0642 in prostate, leukemia, and lung cancer cells and has suitable mouse pharmacokinetic properties for in vivo efficacy studies. Overall, 10 is a valuable chemical biology tool to further investigate the functions of G9a/GLP and a potential therapeutic for treating G9a/GLP-dependent cancers.
Collapse
Affiliation(s)
- Julia Velez
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Yulin Han
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Hyerin Yim
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Peiyi Yang
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Zhijie Deng
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Kwang-Su Park
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Md Kabir
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
3
|
Soh PXY, Mmekwa N, Petersen DC, Gheybi K, van Zyl S, Jiang J, Patrick SM, Campbell R, Jaratlerdseri W, Mutambirwa SBA, Bornman MSR, Hayes VM. Prostate cancer genetic risk and associated aggressive disease in men of African ancestry. Nat Commun 2023; 14:8037. [PMID: 38052806 PMCID: PMC10697980 DOI: 10.1038/s41467-023-43726-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
African ancestry is a significant risk factor for prostate cancer and advanced disease. Yet, genetic studies have largely been conducted outside the context of Sub-Saharan Africa, identifying 278 common risk variants contributing to a multiethnic polygenic risk score, with rare variants focused on a panel of roughly 20 pathogenic genes. Based on this knowledge, we are unable to determine polygenic risk or differentiate prostate cancer status interrogating whole genome data for 113 Black South African men. To further assess for potentially functional common and rare variant associations, here we interrogate 247,780 exomic variants for 798 Black South African men using a case versus control or aggressive versus non-aggressive study design. Notable genes of interest include HCP5, RFX6 and H3C1 for risk, and MKI67 and KLF5 for aggressive disease. Our study highlights the need for further inclusion across the African diaspora to establish African-relevant risk models aimed at reducing prostate cancer health disparities.
Collapse
Affiliation(s)
- Pamela X Y Soh
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Naledi Mmekwa
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Desiree C Petersen
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Kazzem Gheybi
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Smit van Zyl
- Faculty of Health Sciences, University of Limpopo, Turfloop Campus, South Africa
| | - Jue Jiang
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Sean M Patrick
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | | | - Weerachai Jaratlerdseri
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Shingai B A Mutambirwa
- Department of Urology, Sefako Makgatho Health Science University, Dr George Mukhari Academic Hospital, Medunsa, South Africa
| | - M S Riana Bornman
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Vanessa M Hayes
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia.
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.
- Faculty of Health Sciences, University of Limpopo, Turfloop Campus, South Africa.
- Manchester Cancer Research Centre, University of Manchester, Manchester, M20 4GJ, UK.
| |
Collapse
|
4
|
Burlibasa L, Nicu AT, Chifiriuc MC, Medar C, Petrescu A, Jinga V, Stoica I. H3 histone methylation landscape in male urogenital cancers: from molecular mechanisms to epigenetic biomarkers and therapeutic targets. Front Cell Dev Biol 2023; 11:1181764. [PMID: 37228649 PMCID: PMC10203431 DOI: 10.3389/fcell.2023.1181764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
During the last decades, male urogenital cancers (including prostate, renal, bladder and testicular cancers) have become one of the most frequently encountered malignancies affecting all ages. While their great variety has promoted the development of various diagnosis, treatment and monitoring strategies, some aspects such as the common involvement of epigenetic mechanisms are still not elucidated. Epigenetic processes have come into the spotlight in the past years as important players in the initiation and progression of tumors, leading to a plethora of studies highlighting their potential as biomarkers for diagnosis, staging, prognosis, and even as therapeutic targets. Thus, fostering research on the various epigenetic mechanisms and their roles in cancer remains a priority for the scientific community. This review focuses on one of the main epigenetic mechanisms, namely, the methylation of the histone H3 at various sites and its involvement in male urogenital cancers. This histone modification presents a great interest due to its modulatory effect on gene expression, leading either to activation (e.g., H3K4me3, H3K36me3) or repression (e.g., H3K27me3, H3K9me3). In the last few years, growing evidence has demonstrated the aberrant expression of enzymes that methylate/demethylate histone H3 in cancer and inflammatory diseases, that might contribute to the initiation and progression of such disorders. We highlight how these particular epigenetic modifications are emerging as potential diagnostic and prognostic biomarkers or targets for the treatment of urogenital cancers.
Collapse
Affiliation(s)
| | | | - Mariana Carmen Chifiriuc
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- Romanian Academy, Bucharest, Romania
| | - Cosmin Medar
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Clinical Hospital “Prof. dr Theodor Burghele”, Bucharest, Romania
| | - Amelia Petrescu
- Clinical Hospital “Prof. dr Theodor Burghele”, Bucharest, Romania
| | - Viorel Jinga
- Academy of Romanian Scientists, Bucharest, Romania
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Clinical Hospital “Prof. dr Theodor Burghele”, Bucharest, Romania
| | - Ileana Stoica
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
5
|
Katsayal BS, Forcados GE, Yusuf AP, Lawal YA, Jibril SA, Nuraddeen H, Ibrahim MM, Sadiq IZ, Abubakar MB, Malami I, Abubakar IB, Muhammad A. An insight into the mechanisms of action of selected bioactive compounds against epigenetic targets of prostate cancer: implications on histones modifications. In Silico Pharmacol 2023; 11:10. [PMID: 37073308 PMCID: PMC10105819 DOI: 10.1007/s40203-023-00148-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/09/2023] [Indexed: 04/20/2023] Open
Abstract
Prostate cancer is a leading cause of morbidity and mortality among men globally. In this study, we employed an in silico approach to predict the possible mechanisms of action of selected novel compounds reported against prostate cancer epigenetic targets and their derivatives, exhausting through ADMET profiling, drug-likeness, and molecular docking analyses. The selected compounds: sulforaphane, silibinin, 3, 3'-diindolylmethane (DIM), and genistein largely conformed to ADMET and drug-likeness rules including Lipinski's. Docking studies revealed strong binding energy of sulforaphane with HDAC6 (- 4.2 kcal/ mol), DIM versus HDAC2 (- 5.2 kcal/mol), genistein versus HDAC6 (- 4.1 kcal/mol), and silibinin against HDAC1 (- 7.0 kcal/mol) coupled with improved binding affinities and biochemical stabilities after derivatization. Findings from this study may provide insight into the potential epigenetic reprogramming mechanisms of these compounds against prostate cancer and could pave the way toward more success in prostate cancer phytotherapy.
Collapse
Affiliation(s)
- Babangida Sanusi Katsayal
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State Nigeria
| | | | - Abdurrahman Pharmacy Yusuf
- Department of Biochemistry, School of Life Sciences, Federal University of Technology, Minna, Niger State Nigeria
| | - Yunus Aisha Lawal
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State Nigeria
| | - Shehu Aisha Jibril
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State Nigeria
| | - Hussaini Nuraddeen
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State Nigeria
| | - Musa Mubarak Ibrahim
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State Nigeria
| | - Idris Zubairu Sadiq
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State Nigeria
| | - Murtala Bello Abubakar
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
- Centre for Advanced Medical Research & Training (CAMRET), Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Ibrahim Malami
- Centre for Advanced Medical Research & Training (CAMRET), Usmanu Danfodiyo University, Sokoto, Nigeria
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Ibrahim Babangida Abubakar
- Deparment of Biochemistry, Faculty of Life Sciences, Kebbi State University of Science and Technology Aliero, Aliero, Nigeria
| | - Aliyu Muhammad
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State Nigeria
- Department of Biochemistry, Kebbi State University of Science and Technology Aliero, Aliero, Nigeria
| |
Collapse
|