1
|
Ilesanmi OB, Odewale TT, Avwioroko OJ, Ahmed EI, Alaneme C, Atanu FO, Chikere B, James M, Chinagor I, Albezrah NKA, Youssef A, Binang T, Batiha GES. Trévo abrogates Lead Acetate Neurotoxicity in Male Wistar Rats viz Antiamyloidogenesis, Antiglutaminergic, and Anticholinesterase Activities. Ann Neurosci 2022; 29:94-103. [DOI: 10.1177/09727531221077642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/20/2021] [Indexed: 12/06/2022] Open
Abstract
Background: Exposure to lead has been linked to biochemical changes similar to those patients suffering from Alzheimer’s disease. Trévo is a phytonutrient-rich product with antiaging and antioxidant properties. Purpose: To investigate the neuroprotective activity of trévo against lead-induced biochemical changes in male Wistar rats. Methods: The study involves 35 animals that were randomly divided into five groups of seven rats each. Group I (Control): Orally administered distilled water; Group II (Induced): Administered 15 mg/kg of lead acetate (PbA) intraperitoneally; Group III (Treatment group): Orally administered 2 mL/kg of trévo for two days before co-administration with PbA for 12 consecutive days; Group IV (Treatment group): Orally administered 5 mL/kg of trévo for two days prior to coadministration with PbA for 12 consecutive days; Group V: Orally administered 5 mL/kg of trévo for 14 consecutive days. Animals were anesthetized with diether and the brain excised and processed for the following biochemical assays: Malonedialdehyde (MDA), glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GT), acetylcholinesterase (AChE), beta-amyloid, glutamate, Na+/K+ ATPase, and glutamate dehydrogenase (GD). Results: PbA caused significant oxidative stress (increased MDA concentration, decreased GSH concentration, suppressed the activity of CAT, SOD), decreased GT activity, increased activity of AChE, increased the concentration of beta-amyloid, and caused glutamate excitotoxicity (increased concentration of glutamate, decreased activity of Na+/K+ ATPase, and GD) in rat brains. Treatment with trévo at the two different doses significantly prevented oxidative damage, beta-amyloid aggregation, glutamate excitotoxicity, and acetylcholine breakdown induced by lead acetate. Conclusion: Our findings added to the reported pharmacological activity of trévo and supported the antiaging potential of trévo.
Collapse
Affiliation(s)
- Omotayo B. Ilesanmi
- Department of Biochemistry, Faculty of Science, Federal University Otuoke, Otuoke, Bayelsa State, Nigeria
| | | | - Oghenetega J. Avwioroko
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer’s University, Ede, Osun State, Nigeria
| | - Eman Ibrahim Ahmed
- Pharmacology and Theraeutics Department, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Chinenyenwa Alaneme
- Department of Biochemistry, Faculty of Science, Federal University Otuoke, Otuoke, Bayelsa State, Nigeria
| | - Francis O. Atanu
- Department of Biochemistry, Faculty of Natural Sciences, Kogi State University Anyigba, Anyigba, Nigeria
| | - Bruno Chikere
- Department of Biochemistry, Faculty of Science, Federal University Otuoke, Otuoke, Bayelsa State, Nigeria
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota Ogun State, Nigeria. Covenant Applied Informatics and Communication-African Center of Excellence (Capic Ace), Covenant University
| | - Millicent James
- Department of Biochemistry, Faculty of Science, Federal University Otuoke, Otuoke, Bayelsa State, Nigeria
| | - Innocent Chinagor
- Department of Biochemistry, Faculty of Science, Federal University Otuoke, Otuoke, Bayelsa State, Nigeria
| | | | - Amal Youssef
- Medical Pharmacology Department, Faculty of Medicine, Cairo University, Egypt
| | | | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, Egypt
| |
Collapse
|
2
|
Ilesanmi OB, Akinmoladun AC, Elusiyan CA, Ogungbe IV, Olugbade TA, Olaleye MT. Neuroprotective flavonoids of the leaf of Antiaris africana Englea against cyanide toxicity. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114592. [PMID: 34480996 DOI: 10.1016/j.jep.2021.114592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Different parts of Antiaris africana Englea (Moraceae) are used traditionally for the treatment of various diseases, including epilepsy and other nervous system disorders. AIMS OF THIS STUDY The current study was designed to evaluate the neuroprotective activity of flavonoids isolated from A. africana against potassium cyanide (KCN)-induced oxidative damage in brain homogenate. MATERIALS AND METHODS Dried and ground leaves of A. africana were extracted with methanol and fractioned into n-hexane (HFA), dichloromethane (DFA), ethyl acetate (EFA) and methanol (MFA). Each fraction was assessed for neuroprotective potential by anticholinesterase activity test. The fraction with the best anticholinesterase activity was subjected to various chromatographic techniques through bioassay-guided fractionation to isolate the bioactive compounds. The protective ability of the extract, fractions and compounds against Potassium cyanide (KCN)-induced mitochondrial damage in rat brain homogenate was evaluated. Structures of the isolated compounds were determined using 1D and 2D NMR, mass spectrometry and by comparison with literature data. RESULTS AND DISCUSSION The ethyl acetate fraction showed the best anticholinesterase activity with an IC50 of 23.23 ± 1.12 μg/ml. Quercetin and a biflavonoid glucoside identified as 3'-4'-bisquercetin-3β-D-diglucoside from this fraction displayed a remarkable antioxidant activity in the DPPH assay and showed significant (P < 0.05) increase in the activity of dehydrogenase inhibited by KCN in a concentration dependent manner. However, quercetin was more effective in reducing the MDA level and acetylcholinesterase activity that were elevated by KCN. CONCLUSION Quercetin and the bisquercetin-diglucoside isolated from the leaves of A. Africana for the first time, are major contributors to the observed neuroprotective property of the plant which supports its folkloric usage in the management of seizures, epilepsy and other neurological disorders.
Collapse
Affiliation(s)
- Omotayo B Ilesanmi
- Department of Biochemistry, Faculty of Science, The Federal University, Otuoke, Bayelsa State PMB 126, Yenagoa, Bayelsa State, Nigeria.
| | - Afolabi C Akinmoladun
- Department of Biochemistry, School of Life Sciences, The Federal University of Technology, PMB 704, Akure, Nigeria
| | | | - Ifedayo V Ogungbe
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, USA
| | | | - M Tolulope Olaleye
- Department of Biochemistry, School of Life Sciences, The Federal University of Technology, PMB 704, Akure, Nigeria
| |
Collapse
|
3
|
Reversal effect of Solanum dasyphyllum against rotenone-induced neurotoxicity. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2021. [DOI: 10.2478/cipms-2020-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
We earlier reported the protective effect of Solanum dasyphyllum against cyanide neurotoxicity. In furtherance to this, we investigated the protective effect of S. dasyphyllum against rotenone, a chemical toxin that causes brain-related diseases. Mitochondria fraction obtained from the brain of male Wistar rats was incubated with various solvents (hexane, dichloromethane, ethylacetate, and methanol) extracts of S. dasyphyllum before rotenone exposure. Mitochondria respiratory enzymes (MRE) were evaluated along with markers of oxidative stress. The inhibition of MRE by rotenone was reversed by treatment with various fractions of S. dasyphyllum. The oxidative stress induced by rotenone was also reversed by fractions of S. dasyphyllum. In addition, the ethylacetate fraction of S. dasyphyllum was most potent against rotenone-induced neurotoxicity. In conclusion, S. dasyphyllum is rich in active phytochemicals that can prevent some neurotoxic effects of rotenone exposure. Further study can be done in an in vivo model to substantiate our results.
Collapse
|
4
|
Saliu IO, Amoo ZA, Khan MF, Olaleye MT, Rema V, Akinmoladun AC. Abatement of neurobehavioral and neurochemical dysfunctions in cerebral ischemia/reperfusion injury by Tetrapleura tetraptera fruit extract. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113284. [PMID: 32841692 DOI: 10.1016/j.jep.2020.113284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/03/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tetrapleura tetraptera Taub. (family Fabaceae), is generally found in the lowland forest of tropical Africa. Its leaves and fruits are traditionally used in West Africa for the management of brain disorders. AIM OF THE STUDY This study evaluated the effect of Tetrapleura tetraptera methanol fruit extract (TT) on bilateral common carotid artery occlusion-induced cerebral ischemia/reperfusion (I/R) injury in male Wistar rats. MATERIALS AND METHODS Rats pretreated with TT for 7 days before a 30 min bilateral common carotid artery occlusion and reperfusion for 24 h were assessed for neurobehavioural deficits. Cortical, striatal and hippocampal oxidative stress, pro-inflammatory events, electrolyte imbalance and neurochemical dysfunctions, as well as hippocampal histopathological alterations, were also evaluated. HPLC-DAD analysis was performed to identify likely compounds contributing to the bioactivity of the extract. RESULTS TT reduced I/R-induced behavioral deficits and ameliorated I/R-induced oxidative stress by restoring reduced glutathione level, increasing catalase and superoxide dismutase activities, and also reducing both lipid peroxidation and xanthine oxidase activity in the brain. TT attenuated I/R-increased myeloperoxidase and lactate dehydrogenase activities as well as disturbances in Na+ and K+ levels. Alterations elicited by I/R in the activities of Na+/K+ ATPase, complex I, glutamine synthetase, acetylcholinesterase, and dopamine metabolism were abated by TT pretreatment. TT prevented I/R-induced histological changes in the hippocampus. HPLC-DAD analysis revealed the presence of aridanin, a marker compound for Tetrapleura tetraptera, and other phytochemicals. CONCLUSIONS These findings indicate that Tetrapleura tetraptera fruit has a protective potential against stroke through modulation of redox and electrolyte imbalances, and attenuation of neurotransmitter dysregulation and other neurochemical dysfunctions. Tetrapleura tetraptera fruit could be a promising source for the discovery of bioactives for stroke therapy.
Collapse
Affiliation(s)
- Ibrahim Olabayode Saliu
- Phytomedicine, Biochemical Pharmacology and Toxicology Research Laboratories, Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure 340001, Nigeria; Department of System Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Zainab Abiola Amoo
- Phytomedicine, Biochemical Pharmacology and Toxicology Research Laboratories, Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure 340001, Nigeria
| | - Mohammad Faheem Khan
- Department of Biotechnology, Era's Lucknow Medical College, Era University, Hardoi Road, Lucknow, 226003, UP, India
| | - M Tolulope Olaleye
- Phytomedicine, Biochemical Pharmacology and Toxicology Research Laboratories, Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure 340001, Nigeria
| | - Velayudhan Rema
- Department of System Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Afolabi C Akinmoladun
- Phytomedicine, Biochemical Pharmacology and Toxicology Research Laboratories, Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure 340001, Nigeria.
| |
Collapse
|
6
|
Russell VA. Notes on the Recent History of Neuroscience in Africa. Front Neuroanat 2017; 11:96. [PMID: 29163069 PMCID: PMC5681988 DOI: 10.3389/fnana.2017.00096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/16/2017] [Indexed: 01/16/2023] Open
Abstract
Neuroscience began with neuroanatomy and neurosurgery in Egypt more than 5000 years ago. Knowledge grew over time and specialized neurosurgery centers were established in north Africa in the eleventh century. However, it was not until the twentieth century that neuroscience research became established in sub-Saharan Africa. In most African countries, clinical research focused on understanding the rationale and improving treatment of epilepsy, infections, nutritional neuropathies, stroke and tumors. Significant advances were made. In the twenty-first century, African knowledge expanded to include all branches of neuroscience, contributing to genetic, biochemical and inflammatory determinants of brain disorders. A major focus of basic neuroscience research has been, and is, investigation of plant extracts, drugs and stress in animal models, providing insight and identifying potential novel therapies. A significant event in the history of African neuroscience was the founding of the Society of Neuroscientists of Africa (SONA) in 1993. The International Brain Research Organization (IBRO) supported SONA conferences, as well as workshops and neuroscience training schools in Africa. Thanks to their investment, as well as that of funding agencies, such as the National Institutes of Health (NIH), International Society for Neurochemistry (ISN), World Federation of Neurosurgical Societies (WFNS), World Federation of Neurology (WFN) and the International League Against Epilepsy (ILAE), neuroscience research is well-established in Africa today. However, in order to continue to develop, African neuroscience needs continued international support and African neuroscientists need to engage in policy and decision-making to persuade governments to fund studies that address the unique regional needs in Africa.
Collapse
Affiliation(s)
- Vivienne A Russell
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa.,School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|