1
|
Jin J, Cui Y, Niu H, Lin Y, Wu X, Qi X, Bai K, Zhang Y, Wang Y, Bu H. NSCLC Extracellular Vesicles Containing miR-374a-5p Promote Leptomeningeal Metastasis by Influencing Blood‒Brain Barrier Permeability. Mol Cancer Res 2024; 22:699-710. [PMID: 38639925 PMCID: PMC11294816 DOI: 10.1158/1541-7786.mcr-24-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/27/2024] [Accepted: 04/16/2024] [Indexed: 04/20/2024]
Abstract
Leptomeningeal metastasis (LM) is a devastating complication of advanced non-small cell lung cancer (NSCLC). Its diagnosis and monitoring can be challenging. Recently, extracellular vesicle (EV) miRNAs have become a new noninvasive diagnostic biomarker. The purpose of this study was to examine the clinical value and role of EV miRNAs in NSCLC-LM. Next-generation sequencing analysis revealed that miRNAs with differential expression of EVs in sera of patients with NSCLC with LM and non-LM were detected to identify biological markers for the diagnosis of LM. Cellular and in vivo experiments were conducted to explore the pathogenesis of EV miRNA promoting LM in NSCLC. In the present study, we first demonstrated that the serum level of EV-associated miR-374a-5p in patients with LM of lung cancer was much higher than that in patients without LM and was correlated with the survival time of patients with LM. Further studies showed that EV miR-374a-5p efficiently destroys tight junctions and the integrity of the cerebral microvascular endothelial cell barrier, resulting in increased blood-brain barrier permeability. Mechanistically, miR-374a-5p regulates the distribution of ZO1 and occludin in endothelial cells by targeting γ-adducin, increasing vascular permeability and promoting LM. Implications: These results suggest that serum NSCLC-derived EV miR-374a-5p is involved in premetastatic niche formation by regulating the permeability of the blood-brain barrier to promote NSCLC-LM and can be used as a blood biomarker for the diagnosis and prognosis of NSCLC-LM.
Collapse
Affiliation(s)
- Jie Jin
- The Second Hospital of Hebei Medical University, Shijiazhuang, PR China.
- Beijing Institute of Biotechnology, Beijing, PR China.
- Xiong’an Xuanwu Hospital, Baoding, PR China.
| | - Yumeng Cui
- Beijing Institute of Biotechnology, Beijing, PR China.
| | - Huicong Niu
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, PR China.
| | - Yanli Lin
- Beijing Institute of Biotechnology, Beijing, PR China.
| | - Xiaojie Wu
- Beijing Institute of Biotechnology, Beijing, PR China.
| | - Xuejiao Qi
- The Second Hospital of Hebei Medical University, Shijiazhuang, PR China.
- Key Laboratory of Clinical Neurology, Ministry of Education, Shijiazhuang, PR China.
| | - Kaixuan Bai
- The Second Hospital of Hebei Medical University, Shijiazhuang, PR China.
- Key Laboratory of Clinical Neurology, Ministry of Education, Shijiazhuang, PR China.
| | - Yu Zhang
- The Second Hospital of Hebei Medical University, Shijiazhuang, PR China.
- Key Laboratory of Clinical Neurology, Ministry of Education, Shijiazhuang, PR China.
| | - Youliang Wang
- Beijing Institute of Biotechnology, Beijing, PR China.
| | - Hui Bu
- The Second Hospital of Hebei Medical University, Shijiazhuang, PR China.
- Key Laboratory of Clinical Neurology, Ministry of Education, Shijiazhuang, PR China.
| |
Collapse
|
2
|
Wang B, Fan X, Wang L, Wei X. The RNA-binding protein sorbin and SH3 domain-containing 2 are transcriptionally regulated by specificity protein 1 and function as tumor suppressors in bladder cancer by stabilizing tissue factor pathway inhibitor. Mol Carcinog 2024; 63:1174-1187. [PMID: 38501385 DOI: 10.1002/mc.23717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Sorbin and SH3 domain-containing 2 (SORBS2) is an RNA-binding protein and has been implicated in the development of some cancers. However, its role in bladder cancer (BC) is yet to be established. The expression of SORBS2 in BC tissues was determined from the Gene Expression Omnibus and Gene Expression Profiling Interactive Analysis databases and collected paired tumor/normal samples. The effects of SORBS2 on BC cells were detected by CCK-8, colony formation, Transwell, dual-luciferase, RNA immunoprecipitation, chromatin immunoprecipitation, and DNA pull-down assays. In vivo, BC cell growth and metastasis were studied by a xenograft subcutaneous model and a tail-vein metastasis model. The results showed that SORBS2 expression was significantly decreased in BC tissues and cells. SORBS2 overexpression inhibited cell proliferation, migration, invasion, and epithelial-mesenchymal transition in vitro and tumor growth and metastasis in vivo, while silencing SORBS2 produced the opposite effect. Mechanistically, we found that SORBS2 enhanced the stability of tissue factor pathway inhibitor (TFPI) mRNA via direct binding to its 3' UTR. Restoration of TFPI expression reversed SORBS2 knockdown-induced malignant phenotypes of BC cells. In addition, SORBS2 expression was negatively regulated by the transcription factor specificity protein 1 (SP1). Conversely, SORBS2 can be transcriptionally regulated by SP1 and inhibit BC cell growth and metastasis via stabilization of TFPI mRNA, indicating SORBS2 may be a promising therapeutic target for BC.
Collapse
Affiliation(s)
- Beibei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Fan
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lingang Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaosong Wei
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Rashwan HH, Taher AM, Hassan HA, Awaji AA, Kiriacos CJ, Assal RA, Youness RA. Harnessing the supremacy of MEG3 LncRNA to defeat gastrointestinal malignancies. Pathol Res Pract 2024; 256:155223. [PMID: 38452587 DOI: 10.1016/j.prp.2024.155223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
Evidence suggests that long non-coding RNAs (lncRNAs) play a pivotal role in the carcinogenesis and progression of various human malignancies including gastrointestinal malignancies. This comprehensive review reports the functions and mechanisms of the lncRNA maternally expressed gene 3 (MEG3) involved in gastrointestinal malignancies. It summarizes its roles in mediating the regulation of cellular proliferation, apoptosis, migration, invasiveness, epithelial-to-mesenchymal transition, and drug resistance in several gastrointestinal cancers such as colorectal cancer, gall bladder cancer, pancreatic cancer, gastric cancer, esophageal cancer, cholangiocarcinoma, gastrointestinal stromal tumors and most importantly, hepatocellular carcinoma. In addition, the authors briefly highlight its implicated mechanistic role and interactions with different non-coding RNAs and oncogenic signaling cascades. This review presents the rationale for developing non coding RNA-based anticancer therapy via harnessing the power of MEG3 in gastrointestinal malignancies.
Collapse
Affiliation(s)
- H H Rashwan
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; Bioinformatics Group, Center for Informatics Science (CIS), School of Information Technology and Computer Science (ITCS), Nile University, 12677, Giza, Egypt
| | - A M Taher
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt
| | - H A Hassan
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt
| | - A A Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - C J Kiriacos
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt
| | - R A Assal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - R A Youness
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt.
| |
Collapse
|
4
|
Zhan J, Li R, Ye Y, Zheng J, Wang G, Wu J, Wei X, Zeng M. HDAC3-mediated lncRNA ZFAS1 inhibited IL-13-induced secretion of proinflammatory cytokines in nasal epithelial cells by regulating the miR-7-5p/SIRT1 pathway. Int J Immunogenet 2023; 50:281-290. [PMID: 37700429 DOI: 10.1111/iji.12627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 07/02/2023] [Indexed: 09/14/2023]
Abstract
Allergic rhinitis (AR) is a disease that is difficult to cure and accompanies the patient's life. Proinflammatory cytokines (GM-CSF and eotaxin) and MUC5AC are key mediators promoting AR progression. Herein, the function of lncRNA ZFAS1 in AR was investigated. Nasal epithelial cells (NECs) were subjected to 50 ng/mL IL-13 for 24 h to construct an AR cell model. The mRNA and protein expressions were assessed using qRT-PCR and western blot. The levels of GM-CSF, eotaxin, IL-1β, IL-6, TNF-α and MUC5AC in cell supernatant were examined by ELISA. The binding relationships between HDAC3, ZFAS1, miR-7-5p and SIRT1 were analysed using dual luciferase reporter or ChIP assays. Herein, our results displayed that ZFAS1 and SIRT1 were lowly expressed in AR, while miR-7-5p and HDAC3 were highly expressed. Functional experiments displayed that ZFAS1 overexpression suppressed IL-13-induced proinflammatory cytokines and mucin production in NECs. The highly expressed HDAC3 in AR inhibited ZFAS1 expression by binding with ZFAS1 promoter. In addition, our experiments revealed that ZFAS1 targeted miR-7-5p, and miR-7-5p targeted SIRT1. As expected, miR-7-5p overexpression or SIRT1 silencing abrogated ZFAS1 upregulation's repression on IL-13-induced proinflammatory cytokines and MUC5AC secretory levels in NECs. ZFAS1 suppressed proinflammatory cytokines, inflammatory cytokines, and MUC5AC secretory levels in AR by regulating the miR-7-5p/SIRT1 axis. Thus, our work suggested that ZFAS1 might serve as a novel target for AR treatment and prevention.
Collapse
Affiliation(s)
- Jiabin Zhan
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, P.R. China
| | - Rui Li
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, P.R. China
| | - Yi Ye
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, P.R. China
| | - Jing Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, P.R. China
| | - Gang Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, P.R. China
| | - Jinli Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, P.R. China
| | - Xin Wei
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, P.R. China
| | - Min Zeng
- Medical Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, P.R. China
| |
Collapse
|
5
|
Guo F, Yang H, Bai X, Li J, Han W, Li W. Probing the mechanisms of hydrazide-based HDAC inhibitors binding to HDAC3 using Gaussian accelerated molecular dynamics (GaMD) simulations. J Biomol Struct Dyn 2023; 42:13779-13792. [PMID: 37937774 DOI: 10.1080/07391102.2023.2278085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023]
Abstract
Histone deacetylases (HDACs) have emerged as promising targets for anticancer drug development. They regulate gene expression by removing acetyl groups from lysine residues on histone tails, leading to chromatin condensation. A hydrazide-based HDAC inhibitor, N-(4-(2-Propylhydrazine-1-carbonyl)benzyl)-1H-indole-2-carboxamide (11h), has been reported to exhibit significant in vivo antitumor activity. In comparison to the lead compound N-(4-(2-Propylhydrazine-1-carbonyl)benzyl)cinnamamide (17), compound 11h demonstrates 2- to 5-fold higher HDAC inhibition and cell-based antitumor activity. However, the inhibitory mechanism of 11h remains insufficiently explored. In this study, we conducted 500 ns Gaussian Accelerated Molecular Dynamics (GaMD) simulations on Histone deacetylase 3 (HDAC3) and two complex systems (HDAC3-17 and HDAC3-11h). Our findings revealed that upon inhibitor binding, the active pocket volume of HDAC3 undergone alterations, and the movement of the L6-loop toward the active site impeded substrate entry. Moreover, we observed a destabilization of the α-helix in the aa75-89 region of HDAC3 compared to the two complex systems, indicating partial unwinding. Notably, 11h exhibited a closer proximity of its carbonyl oxygen to the active pocket's Zn2+ metal compared to 17, increasing the likelihood of coordination with the Zn2+ metal. The analysis of protein-ligand interactions highlighted a greater number of hydrogen bonds and other interactions between 11h and the receptor protein when compared to 17, underscoring the stronger binding of 11h to HDAC3. In conclusion, our study provided theoretical insights into the inhibitory mechanism of hydrazide-based HDAC inhibitors on HDAC3, thereby contributing to the development of improved drug targets for cancer therapy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fangfang Guo
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Hengzheng Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Xue Bai
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Jiaying Li
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Wannan Li
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
6
|
Li S, Yue M, Xu H, Zhang X, Mao T, Quan M, Ma J, Wang Y, Ge W, Wang Y, Xue S, Shentu D, Cui J, Wang L. Chemotherapeutic drugs-induced pyroptosis mediated by gasdermin E promotes the progression and chemoresistance of pancreatic cancer. Cancer Lett 2023; 564:216206. [PMID: 37120007 DOI: 10.1016/j.canlet.2023.216206] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/12/2023] [Accepted: 04/22/2023] [Indexed: 05/01/2023]
Abstract
Pyroptosis is closely associated with cancer development; however, the role of pyroptosis in pancreatic ductal adenocarcinoma (PDAC), a fatal malignant tumour with a poor overall survival rate, remains elusive. Here, we explored the mechanism of chemotherapy-induced pyroptosis and elucidated the role of pyroptosis in mediating PDAC progression and chemoresistance. The results demonstrated first- and second-line chemotherapeutic drugs against PDAC, including gemcitabine, irinotecan, 5-fluorouracil, paclitaxel, and cisplatin, induced concurrent pyroptosis and apoptosis. During this process, gasdermin E (GSDME) was cleaved by activated caspase-3, which was accompanied by pro-apoptotic caspase-7/8 activation. GSDME knockdown switched pyroptosis to apoptosis, decreased invasion and migration, and enhanced the sensitivity of PDAC cells to chemotherapy in vitro and in vivo. GSDME was highly expressed in PDAC tissues and positively correlated with histological differentiation and vascular invasion. Furthermore, cells that survived pyroptosis promoted proliferation and invasion and impaired the chemosensitivity of PDAC cells, which was attenuated by the GSDME knockdown. Our findings demonstrated that chemotherapeutics against PDAC induce GSDME-dependent pyroptosis, and GSDME expression positively correlated with PDAC progression and chemoresistance. Targeting GSDME may be a novel approach to overcoming chemoresistance in PDAC.
Collapse
Affiliation(s)
- Shumin Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Yue
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyan Xu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaofei Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tiebo Mao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Quan
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jingyu Ma
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanling Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weiyu Ge
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongchao Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shengbai Xue
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Daiyuan Shentu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiujie Cui
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Liwei Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Al-Noshokaty TM, Mansour A, Abdelhamid R, Abdellatif N, Alaaeldien A, Reda T, Abdelmaksoud NM, Doghish AS, Abulsoud AI, Elshaer SS. Role of long non-coding RNAs in pancreatic cancer pathogenesis and treatment resistance- A review. Pathol Res Pract 2023; 245:154438. [PMID: 37043965 DOI: 10.1016/j.prp.2023.154438] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/14/2023]
Abstract
Pancreatic cancer (PC) is one of the deadliest cancers associated with poor prognosis. The lack of reliable means of early cancer detection contributes to this disease's dismal prognosis. Long non-coding RNAs (LncRNAs) are protein-free RNAs produced by genome transcription; they play critical roles in gene expression regulation, epigenetic modification, cell proliferation, differentiation, and reproduction. Recent research has shown that lncRNAs play important regulatory roles in PC behaviors, in addition to their recently found functions. Several in-depth investigations have shown that lncRNAs are strongly linked to PC development and progression. Here, we discuss how lncRNAs, which are often overlooked, play many roles as regulators in the molecular mechanism underlying PC. This review also discusses the involved LncRNAs in PC pathogenesis and treatment resistance.
Collapse
Affiliation(s)
- Tohada M Al-Noshokaty
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Abdallah Mansour
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Rehab Abdelhamid
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nourhan Abdellatif
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ayat Alaaeldien
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Tasnim Reda
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt.
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt.
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr, Cairo, Egypt
| |
Collapse
|
8
|
Wang FJ, Mei X. Expression level of serum miR-347a-5p in patients with acute pancreatitis and its effect on viability, apoptosis, and inflammatory factors of pancreatic acinar cells induced by cerulein. Kaohsiung J Med Sci 2023. [PMID: 36912261 DOI: 10.1002/kjm2.12666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 03/14/2023] Open
Abstract
Acute pancreatitis (AP) is one of the life-threatening diseases of the digestive system. MicroRNA has been asserted to be a regulator of AP. This paper explored the miR-374a-5p expression in AP patients and investigated the efficacy of AR42J cells. In this study, 60 healthy people, 58 MAP patients and 58 SAP patients were included, and the serum miR-374a-5p levels of the subjects were detected by RT-qPCR technology. The pancreatitis cell model was structured by stimulating AR42J cells with cerulein. Next, cell viability and apoptosis were detected by CCK-8 assay and flow cytometry. ELISA was used to measure the concentration of cytokines, such as TNF-α, IL-6, and IL-1β. The data showed that miR-374a-5p was downregulated in samples from AP patients, while showing discriminative power for AP populations. Attenuated miR-374a-5p were negatively bound up with patients' Ranson score and APACHE II score. Besides, miR-374a-5p was declined in cerulein-treated AR42J cells and forced elevation of miR-374a-5p was beneficial to increase cell viability, and inhibit cell apoptosis and inflammation. The present study found that miR-374a-5p was reduced in AP serum samples, and up-regulated expression level of miR-374a-5p in cell models had a protective effect on cerulein-induced inhibition of cell function and inflammatory response.
Collapse
Affiliation(s)
- Fu-Jun Wang
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, China
| | - Xue Mei
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, China
| |
Collapse
|
9
|
Safe S. Specificity Proteins (Sp) and Cancer. Int J Mol Sci 2023; 24:5164. [PMID: 36982239 PMCID: PMC10048989 DOI: 10.3390/ijms24065164] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/10/2023] Open
Abstract
The specificity protein (Sp) transcription factors (TFs) Sp1, Sp2, Sp3 and Sp4 exhibit structural and functional similarities in cancer cells and extensive studies of Sp1 show that it is a negative prognostic factor for patients with multiple tumor types. In this review, the role of Sp1, Sp3 and Sp4 in the development of cancer and their regulation of pro-oncogenic factors and pathways is reviewed. In addition, interactions with non-coding RNAs and the development of agents that target Sp transcription factors are also discussed. Studies on normal cell transformation into cancer cell lines show that this transformation process is accompanied by increased levels of Sp1 in most cell models, and in the transformation of muscle cells into rhabdomyosarcoma, both Sp1 and Sp3, but not Sp4, are increased. The pro-oncogenic functions of Sp1, Sp3 and Sp4 in cancer cell lines were studied in knockdown studies where silencing of each individual Sp TF decreased cancer growth, invasion and induced apoptosis. Silencing of an individual Sp TF was not compensated for by the other two and it was concluded that Sp1, Sp3 and Sp4 are examples of non-oncogene addicted genes. This conclusion was strengthened by the results of Sp TF interactions with non-coding microRNAs and long non-coding RNAs where Sp1 contributed to pro-oncogenic functions of Sp/non-coding RNAs. There are now many examples of anticancer agents and pharmaceuticals that induce downregulation/degradation of Sp1, Sp3 and Sp4, yet clinical applications of drugs specifically targeting Sp TFs are not being used. The application of agents targeting Sp TFs in combination therapies should be considered for their potential to enhance treatment efficacy and decrease toxic side effects.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
10
|
Zhang L, Zhao F, Li W, Song G, Kasim V, Wu S. The Biological Roles and Molecular Mechanisms of Long Non-Coding RNA MEG3 in the Hallmarks of Cancer. Cancers (Basel) 2022; 14:cancers14246032. [PMID: 36551518 PMCID: PMC9775699 DOI: 10.3390/cancers14246032] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are critical regulators in various biological processes involved in the hallmarks of cancer. Maternally expressed gene 3 (MEG3) is lncRNA that regulates target genes through transcription, translation, post-translational modification, and epigenetic regulation. MEG3 has been known as a tumor suppressor, and its downregulation could be found in various cancers. Furthermore, clinical studies revealed that impaired MEG3 expression is associated with poor prognosis and drug resistance. MEG3 exerts its tumor suppressive effect by suppressing various cancer hallmarks and preventing cells from acquiring cancer-specific characteristics; as it could suppress tumor cells proliferation, invasion, metastasis, and angiogenesis; it also could promote tumor cell death and regulate tumor cell metabolic reprogramming. Hence, MEG3 is a potential prognostic marker, and overexpressing MEG3 might become a potential antitumor therapeutic strategy. Herein, we summarize recent knowledge regarding the role of MEG3 in regulating tumor hallmarks as well as the underlying molecular mechanisms. Furthermore, we also discuss the clinical importance of MEG3, as well as their potential in tumor prognosis and antitumor therapeutic strategies.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Fuqiang Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Wenfang Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
- Correspondence: (V.K.); (S.W.); Tel.: +86-23-65112672 (V.K.); +86-23-65111632 (S.W.); Fax: +86-23-65111802 (V.K. & S.W.)
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
- Correspondence: (V.K.); (S.W.); Tel.: +86-23-65112672 (V.K.); +86-23-65111632 (S.W.); Fax: +86-23-65111802 (V.K. & S.W.)
| |
Collapse
|
11
|
Xu J, Wang X, Zhu C, Wang K. A review of current evidence about lncRNA MEG3: A tumor suppressor in multiple cancers. Front Cell Dev Biol 2022; 10:997633. [PMID: 36544907 PMCID: PMC9760833 DOI: 10.3389/fcell.2022.997633] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNA (lncRNA) maternally expressed gene 3 (MEG3) is a lncRNA located at the DLK1-MEG3 site of human chromosome 14q32.3. The expression of MEG3 in various tumors is substantially lower than that in normal adjacent tissues, and deletion of MEG3 expression is involved in the occurrence of many tumors. The high expression of MEG3 could inhibit the occurrence and development of tumors through several mechanisms, which has become a research hotspot in recent years. As a member of tumor suppressor lncRNAs, MEG3 is expected to be a new target for tumor diagnosis and treatment. This review discusses the molecular mechanisms of MEG3 in different tumors and future challenges for the diagnosis and treatment of cancers through MEG3.
Collapse
Affiliation(s)
- Jie Xu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chunming Zhu
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China,*Correspondence: Chunming Zhu, ; Kefeng Wang,
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China,*Correspondence: Chunming Zhu, ; Kefeng Wang,
| |
Collapse
|
12
|
ID1 marks the tumorigenesis of pancreatic ductal adenocarcinoma in mouse and human. Sci Rep 2022; 12:13555. [PMID: 35941362 PMCID: PMC9359991 DOI: 10.1038/s41598-022-17827-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is a deadly disease that has an increasing death rate but no effective treatment to now. Although biological and immunological hallmarks of PDAC have been frequently reported recently, early detection and the particularly aggressive biological features are the major challenges remaining unclear. In the current study, we retrieved multiple scRNA-seq datasets and illustrated the genetic programs of PDAC development in genetically modified mouse models. Notably, the transcription levels of Id1 were elevated specifically along with the PDAC development. Pseudotime trajectory analysis revealed that Id1 was closely correlated with the malignancy of PDAC. The gene expression patterns of human PDAC cells were determined by the comparative analysis of the scRNA-seq data on human PDAC and normal pancreas tissues. ID1 levels in human PDAC cancer cells were dramatically increased compared to normal epithelial cells. ID1 deficiency in vitro significantly blunt the invasive tumor-formation related phenotypes. IPA analysis on the differentially expressed genes suggested that EIF2 signaling was the core pathway regulating the development of PDAC. Blocking EFI2 signaling remarkably decreased the expression of ID1 and attenuated the tumor-formation related phenotypes. These observations confirmed that ID1 was regulated by EIF2 signaling and was the critical determinator of PDAC development and progression. This study suggests that ID1 is a potential malignant biomarker of PDAC in both mouse models and human and detecting and targeting ID1 may be a promising strategy to treat or even rescue PDAC.
Collapse
|
13
|
Qin Y, Li G, Jin Y, Yao Q, Li R, Li X, Wang H. Long Non-Coding RNA maternally expressed 3 (MEG3) regulates isoflurane-induced cognitive dysfunction by targeting miR-7-5p. Toxicol Mech Methods 2022; 32:453-462. [PMID: 35164634 DOI: 10.1080/15376516.2022.2042881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study aimed to investigate the role and mechanism of long non-coding RNA maternally expressed gene 3 (MEG3) in cognitive dysfunction induced by isoflurane (ISO). Morrier water maze analysis was performed to evaluate the cognitive function of rats. Modified modified neurological severity score (mNSS) scores were assessed for neurological damage. The levels of MEG3 in hippocampal tissues of rats and hippocampal neuron cell lines HT22 were examined by reverse transcription-quantitative polymerase chain reaction (qRT-PCR). Moreover, the cell viability and apoptosis were assessed by the Cell Counting Kit-8 (CCK-8) and flow cytometry assay. Indicators of inflammation and oxidative stress were determined using enzyme-linked immunosorbent assay (ELISA) and commercial assay kits. Relationship between MEG3 and microRNA (miR)-7-5p was verified by the dual-luciferase reporter gene assay. MEG3 was increased in hippocampal tissues and HT22 after ISO treatment (P < 0.05). MEG3 downregulation alleviated the increase in neurological severity score and cognitive dysfunction caused by ISO treatment (P < 0.05). In vitro, MEG3 downregulation alleviates the decrease in cell activity and increased apoptosis induced by ISO. What's more, MEG3 reduction eliminated activation of neuroinflammation and oxidative stress promoted by ISO treatment in rats and HT22 (P < 0.05). MEG3 was confirmed to specifically bind to miR-7-5p. Inhibition of miR-7-5p eliminated the alleviating effects of MEG3 downregulation on cognitive dysfunction caused by ISO treatment. Decreased MEG3 alleviates cognitive dysfunction caused by ISO by targeting miR-7-5p and play a neuroprotective effect. We present a strategy for MEG3 as a potential target for brain protection during anesthesia.
Collapse
Affiliation(s)
- Yan Qin
- Department of Anesthesiology, Maternity and Child Health Care of Zaozhuang, No.25 Wenhua Road, Zaozhuang, Shandong 277100, P.R. China
| | - Guohua Li
- Department of Anesthesiology, the Second Affiliated Hospital of Shandong First Medical University, No. 706 Taishan Street, Taishan District, Taian, Shandong 271000, P.R. China
| | - Yanwu Jin
- Department of Anesthesiology, the Second Hospital of Shandong University, Shandong University, No. 247 Beiyuan Road, Tianqiao District, Jinan, Shandong 250033, P.R. China
| | - Qun Yao
- Department of Anesthesiology, Zaozhuang Municipal Hospital, No. 41 Longtou Road, Zaozhuang, Shandong 277100, P.R. China
| | - Ruijun Li
- Department of Anesthesiology, Maternity and Child Health Care of Zaozhuang, No.25 Wenhua Road, Zaozhuang, Shandong 277100, P.R. China
| | - Xingwei Li
- Department of Anesthesiology, Zaozhuang Municipal Hospital, No. 41 Longtou Road, Zaozhuang, Shandong 277100, P.R. China
| | - Haipeng Wang
- Department of Anesthesiology, Zaozhuang Municipal Hospital, No. 41 Longtou Road, Zaozhuang, Shandong 277100, P.R. China
| |
Collapse
|
14
|
Kumbhar N, Nimal S, Barale S, Kamble S, Bavi R, Sonawane K, Gacche R. Identification of novel leads as potent inhibitors of HDAC3 using ligand-based pharmacophore modeling and MD simulation. Sci Rep 2022; 12:1712. [PMID: 35110603 PMCID: PMC8810932 DOI: 10.1038/s41598-022-05698-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/03/2022] [Indexed: 02/08/2023] Open
Abstract
In the landscape of epigenetic regulation, histone deacetylase 3 (HDAC3) has emerged as a prominent therapeutic target for the design and development of candidate drugs against various types of cancers and other human disorders. Herein, we have performed ligand-based pharmacophore modeling, virtual screening, molecular docking, and MD simulations to design potent and selective inhibitors against HDAC3. The predicted best pharmacophore model 'Hypo 1' showed excellent correlation (R2 = 0.994), lowest RMSD (0.373), lowest total cost value (102.519), and highest cost difference (124.08). Hypo 1 consists of four salient pharmacophore features viz. one hydrogen bond acceptor (HBA), one ring aromatic (RA), and two hydrophobic (HYP). Hypo 1 was validated by Fischer's randomization with a 95% of confidence level and the external test set of 60 compounds with a good correlation coefficient (R2 = 0.970). The virtual screening of chemical databases, drug-like properties calculations followed by molecular docking resulted in identifying 22 representative hit compounds. Performed 50 ns of MD simulations on top three hits were retained the salient π-stacking, Zn2+ coordination, hydrogen bonding, and hydrophobic interactions with catalytic residues from the active site pocket of HDAC3. Total binding energy calculated by MM-PBSA showed that the Hit 1 and Hit 2 formed stable complexes with HDAC3 as compared to reference TSA. Further, the PLIP analysis showed a close resemblance between the salient pharmacophore features of Hypo 1 and the presence of molecular interactions in co-crystallized FDA-approved drugs. We conclude that the screened hit compounds may act as potent inhibitors of HDAC3 and further preclinical and clinical studies may pave the way for developing them as effective therapeutic agents for the treatment of different cancers and neurodegenerative disorders.
Collapse
Affiliation(s)
- Navanath Kumbhar
- Department of Biotechnology, Savitribai Phule Pune University Pune, Pune, Maharashtra (MS), 411007, India
| | - Snehal Nimal
- Department of Biotechnology, Savitribai Phule Pune University Pune, Pune, Maharashtra (MS), 411007, India
| | - Sagar Barale
- Department of Microbiology, Shivaji University, Kolhapur, Maharashtra (MS), 416004, India
| | - Subodh Kamble
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur, Maharashtra (MS), 416004, India
| | - Rohit Bavi
- School of Chemical Science, Punyashlok Ahilyadevi Holkar Solapur University, Solapur, Maharashtra (MS), 413255, India
| | - Kailas Sonawane
- Department of Microbiology, Shivaji University, Kolhapur, Maharashtra (MS), 416004, India
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur, Maharashtra (MS), 416004, India
| | - Rajesh Gacche
- Department of Biotechnology, Savitribai Phule Pune University Pune, Pune, Maharashtra (MS), 411007, India.
| |
Collapse
|
15
|
Lin HP, Rea M, Wang Z, Yang C. Down-regulation of lncRNA MEG3 promotes chronic low dose cadmium exposure-induced cell transformation and cancer stem cell-like property. Toxicol Appl Pharmacol 2021; 430:115724. [PMID: 34520792 DOI: 10.1016/j.taap.2021.115724] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022]
Abstract
Cadmium (Cd) is a toxic heavy metal and one of carcinogens that cause lung cancer. However, the exact mechanism of Cd carcinogenesis remains unclear. To investigate the mechanism of Cd carcinogenesis, we exposed human bronchial epithelial cells (BEAS-2B) to a low dose of Cd (2.5 μM, CdCl2) for 9 months, which caused cell malignant transformation and generated cancer stem cell (CSC)-like cells. The goal of this study is to investigate the underlying mechanism. The long non-coding RNA (lncRNA) microarray analysis showed that the expression level of a tumor suppressive lncRNA maternally expressed 3 (MEG3) is significantly down-regulated in Cd-transformed cells, which is confirmed by further q-PCR analysis. Mechanistically, it was found that chronic Cd exposure up-regulates the levels of DNA methyltransferases (DNMTs), which increases the methylation of the differentially methylated region (DMR) 1.5 kb upstream of MEG3 transcription start site to reduce MEG3 expression. Functional studies showed that stably overexpressing MEG3 in Cd-transformed cells significantly reduces their transformed phenotypes. Moreover, stably overexpressing MEG3 in parental non-transformed human bronchial epithelial cells significantly impaired the capability of chronic Cd exposure to induce cell transformation and CSC-like property. Further mechanistic studies revealed that the cell cycle inhibitor p21 level is reduced and retinoblastoma protein (Rb) phosphorylation is increased in Cd-transformed cells to promote cell cycle progression. In addition, Cd-transformed cells also expressed higher levels of Bcl-xL and displayed apoptosis resistance. In contrast, stably overexpressing MEG3 increased p21 levels and reduced Rb phosphorylation and Bcl-xL levels in Cd-exposed cells and reduced their cell cycle progression and apoptosis resistance. Together, these findings suggest that MEG3 down-regulation may play important roles in Cd-induced cell transformation and CSC-like property by promoting cell cycle progression and apoptosis resistance.
Collapse
Affiliation(s)
- Hsuan-Pei Lin
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, United States of America
| | - Matthew Rea
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, United States of America
| | - Zhishan Wang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western University School of Medicine, Cleveland, OH 44109, United States of America
| | - Chengfeng Yang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western University School of Medicine, Cleveland, OH 44109, United States of America.
| |
Collapse
|
16
|
Sun H, Zhang D, Huang C, Guo Y, Yang Z, Yao N, Dong X, Cheng R, Zhao N, Meng J, Sun B, Hao J. Hypoxic microenvironment induced spatial transcriptome changes in pancreatic cancer. Cancer Biol Med 2021; 18:j.issn.2095-3941.2021.0158. [PMID: 34086429 PMCID: PMC8185871 DOI: 10.20892/j.issn.2095-3941.2021.0158] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/23/2021] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Hypoxia is a significant feature of solid tumors, including pancreatic ductal adenocarcinoma (PDAC). It is associated with tumor invasion, metastasis, and drug resistance. However, the spatial distribution of hypoxia-related heterogeneity in PDAC remains unclear. METHODS Spatial transcriptomics (STs), a new technique, was used to investigate the ST features of engrafted human PDAC in the ischemic hind limbs of nude mice. Transcriptomes from ST spots in the hypoxic tumor and the control were clustered using differentially-expressed genes. These data were compared to determine the spatial organization of hypoxia-induced heterogeneity in PDAC. Clinical relevance was validated using the Tumor Cancer Genome Atlas and KM-plotter databases. The CMAP website was used to identify molecules that may serve as therapeutic targets for PDAC. RESULTS ST showed that the tumor cell subgroups decreased to 7 subgroups in the hypoxia group, compared to 9 subgroups in the control group. Different subgroups showed positional characteristics and different gene signatures. Subgroup 6 located at the invasive front showed a higher proliferative ability under hypoxia. Subgroup 6 had active functions including cell proliferation, invasion, and response to stress. Expressions of hypoxia-related genes, LDHA, TPI1, and ENO1, induced changes. CMAP analysis indicated that ADZ-6482, a PI3K inhibitor, was targeted by the invasive subgroup in hypoxic tumors. CONCLUSIONS This study is the first to describe hypoxic microenvironment-induced spatial transcriptome changes in PDAC, and to identify potential treatment targets for PDAC. These data will provide the basis for further investigations of the prognoses and treatments of hypoxic tumors.
Collapse
Affiliation(s)
- Huizhi Sun
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
- Department of Pathology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
| | - Danfang Zhang
- Department of Pathology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
| | - Chongbiao Huang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yuhong Guo
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zhao Yang
- Department of Pathology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
| | - Nan Yao
- Department of Pathology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
| | - Xueyi Dong
- Department of Pathology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
| | - Runfen Cheng
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Nan Zhao
- Department of Pathology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
| | - Jie Meng
- Department of Pathology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
| | - Baocun Sun
- Department of Pathology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
| | - Jihui Hao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
17
|
Tang Y, He X. Long non-coding RNAs in nasopharyngeal carcinoma: biological functions and clinical applications. Mol Cell Biochem 2021; 476:3537-3550. [PMID: 33999333 DOI: 10.1007/s11010-021-04176-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common head and neck malignancies. It has obvious ethnic and regional specificity. Long non-coding RNAs (LncRNAs) are a class of non-protein coding RNA molecules. Emerging research shows that lncRNAs play a key role in tumor development, prognosis, and treatment. With the deepening of sequence analysis, a large number of functional LncRNAs have been found in NPC, which interact with coding genes, miRNAs, and proteins to form a complex regulatory network. However, the specific role and mechanism of abnormally expressed lncRNAs in the pathogenesis of NPC is not fully understood. This article briefly introduced the concept, classification, and functional mechanism of lncRNAs and reviewed their biological functions and their clinical applications in NPC. Specifically, we described lncRNAs related to the occurrence, growth, invasion, metastasis, angiogenesis, and cancer stem cells of NPC; discussed lncRNAs related to Epstein-Barr virus infection; and summarized the role of lncRNAs in NPC treatment resistance. We have also sorted out lncRNAs related to Chinese medicine treatment. We believe that with the deepening of lncRNAs research, tumor-specific lncRNAs may become a new target for the treatment and a biomarker for predicting prognosis.
Collapse
Affiliation(s)
- Yao Tang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang, 421001, Hunan Province, China
| | - Xiusheng He
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang, 421001, Hunan Province, China.
| |
Collapse
|
18
|
Pan H, Diao H, Zhong W, Wang T, Wen P, Wu C. A Cancer Cell Cluster Marked by LincRNA MEG3 Leads Pancreatic Ductal Adenocarcinoma Metastasis. Front Oncol 2021; 11:656564. [PMID: 34055623 PMCID: PMC8155708 DOI: 10.3389/fonc.2021.656564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/19/2021] [Indexed: 12/25/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly devastating disease with poor prognosis and rising incidence worldwide. Late detection and particularly aggressive characteristics are the major challenges that lead to therapeutic failure of this disease. A well described gene program and core regulators are yet to be discovered to drive the metastasis of the PDAC cells. As the development of single cell omics technologies including single cell RNA-sequencing (scRNA-seq), detailed characterization of the cellular composition of solid tumors and their microenvironments are well elaborated. In the current study, we accessed a recently published scRNA-seq dataset on primary and metastatic PDAC tissues and subset the tumor cells. By comparative analysis, we profiled the differentially expressed gene programs of primary and metastatic PDAC and found several long intergenic non-coding RNAs (LincRNAs) in top genes. The PDAC cancer cells showed some heterogeneity and were divided into four major subclusters based on gene profiles, one of which was mostly contributed by metastatic PDAC. Interestingly, this subcluster was remarkably marked by one of the above LincRNAs, MEG3, and exhibited significantly increased Epithelial-Mesenchymal-Transition (EMT) signatures. Ingenuity Pathway Analysis (IPA) on the signature genes of this subcluster gave multiple cancer metastasis associated and EMT signaling pathways, suggesting a critical role of this cluster in leading tumor cell metastasis. Taken together, this study displayed a PDAC cancer subcluster and its marker gene, biologically targeting of which might significantly attenuate the metastasis of tumor and might be a potential strategy for the therapeutic treatment of cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Chunli Wu
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
19
|
Liu L, Li X, Shi Y, Chen H. Long noncoding RNA DLGAP1-AS1 promotes the progression of glioma by regulating the miR-1297/EZH2 axis. Aging (Albany NY) 2021; 13:12129-12142. [PMID: 33901010 PMCID: PMC8109124 DOI: 10.18632/aging.202923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/13/2021] [Indexed: 12/11/2022]
Abstract
Dysregulated lncRNAs have been implicated in a plethora of tumors, including glioma. One such oncogenic lncRNAs that has been reported in several cancers is the lncRNA DLGAP1 antisense RNA 1 (DLGAP1-AS1). This study seeks to characterize the expression of DLGAP1-AS1 in glioma tissues, which we found to be raised in both glioma samples and cell lines. Functional experiments revealed that DLGAP1-AS1 promoted in vitro glioma cell invasion, migration and proliferation. DLGAP1-AS1 was found to function as a miR-1297 sponge, based on information from luciferase reporter assays, RNA pull-down assays and publicly available online databases. miR-1297 was in turn found to functionally target EZH2. DLGAP1-AS1 modulated EZH2 expressions through miR-1297 sponging. Glioma progression appears to be supported DLGAP1-AS1 -promoted activation of the miR-1297/EZH2 axis. The components of this axis may function as therapeutic targets for glioma.
Collapse
Affiliation(s)
- Liang Liu
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xiaojian Li
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yan Shi
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Hua Chen
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
20
|
Ramaiah MJ, Tangutur AD, Manyam RR. Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy. Life Sci 2021; 277:119504. [PMID: 33872660 DOI: 10.1016/j.lfs.2021.119504] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/20/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022]
Abstract
The role of genetic and epigenetic factors in tumor initiation and progression is well documented. Histone deacetylases (HDACs), histone methyl transferases (HMTs), and DNA methyl transferases. (DNMTs) are the main proteins that are involved in regulating the chromatin conformation. Among these, histone deacetylases (HDAC) deacetylate the histone and induce gene repression thereby leading to cancer. In contrast, histone acetyl transferases (HATs) that include GCN5, p300/CBP, PCAF, Tip 60 acetylate the histones. HDAC inhibitors are potent drug molecules that can induce acetylation of histones at lysine residues and induce open chromatin conformation at tumor suppressor gene loci and thus resulting in tumor suppression. The key processes regulated by HDAC inhibitors include cell-cycle arrest, chemo-sensitization, apoptosis induction, upregulation of tumor suppressors. Even though FDA approved drugs are confined mainly to haematological malignancies, the research on HDAC inhibitors in glioblastoma multiforme and triple negative breast cancer (TNBC) are providing positive results. Thus, several combinations of HDAC inhibitors along with DNA methyl transferase inhibitors and histone methyl transferase inhibitors are in clinical trials. This review focuses on how HDAC inhibitors regulate the expression of coding and non-coding genes with specific emphasis on their anti-cancer potential.
Collapse
Affiliation(s)
- M Janaki Ramaiah
- Laboratory of Functional genomics and Disease Biology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India.
| | - Anjana Devi Tangutur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, Telangana, India
| | - Rajasekhar Reddy Manyam
- Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
| |
Collapse
|