1
|
Balakrishnan P, Arasu A, Velusamy T. Targeting altered calcium homeostasis and uncoupling protein-2 promotes sensitivity in drug-resistant breast cancer cells. J Biochem Mol Toxicol 2024; 38:e23575. [PMID: 37920924 DOI: 10.1002/jbt.23575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Metastatic breast cancer has the highest mortality rate among women owing to its poor clinical outcomes. Metastatic tumors pose challenges for treatment through conventional surgery or radiotherapy because of their diverse organ localization and resistance to various cytotoxic agents. Chemoresistance is a significant obstacle to effective breast cancer treatment owing to cancer's heterogeneous nature. Abnormalities in intracellular calcium signaling, coupled with altered mitochondrial metabolism, play a significant role in facilitating drug resistance and contribute to therapy resistance. Uncoupling protein-2 (UCP2) is considered as a marker of chemoresistance and is believed to play a major role in promoting metabolic shifts and tumor metastasis. In this context, it is imperative to understand the roles of altered calcium signaling and metabolic switching in the development of chemotherapeutic resistance. This study investigates the roles of UCP2 and intracellular calcium signaling (Ca2+ ) in promoting chemoresistance against cisplatin. Additionally, we explored the effectiveness of combining genipin (GP, a compound that reverses UCP2-mediated chemoresistance) and thapsigargin (TG, a calcium signaling modulator) in treating highly metastatic breast cancers. Our findings indicate that both aberrant Ca2+ signaling and metabolic shifts in cancer cells contribute to developing drug-resistant phenotypes, and the combination treatment of GP and TG significantly enhances drug sensitivity in these cells. Collectively, our study underscores the potential of these drug combinations as an effective approach to overcome drug resistance in chemoresistant cancers.
Collapse
Affiliation(s)
- Pavithra Balakrishnan
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, India
| | - Ashok Arasu
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, India
| | - Thirunavukkarasu Velusamy
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, India
| |
Collapse
|
2
|
Kim JY, Kim SH, Seok J, Bae SH, Hwang SG, Kim GJ. Increased PRL-1 in BM-derived MSCs triggers anaerobic metabolism via mitochondria in a cholestatic rat model. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:512-524. [PMID: 36865088 PMCID: PMC9970868 DOI: 10.1016/j.omtn.2023.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 01/31/2023] [Indexed: 02/09/2023]
Abstract
Mesenchymal stem cell (MSC) therapy in chronic liver disease is associated with mitochondrial anaerobic metabolism. Phosphatase of regenerating liver-1 (PRL-1), known as protein tyrosine phosphatase type 4A, member 1 (PTP4A1), plays a critical role in liver regeneration. However, its therapeutic mechanism remains obscure. The aim of this study was to establish genetically modified bone marrow (BM)-MSCs overexpressing PRL-1 (BM-MSCsPRL-1) and to investigate their therapeutic effects on mitochondrial anaerobic metabolism in a bile duct ligation (BDL)-injured cholestatic rat model. BM-MSCsPRL-1 were generated with lentiviral and nonviral gene delivery systems and characterized. Compared with naive cells, BM-MSCsPRL-1 showed an improved antioxidant capacity and mitochondrial dynamics and decreased cellular senescence. In particular, mitochondrial respiration in BM-MSCsPRL-1 generated using the nonviral system was significantly increased as well as mtDNA copy number and total ATP production. Moreover, transplantation of BM-MSCsPRL-1 generated using the nonviral system had predominantly antifibrotic effects and restored hepatic function in a BDL rat model. Decreased cytoplasmic lactate and increased mitochondrial lactate upon the administration of BM-MSCsPRL-1 indicated significant alterations in mtDNA copy number and ATP production, activating anaerobic metabolism. In conclusion, BM-MSCsPRL-1 generated by a nonviral gene delivery system enhanced anaerobic mitochondrial metabolism in a cholestatic rat model, improving hepatic function.
Collapse
Affiliation(s)
- Jae Yeon Kim
- Department of Biomedical Science, CHA University, 689, Sampyeong-dong, Bundang-gu, Seongnam-si 13488, Republic of Korea,Research Institute of Placental Science, CHA University, Seongnam 13488, Republic of Korea
| | - Se Ho Kim
- Department of Biomedical Science, CHA University, 689, Sampyeong-dong, Bundang-gu, Seongnam-si 13488, Republic of Korea
| | - Jin Seok
- Department of Biomedical Science, CHA University, 689, Sampyeong-dong, Bundang-gu, Seongnam-si 13488, Republic of Korea,Research Institute of Placental Science, CHA University, Seongnam 13488, Republic of Korea
| | - Si Hyun Bae
- Department of Internal Medicine, Catholic University Medical College, Seoul 03312, Republic of Korea
| | - Seong-Gyu Hwang
- Department of Gastroenterology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Republic of Korea
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, 689, Sampyeong-dong, Bundang-gu, Seongnam-si 13488, Republic of Korea,Research Institute of Placental Science, CHA University, Seongnam 13488, Republic of Korea,Corresponding author Gi Jin Kim, Department of Biomedical Science, CHA University, 689, Sampyeong-dong, Bundang-gu, Seongnam-si 13488, Republic of Korea.
| |
Collapse
|
3
|
Liu AR, Liu YN, Shen SX, Yan LR, Lv Z, Ding HX, Wang A, Yuan Y, Xu Q. Comprehensive Analysis and Validation of Solute Carrier Family 25 (SLC25) and Its Correlation with Immune Infiltration in Pan-Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4009354. [PMID: 36254139 PMCID: PMC9569204 DOI: 10.1155/2022/4009354] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022]
Abstract
As the largest gene family functioning in protein transport among human solute carriers, the SLC25 family (mitochondrial carrier family) can participate in development of cancer. However, a comprehensive exploration for the exactly roles of SLC family remains lacking. In the present study, a total of 15 functional SLC25 family genes were retrieved from all current publications. And multidimensional analyses were systematically performed based on the transcriptome and genome data of SLC25 family from a variety of online databases for their expression, immune cell infiltration, and cancer prognosis. Validation by qPCR and immunohistochemistry were further conducted for the expression of partial SLC25 family members in some tumor tissue. We found that the SLC25 family had strong correlation with immune cells, such as macrophages M2, CD8+ T cell, CD4+ T cell memory activated, and memory resting. Among them, SLC25A6 was most correlated with Macrophage M1 in uveal melanoma (r = -0.68, P = 1.9e - 0.5). Expression of mRNA level showed that SLC25A4 was downregulated in stomach adenocarcinoma and colon adenocarcinoma. SLC25A7 was highly expressed in stomach adenocarcinoma and colon adenocarcinoma. SLC25A23 was decreased in colon adenocarcinoma. qPCR and immunohistochemistry validation results were consistent with our bioinformatics prediction. SLC25A8 was associated with the prognosis of cancer. All these findings suggested that the SLC25 family might affects the immune microenvironment of the cancer and then had the potential to be predictive biomarkers for early diagnosis and prognosis as well as novel targets for individualized treatment of cancer.
Collapse
Affiliation(s)
- Ao-ran Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ying-nan Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Shi-xuan Shen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Li-rong Yan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhi Lv
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Han-xi Ding
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ang Wang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
4
|
Zhao J, Wang C, Zhang X, Li J, Liu Y, Pan X, Zhu L, Chen D, Xie T. Cell membrane coated electrochemical sensor for kinetic measurements of GLUT transport. Anal Chim Acta 2022; 1226:340263. [DOI: 10.1016/j.aca.2022.340263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 11/01/2022]
|
5
|
Yu X, Shi M, Wu Q, Wei W, Sun S, Zhu S. Identification of UCP1 and UCP2 as Potential Prognostic Markers in Breast Cancer: A Study Based on Immunohistochemical Analysis and Bioinformatics. Front Cell Dev Biol 2022; 10:891731. [PMID: 35874806 PMCID: PMC9300932 DOI: 10.3389/fcell.2022.891731] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Uncoupling protein 1 (UCP1) and UCP2 are associated with tumor metabolism and immunity. However, the prognostic value and molecular mechanisms underlying their action in breast cancer (BC) remain unclear.Materials and methods: In TCGA-BRCA cohort, we investigated the expression characteristics of UCP mRNAs, analyzed their prognostic value by Kaplan-Meier survival analysis, their potential molecular functions by gene set enrichment analysis, and their relationship with immune infiltrating cell types using TIMER and CIBERSORT, along with the assessment of their association with mutational profiles. Kaplan-Meier survival analysis was performed for UCPs in our cohort and their association with BC thermogenesis was assessed by thermal tomography.Results: High expression of UCP1 and UCP2 were positive prognostic markers for BC. UCP1 was associated with the impaired glucose metabolism, while UCP2 with enhanced anti-tumor immunity. High expressions of UCP1 and UCP2 were associated with CDH1 mutations. High UCP1 expression was associated with a high rate of thermogenesis in BC.Conclusions: These results implied a key role of UCP1 and UCP2 in prognosis, metabolism, and immune infiltration in BC. Further investigation of the relevant molecular mechanisms may provide new strategies for BC treatment.
Collapse
Affiliation(s)
- Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Manman Shi
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Tongji University Cancer Center, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Wen Wei
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Shengrong Sun, ; Shan Zhu,
| | - Shan Zhu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Shengrong Sun, ; Shan Zhu,
| |
Collapse
|
6
|
Icard P, Simula L, Fournel L, Leroy K, Lupo A, Damotte D, Charpentier MC, Durdux C, Loi M, Schussler O, Chassagnon G, Coquerel A, Lincet H, De Pauw V, Alifano M. The strategic roles of four enzymes in the interconnection between metabolism and oncogene activation in non-small cell lung cancer: Therapeutic implications. Drug Resist Updat 2022; 63:100852. [PMID: 35849943 DOI: 10.1016/j.drup.2022.100852] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NSCLC is the leading cause of cancer mortality and represents a major challenge in cancer therapy. Intrinsic and acquired anticancer drug resistance are promoted by hypoxia and HIF-1α. Moreover, chemoresistance is sustained by the activation of key signaling pathways (such as RAS and its well-known downstream targets PI3K/AKT and MAPK) and several mutated oncogenes (including KRAS and EGFR among others). In this review, we highlight how these oncogenic factors are interconnected with cell metabolism (aerobic glycolysis, glutaminolysis and lipid synthesis). Also, we stress the key role of four metabolic enzymes (PFK1, dimeric-PKM2, GLS1 and ACLY), which promote the activation of these oncogenic pathways in a positive feedback loop. These four tenors orchestrating the coordination of metabolism and oncogenic pathways could be key druggable targets for specific inhibition. Since PFK1 appears as the first tenor of this orchestra, its inhibition (and/or that of its main activator PFK2/PFKFB3) could be an efficacious strategy against NSCLC. Citrate is a potent physiologic inhibitor of both PFK1 and PFKFB3, and NSCLC cells seem to maintain a low citrate level to sustain aerobic glycolysis and the PFK1/PI3K/EGFR axis. Awaiting the development of specific non-toxic inhibitors of PFK1 and PFK2/PFKFB3, we propose to test strategies increasing citrate levels in NSCLC tumors to disrupt this interconnection. This could be attempted by evaluating inhibitors of the citrate-consuming enzyme ACLY and/or by direct administration of citrate at high doses. In preclinical models, this "citrate strategy" efficiently inhibits PFK1/PFK2, HIF-1α, and IGFR/PI3K/AKT axes. It also blocks tumor growth in RAS-driven lung cancer models, reversing dedifferentiation, promoting T lymphocytes tumor infiltration, and increasing sensitivity to cytotoxic drugs.
Collapse
Affiliation(s)
- Philippe Icard
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France; Normandie Univ, UNICAEN, CHU de Caen Normandie, Unité de recherche BioTICLA INSERM U1086, 14000 Caen, France.
| | - Luca Simula
- Department of Infection, Immunity and Inflammation, Cochin Institute, INSERM U1016, CNRS UMR8104, Paris University, Paris 75014, France
| | - Ludovic Fournel
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM UMR-S 1124, Cellular Homeostasis and Cancer, University of Paris, Paris, France
| | - Karen Leroy
- Department of Genomic Medicine and Cancers, Georges Pompidou European Hospital, APHP, Paris, France
| | - Audrey Lupo
- Pathology Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | - Diane Damotte
- Pathology Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | | | - Catherine Durdux
- Radiation Oncology Department, Georges Pompidou European Hospital, APHP, Paris, France
| | - Mauro Loi
- Radiotherapy Department, University of Florence, Florence, Italy
| | - Olivier Schussler
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France
| | | | - Antoine Coquerel
- INSERM U1075, COMETE " Mobilités: Attention, Orientation, Chronobiologie", Université Caen, France
| | - Hubert Lincet
- ISPB, Faculté de Pharmacie, Lyon, France, Université Lyon 1, Lyon, France; INSERM U1052, CNRS UMR5286, Cancer Research Center of Lyon (CRCL), France
| | - Vincent De Pauw
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France
| | - Marco Alifano
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| |
Collapse
|
7
|
Shrestha R, Johnson E, Byrne FL. Exploring the therapeutic potential of mitochondrial uncouplers in cancer. Mol Metab 2021; 51:101222. [PMID: 33781939 PMCID: PMC8129951 DOI: 10.1016/j.molmet.2021.101222] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Mitochondrial uncouplers are well-known for their ability to treat a myriad of metabolic diseases, including obesity and fatty liver diseases. However, for many years now, mitochondrial uncouplers have also been evaluated in diverse models of cancer in vitro and in vivo. Furthermore, some mitochondrial uncouplers are now in clinical trials for cancer, although none have yet been approved for the treatment of cancer. SCOPE OF REVIEW In this review we summarise published studies in which mitochondrial uncouplers have been investigated as an anti-cancer therapy in preclinical models. In many cases, mitochondrial uncouplers show strong anti-cancer effects both as single agents, and in combination therapies, and some are more toxic to cancer cells than normal cells. Furthermore, the mitochondrial uncoupling mechanism of action in cancer cells has been described in detail, with consistencies and inconsistencies between different structural classes of uncouplers. For example, many mitochondrial uncouplers decrease ATP levels and disrupt key metabolic signalling pathways such as AMPK/mTOR but have different effects on reactive oxygen species (ROS) production. Many of these effects oppose aberrant phenotypes common in cancer cells that ultimately result in cell death. We also highlight several gaps in knowledge that need to be addressed before we have a clear direction and strategy for applying mitochondrial uncouplers as anti-cancer agents. MAJOR CONCLUSIONS There is a large body of evidence supporting the therapeutic use of mitochondrial uncouplers to treat cancer. However, the long-term safety of some uncouplers remains in question and it will be critical to identify which patients and cancer types would benefit most from these agents.
Collapse
Affiliation(s)
- Riya Shrestha
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, 2052, Australia
| | - Edward Johnson
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, 2052, Australia
| | - Frances L Byrne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, 2052, Australia.
| |
Collapse
|
8
|
The anabolic role of the Warburg, Cori-cycle and Crabtree effects in health and disease. Clin Nutr 2021; 40:2988-2998. [PMID: 33674148 DOI: 10.1016/j.clnu.2021.02.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
In evolution, genes survived that could code for metabolic pathways, promoting long term survival during famines or fasting when suffering from trauma, disease or during physiological growth. This requires utilization of substrates, already present in some form in the body. Carbohydrate stores are limited and to survive long, their utilization is restricted to survival pathways, by inhibiting glucose oxidation and glycogen synthesis. This leads to insulin resistance and spares muscle protein, because being the main supplier of carbon for new glucose production. In these survival pathways, part of the glucose is degraded in glycolysis in peripheral (muscle) tissues to pyruvate and lactate (Warburg effect), which are partly reutilized for glucose formation in liver and kidney, completing the Cori-cycle. Another part of the glucose taken up by muscle contributes, together with muscle derived amino acids, to the production of substrates consisting of a complete amino acid mix but extra non-essential amino acids like glutamine, alanine, glycine and proline. These support cell proliferation, matrix deposition and redox regulation in tissues, specifically active in host response and during growth. In these tissues, also glucose is taken up delivering glycolytic intermediates, that branch off and act as building blocks and produce reducing equivalents. Lactate is also produced and released in the circulation, adding to the lactate released by muscle in the Cori-cycle and completing secondary glucose cycles. Increased fluxes through these cycles lead to modest hyperglycemia and hyperlactatemia in states of healthy growth and disease and are often misinterpreted as induced by hypoxia.
Collapse
|
9
|
Jiang X, Zhao W, Zhu F, Wu H, Ding X, Bai J, Zhang X, Qian M. Ligustilide inhibits the proliferation of non-small cell lung cancer via glycolytic metabolism. Toxicol Appl Pharmacol 2020; 410:115336. [PMID: 33212065 DOI: 10.1016/j.taap.2020.115336] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/30/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022]
Abstract
Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer-related death worldwide. The abnormal activation of glycolytic metabolism and PTEN/AKT signaling in NSCLC cells are highly correlated with their proliferation abilities and viability. Ligustilide is one of the major bioactive components of multiple Chinese traditional medicine including Angelica sinensis and Ligusticum. Ligustilide exposure inhibits the proliferation and viability of multiple cancer cell lines in vitro. However, the impact of ligustilide to the progression of NSCLC and its detailed pharmacological mechanisms remain unclear. In this research, CCK-8 and colony formation assay were performed to demonstrate ligustilide treatment inhibited the viability and proliferation ability of NSCLC cells in vitro. Caspase-3/-7 activity assay and nucleosome ELISA assay were utilized to show ligustilide promoted the apoptosis of NSCLC cells. Metabolic analysis and qRT-PCR assay were used to demonstrated that ligustilide dampened aerobic glycolysis of NSCLC cells. Nude mice were exposed to 5 mg/kg ligustilide and ligustilide inhibited orthotopic NSCLC growth in vivo. qRT-PCR and Western blot analysis were performed to substantiate the regulatory function of ligustilide to PTEN/AKT signaling in NSCLC cells. Overall, this study revealed that ligustilide regulated the proliferation, apoptosis and aerobic glycolysis of NSCLC cells through PTEN/AKT signaling pathway.
Collapse
Affiliation(s)
- Xiufeng Jiang
- Wuxi Fifth People's Hospital, Wuxi 214016, Jiangsu, China.
| | - Wei Zhao
- Wuxi Fifth People's Hospital, Wuxi 214016, Jiangsu, China
| | - Feng Zhu
- Wuxi Fifth People's Hospital, Wuxi 214016, Jiangsu, China
| | - Hui Wu
- Wuxi Fifth People's Hospital, Wuxi 214016, Jiangsu, China
| | - Xiao Ding
- Wuxi Fifth People's Hospital, Wuxi 214016, Jiangsu, China
| | - Jinmei Bai
- Wuxi Fifth People's Hospital, Wuxi 214016, Jiangsu, China
| | - Xiaoqing Zhang
- Wuxi Fifth People's Hospital, Wuxi 214016, Jiangsu, China
| | - Meifang Qian
- Wuxi Fifth People's Hospital, Wuxi 214016, Jiangsu, China
| |
Collapse
|
10
|
De Munck TJI, Soeters PB, Koek GH. The role of ectopic adipose tissue: benefit or deleterious overflow? Eur J Clin Nutr 2020; 75:38-48. [PMID: 32801303 DOI: 10.1038/s41430-020-00713-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/01/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022]
Abstract
Ectopic adipose tissues (EAT) are present adjacent to many organs and have predominantly been described in overweight and obesity. They have been suggested to be related to fatty acid overflow and to have harmful effects. The objective of this semi-comprehensive review is to explore whether EAT may play a supportive role rather than interfering with its function, when the adjacent organ is challenged metabolically and functionally. EAT are present adhered to different tissues or organs, including lymph nodes, heart, kidney, ovaries and joints. In this review, we only focused on epicardial, perinodal, and peritumoral fat since these locations have been studied in more detail. Evidence was found that EAT volume significantly increased, associated with chronic metabolic challenges of the corresponding tissue. In vitro evidence revealed transfer of fatty acids from peritumoral and perinodal fat to the adjacent tissue. Cytokine expression in these EAT is upregulated when the adjacent tissue is challenged. In these tissues, glycolysis is enhanced, whereas fatty acid oxidation is increased. Together with more direct evidence, this shows that glucose is oxidized to a lesser degree, but used to support anabolic metabolism of the adjacent tissue. In these situations, browning occurs, resulting from upregulation of anabolic metabolism, stimulated by uncoupling proteins 1 and 2 and possibly 3. In conclusion, the evidence found is fragmented but the available data support the view that accumulation and browning of adipocytes adjacent to the investigated organs or tissues may be a normal physiological response promoting healing and (patho)physiological growth.
Collapse
Affiliation(s)
- Toon J I De Munck
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Maastricht University Medical Centre, Maastricht, The Netherlands. .,School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands.
| | - Peter B Soeters
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands.,Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ger H Koek
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Maastricht University Medical Centre, Maastricht, The Netherlands.,School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands.,Department of Surgery, Klinikum RWTH Aachen, Aachen, Germany
| |
Collapse
|
11
|
Kawashima M, Bensaad K, Zois CE, Barberis A, Bridges E, Wigfield S, Lagerholm C, Dmitriev RI, Tokiwa M, Toi M, Papkovsky DB, Buffa FM, Harris AL. Disruption of hypoxia-inducible fatty acid binding protein 7 induces beige fat-like differentiation and thermogenesis in breast cancer cells. Cancer Metab 2020; 8:13. [PMID: 32647572 PMCID: PMC7336487 DOI: 10.1186/s40170-020-00219-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/18/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Humans produce heat through non-shivering thermogenesis, a metabolic process that occurs in inducible beige adipocytes expressing uncoupling protein 1 (UCP1). UCP1 dissipates the proton gradient of the mitochondrial inner membrane and converts that energy into heat. It is unclear whether cancer cells can exhibit autonomous thermogenesis. Previously, we found that the knockdown of hypoxia-inducible fatty acid binding protein 7 (FABP7) increased reactive oxygen species (ROS) in breast cancer cells. ROS are known to induce beige adipocyte differentiation. METHODS We investigated the association of tumor hypoxia, FABP7, and UCP1 across breast cancer patients using METABRIC and TCGA data sets. Furthermore, using a breast cancer cell line, HCC1806, we tested the effect of FABP7 knockdown on cellular physiology including thermogenesis. RESULTS We found a strong mutual exclusivity of FABP7 and UCP1 expression both in METABRIC and in TCGA, indicating major metabolic phenotypic differences. FABP7 was preferentially distributed in poorly differentiated-, estrogen receptor (ER) negative tumors. In contrast, UCP1 was highly expressed in normal ducts and well-differentiated-, ER positive-, less hypoxic tumors. In the cell line-based experiments, UCP1 and its transcriptional regulators were upregulated upon FABP7 knockdown. UCP1 was induced in about 20% of cancer cells, and the effect was increased further in hypoxia. UCP1 depolarized mitochondrial membranes at the site of expression. UCP1 induction was associated with the increase in proton leak, glycolysis, and maximal respiration, mimicking the typical energy profile of beige adipocytes. Most importantly, UCP1 induction elevated cancer cell temperature associated with increased vulnerability to hypoxia and γ-irradiation. CONCLUSIONS We demonstrated that breast cancer cells can undergo thermogenesis through UCP1 induction. Disrupting FABP7-mediated fatty acid metabolism can unlock UCP1-mediated thermogenesis, potentially making it possible to develop therapies to target thermogenesis. Further study would be warranted to investigate the effect of rise in temperature of cancer cells on patients' outcomes and the relationship to other metabolic pathways.
Collapse
Affiliation(s)
- Masahiro Kawashima
- Department of Oncology, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS UK
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606 8507 Japan
| | - Karim Bensaad
- Department of Oncology, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS UK
| | - Christos E. Zois
- Department of Oncology, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS UK
| | - Alessandro Barberis
- Department of Oncology, Computational Biology and Integrative Genomics Lab, CRUK/MRC Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosvelt Drive, Oxford, OX3 7DQ UK
| | - Esther Bridges
- Department of Oncology, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS UK
| | - Simon Wigfield
- Department of Oncology, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS UK
| | - Christoffer Lagerholm
- Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS UK
| | - Ruslan I. Dmitriev
- School of Biochemistry and Cell Biology, University College Cork, Cavanagh Pharmacy Building, 1.28, College Road, Cork, Ireland
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State University, Moscow, Russian Federation
| | - Mariko Tokiwa
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606 8507 Japan
| | - Masakazu Toi
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606 8507 Japan
| | - Dmitri B. Papkovsky
- School of Biochemistry and Cell Biology, University College Cork, Cavanagh Pharmacy Building, 1.28, College Road, Cork, Ireland
| | - Francesca M. Buffa
- Department of Oncology, Computational Biology and Integrative Genomics Lab, CRUK/MRC Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosvelt Drive, Oxford, OX3 7DQ UK
| | - Adrian L. Harris
- Department of Oncology, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS UK
| |
Collapse
|
12
|
Heterogeneity of Glucose Transport in Lung Cancer. Biomolecules 2020; 10:biom10060868. [PMID: 32517099 PMCID: PMC7356687 DOI: 10.3390/biom10060868] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Increased glucose uptake is a known hallmark of cancer. Cancer cells need glucose for energy production via glycolysis and the tricarboxylic acid cycle, and also to fuel the pentose phosphate pathway, the serine biosynthetic pathway, lipogenesis, and the hexosamine pathway. For this reason, glucose transport inhibition is an emerging new treatment for different malignancies, including lung cancer. However, studies both in animal models and in humans have shown high levels of heterogeneity in the utilization of glucose and other metabolites in cancer, unveiling a complexity that is difficult to target therapeutically. Here, we present an overview of different levels of heterogeneity in glucose uptake and utilization in lung cancer, with diagnostic and therapeutic implications.
Collapse
|
13
|
Bandyopadhayaya S, Ford B, Mandal CC. Cold-hearted: A case for cold stress in cancer risk. J Therm Biol 2020; 91:102608. [PMID: 32716858 DOI: 10.1016/j.jtherbio.2020.102608] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/25/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023]
Abstract
A negative correlation exists between environmental temperature and cancer risk based on both epidemiological and statistical analyses. Previously, cold stress was reported to be an effective cause of tumorigenesis. Several studies have demonstrated that cold temperature serves as a potential risk factor in cancer development. Most recently, a link was demonstrated between the effects of extreme cold climate on cancer incidence, pinpointing its impact on tumour suppressor genes by causing mutation. The underlying mechanism behind cold stress and its association with tumorigenesis is not well understood. Hence, this review intends to shed light on the role of associated factors, genetic and/or non-genetic, which are modulated by cold temperature, and eventually influence tumorigenic potential. While scrutinizing the effect of cold exposure on the body, the expression of certain genes, e.g. uncoupled proteins and heat-shock proteins, were elevated. Biological chemicals such as norepinephrine, thyroxine, and cholesterol were also elevated. Brown adipose tissue, which plays an essential role in thermogenesis, displayed enhanced activity upon cold exposure. Adaptive measures are utilized by the body to tolerate the cold, and in doing so, invites both epigenetic and genetic changes. Unknowingly, these adaptive strategies give rise to a lethal outcome i.e., genesis of cancer. Concisely, this review attempts to draw a link between cold stress, genetic and epigenetic changes, and tumorigenesis and aspires to ascertain the mechanism behind cold temperature-mediated cancer risk.
Collapse
Affiliation(s)
| | - Bridget Ford
- Department of Biology, University of the Incarnate Word, San Antonio, TX, 78209, USA
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, 305817, India.
| |
Collapse
|
14
|
Cordani M, Butera G, Pacchiana R, Masetto F, Mullappilly N, Riganti C, Donadelli M. Mutant p53-Associated Molecular Mechanisms of ROS Regulation in Cancer Cells. Biomolecules 2020; 10:biom10030361. [PMID: 32111081 PMCID: PMC7175157 DOI: 10.3390/biom10030361] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/16/2022] Open
Abstract
The TP53 tumor suppressor gene is the most frequently altered gene in tumors and an increasing number of studies highlight that mutant p53 proteins can acquire oncogenic properties, referred to as gain-of-function (GOF). Reactive oxygen species (ROS) play critical roles as intracellular messengers, regulating numerous signaling pathways linked to metabolism and cell growth. Tumor cells frequently display higher ROS levels compared to healthy cells as a result of their increased metabolism as well as serving as an oncogenic agent because of its damaging and mutational properties. Several studies reported that in contrast with the wild type protein, mutant p53 isoforms fail to exert antioxidant activities and rather increase intracellular ROS, driving a pro-tumorigenic survival. These pro-oxidant oncogenic abilities of GOF mutant p53 include signaling and metabolic rewiring, as well as the modulation of critical ROS-related transcription factors and antioxidant systems, which lead ROS unbalance linked to tumor progression. The studies summarized here highlight that GOF mutant p53 isoforms might constitute major targets for selective therapeutic intervention against several types of tumors and that ROS enhancement driven by mutant p53 might represent an “Achilles heel” of cancer cells, suggesting pro-oxidant drugs as a therapeutic approach for cancer patients bearing the mutant TP53 gene.
Collapse
Affiliation(s)
- Marco Cordani
- IMDEA Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain;
| | - Giovanna Butera
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (R.P.); (F.M.); (N.M.)
| | - Raffaella Pacchiana
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (R.P.); (F.M.); (N.M.)
| | - Francesca Masetto
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (R.P.); (F.M.); (N.M.)
| | - Nidula Mullappilly
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (R.P.); (F.M.); (N.M.)
| | - Chiara Riganti
- Department of Oncology, University of Torino, 10126 Torino, Italy;
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (R.P.); (F.M.); (N.M.)
- Correspondence: ; Tel.: +39-045-8027281; Fax: +39-045-8027170
| |
Collapse
|
15
|
Chang L, Fang S, Gu W. The Molecular Mechanism of Metabolic Remodeling in Lung Cancer. J Cancer 2020; 11:1403-1411. [PMID: 32047547 PMCID: PMC6995370 DOI: 10.7150/jca.31406] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 10/23/2019] [Indexed: 12/11/2022] Open
Abstract
Metabolic remodeling is a key phenomenon in the occurrence and development of tumors. It not only offers materials and energy for the survival and proliferation of tumor cells, but also protects tumor cells so that they may survive, proliferate and transfer in the harsh microenvironment. This paper attempts to reveal the role of abnormal metabolism in the development of lung cancer by considering the processes of glycolysis and lipid metabolism, Identification of the molecules that are specifically used in the processes of glycolysis and lipid metabolism, and their underlying molecular mechanisms, is of great clinical and theoretical significance. We will focus on the recent progress in elucidating the molecular mechanism of metabolic remodeling in lung cancer.
Collapse
Affiliation(s)
| | | | - Wei Gu
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University. No. 68 Changle Road, Qinhuai District, Nanjing 210001,People's Republic of China
| |
Collapse
|
16
|
Bokil A, Sancho P. Mitochondrial determinants of chemoresistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:634-646. [PMID: 35582564 PMCID: PMC8992520 DOI: 10.20517/cdr.2019.46] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 12/17/2022]
Abstract
Chemoresistance constitute nowadays the major contributor to therapy failure in most cancers. There are main factors that mitigate cell response to therapy, such as target organ, inherent sensitivity to the administered compound, its metabolism, drug efflux and influx or alterations on specific cellular targets, among others. We now know that intrinsic properties of cancer cells, including metabolic features, substantially contribute to chemoresistance. In fact, during the last years, numerous reports indicate that cancer cells resistant to chemotherapy demonstrate significant alterations in mitochondrial metabolism, membrane polarization and mass. Metabolic activity and expression of several mitochondrial proteins are modulated under treatment to cope with stress, making these organelles central players in the development of resistance to therapies. Here, we review the role of mitochondria in chemoresistant cells in terms of metabolic rewiring and function of key mitochondria-related proteins.
Collapse
Affiliation(s)
- Ansooya Bokil
- IIS Aragon, Hospital Universitario Miguel Servet, Zaragoza 50009, Spain
| | - Patricia Sancho
- IIS Aragon, Hospital Universitario Miguel Servet, Zaragoza 50009, Spain
| |
Collapse
|
17
|
The expression of brown fat‐associated proteins in colorectal cancer and the relationship of uncoupling protein 1 with prognosis. Int J Cancer 2019; 145:1138-1147. [DOI: 10.1002/ijc.32198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/17/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
|