1
|
Abdel-Aziz AK. OXPHOS mediators in acute myeloid leukemia patients: Prognostic biomarkers and therapeutic targets for personalized medicine. World J Surg Oncol 2024; 22:298. [PMID: 39533394 PMCID: PMC11559054 DOI: 10.1186/s12957-024-03581-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Despite significant advances in comprehending its tumorigenic role, the prognostic and therapeutic potential of targeting oxidative phosphorylation (OXPHOS) in acute myeloid leukemia (AML) remain obscure. METHODS The prognostic value of ~ 200 mitochondrial/OXPHOS genes as candidate biomarkers was examined in AML patients over ~ 10 years follow-up using Kaplan-Meier and Cox regression analyses. Furthermore, the transcript levels of the assessed markers were inspected in healthy bone marrow tissues and the dependencies of AML cells on the assessed genes were examined. RESULTS Elevated levels of NADH:ubiquinone oxidoreductase subunit A6 (NDUFA6), succinate dehydrogenase complex flavoprotein subunit A (SDHA), solute carrier family 25 member 12 (SLC25A12), electron transfer flavoprotein subunit beta (ETFB), carnitine palmitoyltransferase 1A (CPT1A) and glutathione peroxidase 4 (GPX4) were associated with poor overall survival of AML patients. SLC25A12, ETFB and CPT1A were overexpressed in AML compared to healthy tissues. Cytochrome B5 type A (CYB5A)high, SLC25A12high and GPX4high AML patients displayed higher levels of circulating and engrafted blasts compared to low-expressing cohorts. NPM1 and SRSF2 mutations were frequent in SDHAlow and CPT1Alow AML patients respectively. FLT3-ITD, NPM1 and IDH1 mutations were prevalent in CPT1Ahigh AML patients. FLT3-ITD AMLs were more dependent on OXPHOS. CONCLUSIONS This study identifies NDUFA6 and SDHA as novel companion prognostic biomarkers which might present a rational strategy for personalized therapy of AML patients.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/drug therapy
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Prognosis
- Male
- Female
- Precision Medicine/methods
- Middle Aged
- Oxidative Phosphorylation
- Nucleophosmin
- Adult
- Follow-Up Studies
- Survival Rate
- Aged
- Mutation
- Young Adult
- Serine-Arginine Splicing Factors
Collapse
Affiliation(s)
- Amal Kamal Abdel-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| |
Collapse
|
2
|
Hagen JT, Montgomery MM, Aruleba RT, Chrest BR, Green TD, Kassai M, Zeczycki TN, Schmidt CA, Bhowmick D, Tan SF, Feith DJ, Chalfant CE, Loughran TP, Liles D, Minden MD, Schimmer AD, Cabot MC, Mclung JM, Fisher-Wellman KH. Acute myeloid leukemia mitochondria hydrolyze ATP to resist chemotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589110. [PMID: 38659944 PMCID: PMC11042215 DOI: 10.1101/2024.04.12.589110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Despite early optimism, therapeutics targeting oxidative phosphorylation (OxPhos) have faced clinical setbacks, stemming from their inability to distinguish healthy from cancerous mitochondria. Herein, we describe an actionable bioenergetic mechanism unique to cancerous mitochondria inside acute myeloid leukemia (AML) cells. Unlike healthy cells which couple respiration to the synthesis of ATP, AML mitochondria were discovered to support inner membrane polarization by consuming ATP. Because matrix ATP consumption allows cells to survive bioenergetic stress, we hypothesized that AML cells may resist cell death induced by OxPhos damaging chemotherapy by reversing the ATP synthase reaction. In support of this, targeted inhibition of BCL-2 with venetoclax abolished OxPhos flux without impacting mitochondrial membrane potential. In surviving AML cells, sustained polarization of the mitochondrial inner membrane was dependent on matrix ATP consumption. Mitochondrial ATP consumption was further enhanced in AML cells made refractory to venetoclax, consequential to downregulations in both the proton-pumping respiratory complexes, as well as the endogenous F1-ATPase inhibitor ATP5IF1. In treatment-naive AML, ATP5IF1 knockdown was sufficient to drive venetoclax resistance, while ATP5IF1 overexpression impaired F1-ATPase activity and heightened sensitivity to venetoclax. Collectively, our data identify matrix ATP consumption as a cancer-cell intrinsic bioenergetic vulnerability actionable in the context of mitochondrial damaging chemotherapy.
Collapse
Affiliation(s)
- James T Hagen
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Mclane M Montgomery
- Department of Cancer Biology, Atrium Health Wake Forest Baptist Comprehensive Cancer, Wake Forest University School of Medicine, Winston-Salem, NC
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Raphael T Aruleba
- Department of Cancer Biology, Atrium Health Wake Forest Baptist Comprehensive Cancer, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Brett R Chrest
- Department of Cancer Biology, Atrium Health Wake Forest Baptist Comprehensive Cancer, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Thomas D Green
- Department of Cancer Biology, Atrium Health Wake Forest Baptist Comprehensive Cancer, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Miki Kassai
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Tonya N Zeczycki
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Cameron A Schmidt
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
- Department of Biology, East Carolina University, Greenville, NC
| | - Debajit Bhowmick
- Flow Cytometry Core Facility, Brody School of Medicine at East Carolina University, Greenville, NC
| | - Su-Fern Tan
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA
- University of Virginia Cancer Center, Charlottesville, VA
| | - David J Feith
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA
- University of Virginia Cancer Center, Charlottesville, VA
| | - Charles E Chalfant
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA
- University of Virginia Cancer Center, Charlottesville, VA
- Department of Cell Biology, University of Virginia, Charlottesville, VA
- Research Service, Richmond Veterans Administration Medical Center, Richmond, VA
| | - Thomas P Loughran
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA
- University of Virginia Cancer Center, Charlottesville, VA
| | - Darla Liles
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Myles C Cabot
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Joseph M Mclung
- Section of Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Kelsey H Fisher-Wellman
- Department of Cancer Biology, Atrium Health Wake Forest Baptist Comprehensive Cancer, Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
3
|
Laing A, Elmarghany A, Alghaith AA, Gouma A, Stevens T, Winton A, Cassels J, Clarke CJ, Schwab C, Harrison CJ, Gibson B, Keeshan K. Paediatric bone marrow mesenchymal stem cells support acute myeloid leukaemia cell survival and enhance chemoresistance via contact-independent mechanism. Br J Haematol 2024. [PMID: 39523592 DOI: 10.1111/bjh.19884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Children diagnosed with acute myeloid leukaemia (paediatric AML [pAML]) have limited treatment options and relapse rates due to chemoresistance and refractory disease are over 30%. Current treatment is cytotoxic and in itself has long-lasting harsh side effects. New, less toxic treatments are needed. The bone marrow microenvironment provides chemoprotection to leukaemic cells through cell communication and interaction with mesenchymal stem cells (MSCs), but this is not well defined in pAML. Using primary patient material, we identify a cell contact-independent mechanism of MSC-mediated chemoprotection involving extrinsic soluble factors that is abrogated through inhibition of the JAK/STAT and ERK pathways.
Collapse
Affiliation(s)
- Alison Laing
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Haematology Department, Queen Elizabeth University Hospital, Glasgow, UK
| | - Ahmed Elmarghany
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Clinical Pathology Department, Mansoura University, Mansoura, Egypt
| | - Arwa A Alghaith
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Aya Gouma
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Clinical Pathology Department, Zagazig University, Zagazig, Egypt
| | - Thomas Stevens
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Alexander Winton
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jennifer Cassels
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Cassie J Clarke
- Cancer Research UK Scotland Institute, Garscube Estate, Glasgow, UK
| | - Claire Schwab
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle Upon Tyne, UK
| | - Christine J Harrison
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle Upon Tyne, UK
| | | | - Karen Keeshan
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
4
|
Pan Q, Xin X, Mahto S, Dong Y, Kumar V, Hyde RK, Gupta N, Bhatt VR, Mahato RI. Anti-CLL1 liposome loaded with miR-497-5p and venetoclax as a novel therapeutic strategy in acute myeloid leukemia. Mol Ther 2024; 32:4058-4074. [PMID: 39369272 PMCID: PMC11573752 DOI: 10.1016/j.ymthe.2024.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/11/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024] Open
Abstract
Acute myeloid leukemia (AML) is a lethal hematologic malignancy. Chemotherapy resistance results in a dismal survival rate of 1-2 years in older adults with AML. Therefore, novel therapies are urgently required. In this context, microRNA (miRNA)-based treatments remain an untapped strategy in AML. Using patient-derived specimens, we found increased inflammatory cytokines, including interleukin-6 (IL-6) in the serum of older adults with AML, and decreased miR-497-5p in CD34+ leukemic blasts. Target prediction revealed that miR-497-5p could directly target mitogen-activated protein kinase-1 (MAP2K1) mRNA to indirectly target cytokines and the JAK/STAT signaling pathway through the p38-MAPK signaling pathway, potentially inhibiting leukemic growth and overcoming chemoresistance from venetoclax. To improve miRNA delivery and minimize off-target effects, which represent key barriers to clinical translation, we developed liposomes for co-delivery of miR-497-5p and venetoclax. We decorated our liposomes with a peptide targeting CLL1, which is present on 92% of leukemia blasts while being absent in normal hematopoietic cells. This targeted approach demonstrated high efficacy in inhibiting AML growth in mice with minimal toxicity, as well as reduced exposure to chemoresistance. Our findings suggested that anti-CLL1-decorated, miR-497-5p, and venetoclax-loaded liposomes represent a promising novel miRNA-based therapeutic, which should be investigated further as a strategy to reduce venetoclax resistance in AML.
Collapse
MESH Headings
- MicroRNAs/genetics
- MicroRNAs/administration & dosage
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Sulfonamides/pharmacology
- Sulfonamides/administration & dosage
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Liposomes
- Animals
- Mice
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/administration & dosage
- Disease Models, Animal
- Female
- Drug Resistance, Neoplasm/genetics
- Signal Transduction/drug effects
- Gene Expression Regulation, Leukemic/drug effects
- Male
Collapse
Affiliation(s)
- Qiaoyu Pan
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Xiaofei Xin
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sohan Mahto
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yuxiang Dong
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - R Katherine Hyde
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Neha Gupta
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vijaya R Bhatt
- Division of Hematology and Oncology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
5
|
Zhang Y, Ren J, Liao Z, Li X, Zhang C, Huang B, Cao Y, Chen J. Downregulating LKB1 in bone marrow mesenchymal stem cells could inhibit CD4 + T cell proliferation via the PD-1/PD-L1 signaling pathway. Immunobiology 2024; 229:152856. [PMID: 39369651 DOI: 10.1016/j.imbio.2024.152856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Our previous research has shown that LKB1 in amniotic mesenchymal stem cells (MSCs) serves as a vital regulator of regulatory T cell differentiation and T cell proliferation, which may have a similar role in bone marrow MSCs (BMMSCs). Therefore, we investigated the role of LKB1 in BMMSCs for regulating CD4+ T cell proliferation in the bone micro-environment of AML. METHODS RT-PCR was used to assessed LKB1 expression in BMMSCs derived from AML patients and healthy controls. Subsequently, LKB1 was knocked down in the BMMSCs line HS-5 (HS-5-LKB1KD). Co-cultures in vitro were established to analyze the effect of HS-5-LKB1KD on CD4+ T cell. Flow cytometry was employed to measure PD-L1 and CD4+ T cell proliferation levels. Western blot was utilized to detect related proteins. RESULTS The expression of LKB1 in BMMSCs derived from AML patients was decreased. Knockdown of LKB1 in HS-5 resulted in upregulation of PD-L1 expression. Co-culture of peripheral blood CD4+ T cell with HS-5-LKB1KD exhibited reduced CD4+ T cell proliferation compared to co-culture with HS-5-LKB1con. Furthermore, blocking PD-L1 in the co-culture conditions could restore the reduced CD4+ T cell proliferation. Additionally, it was found that upregulation of the Wnt signaling pathway-related proteins following LKB1 knockdown in HS-5, indicating that downregulating LKB1 could promote PD-L1 expression through activation of the Wnt signaling pathway. CONCLUSIONS The decreased expression of LKB1 in BMMSCs may activate the Wnt signaling pathway, leading to increased PD-L1 expression. This inhibited CD4+ T cell proliferation, which might lead to impaired anti-tumor immunity in AML patients and promote AML progression.
Collapse
Affiliation(s)
- Yaqin Zhang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou 350004, PR China
| | - Jingyi Ren
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou 350004, PR China
| | - Zhongxian Liao
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou 350004, PR China
| | - Xiaoyu Li
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou 350004, PR China
| | - Chunying Zhang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou 350004, PR China
| | - Bihan Huang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou 350004, PR China
| | - Yingping Cao
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou 350004, PR China.
| | - Jiadi Chen
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou 350004, PR China.
| |
Collapse
|
6
|
Shi X, Feng M, Nakada D. Metabolic dependencies of acute myeloid leukemia stem cells. Int J Hematol 2024; 120:427-438. [PMID: 38750343 PMCID: PMC11779507 DOI: 10.1007/s12185-024-03789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy primarily driven by an immature population of AML cells termed leukemia stem cells (LSCs) that are implicated in AML development, chemoresistance, and relapse. An emerging area of research in AML focuses on identifying and targeting the aberrant metabolism in LSCs. Dysregulated metabolism is involved in sustaining functional properties of LSCs, impeding myeloid differentiation, and evading programmed cell death, both in the process of leukemogenesis and in response to chemotherapy. This review discusses recent discoveries regarding the aberrant metabolic processes of AML LSCs that have begun to change the therapeutic landscape of AML.
Collapse
Affiliation(s)
- Xiangguo Shi
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | - Mengdie Feng
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Daisuke Nakada
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Xie F, Xu J, Yan L, Xiao X, Liu L. The AC010247.2/miR-125b-5p axis triggers the malignant progression of acute myelocytic leukemia by IL-6R. Heliyon 2024; 10:e37715. [PMID: 39315204 PMCID: PMC11417210 DOI: 10.1016/j.heliyon.2024.e37715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
AML is a malignant tumor derived from the hematopoietic system, which has a poor prognosis and its incidence is increasing recent years. LncRNAs bind to miRNAs as competitive endogenous RNAs to regulate the occurrence and progression of AML, with IL-6R playing a crucial role in hematological malignancies. However, the mechanism by which noncoding RNAs regulate IL6R expression in AML remains unclear. This study found that the AC010247.2/miR-125b-5p axis promotes AML progression by regulating IL-6R expression. Specifically, knocking down or inhibiting AC010247.2 and miR-125b-5p affected IL6R and its downstream genes. Mechanistically, AC010247.2 acts as a ceRNA for miR-125b-5p, influencing IL-6R expression. Additionally, AC010247.2's regulation of AML progression partially depends on miR-125b-5p. Notably, the AC010247.2/miR-125b-5p/IL6R axis serves as a better polygenic diagnostic marker for AML. Our study identifies a key ceRNA regulatory axis that modulates IL6R expression in AML, providing a reliable multigene diagnostic method and potential therapeutic target.
Collapse
Affiliation(s)
- Fang Xie
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, The Second Hospital of Dalian Medical University, Dalian, 116027, China
| | - Jialu Xu
- College of Biology, Hunan University, Changsha, China
| | - Lina Yan
- Department of Respiration, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Xia Xiao
- Department of Emergency ICU, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Liang Liu
- Department of Emergency ICU, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| |
Collapse
|
8
|
Hunzeker ZE, Zhao L, Kim AM, Parker JM, Zhu Z, Xiao H, Bai Q, Wakefield MR, Fang Y. The role of IL-22 in cancer. Med Oncol 2024; 41:240. [PMID: 39231878 DOI: 10.1007/s12032-024-02481-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024]
Abstract
Interleukin-22, discovered in the year of 2000, is a pleiotropic Th17 cytokine from the IL-10 family of cytokines. IL-22 signals through the type 2 cytokine receptor complex IL-22R and predominantly activates STAT3. This pathway leads to the transcription of several different types of genes, giving IL-22 context-specific functions ranging from inducing antimicrobial peptide expression to target cell proliferation. In recent years, it has been shown that IL-22 is involved in the pathogenesis of neoplasia in some cancers through its pro-proliferative and anti-apoptotic effects. This review highlights studies with recent discoveries and conclusions drawn on IL-22 and its involvement and function in various cancers. Such a study may be helpful to better understand the role of IL-22 in cancer so that new treatment could be developed targeting IL-22.
Collapse
Affiliation(s)
- Zachary E Hunzeker
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Department of Internal Medicine, University of Texas Houston Health Science Center, Houston, TX, USA
| | - Lei Zhao
- Department of Respiratory Medicine, the 2nd People's Hospital of Hefei and Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Austin M Kim
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
| | - Jacob M Parker
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
| | - Ziwen Zhu
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Huaping Xiao
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Qian Bai
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA.
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
| |
Collapse
|
9
|
Boët E, Saland E, Skuli S, Griessinger E, Sarry JE. [ Mitohormesis: a key driver of the therapy resistance in cancer cells]. C R Biol 2024; 347:59-75. [PMID: 39171610 DOI: 10.5802/crbiol.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 08/23/2024]
Abstract
A large body of literature highlights the importance of energy metabolism in the response of haematological malignancies to therapy. In this review, we are particularly interested in acute myeloid leukaemia, where mitochondrial metabolism plays a key role in response and resistance to treatment. We describe the new concept of mitohormesis in the response to therapy-induced stress and in the initiation of relapse in this disease.
Collapse
|
10
|
Wei D, Liang X, Huang M, Wang C, Ye Z, Zhang T, Zhang J. Targeting histone deacetylase 1 (HDAC1) in the bone marrow stromal cells revers imatinib resistance by modulating IL-6 in Ph + acute lymphoblastic leukemia. Ann Hematol 2024; 103:3015-3027. [PMID: 38847852 DOI: 10.1007/s00277-024-05830-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/31/2024] [Indexed: 07/28/2024]
Abstract
Bone marrow stromal cells (BMSCs) can promote the growth of Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL). Histone deacetylases (HDACs) play essential roles in the proliferation and apoptosis resistance of Ph + ALL cells. In our previous study, inhibiting histone deacetylase 1 (HDAC1) decreases the proliferation of Ph + ALL cells. However, little is known regarding how HDAC1 in BMSCs of Ph + ALL patients affects the imatinib (IM) resistance. Therefore, the present work examined the roles of HDAC1 in BMSCs. Overexpression of HDAC1 was found in BMSCs of Ph + ALL patients with IM resistance. In addition, the Ph + ALL cell line SUP-B15 was co-cultured with BMSCs after lentivirus transfection for regulating HDAC1 expression. Knockdown of HDAC1 within BMSCs elevated the IM-mediated SUP-B15 cell apoptosis, while increasing HDAC1 expression had an opposite effect. IL-6 in BMSCs, which is an important factor for the microenvironment-associated chemoresistance, showed evident up-regulation in HDAC1-upregulated BMSCs and down-regulation in HDAC1-downregulated BMSCs. While recombinant IL-6 (rIL-6) can reversed the sensitivity of SUP-B15 cells to IM induced by downregulating HDAC1 expression in BMSCs. HDAC1 showed positive regulation on IL-6 transcription and secretion. Moreover, IL-6 secretion induced by HDAC1 in BMSCs might enhance IM resistance in Ph + ALL cells. With regard to the underlying molecular mechanism, NF-κB, an important signal responsible for IL-6 transcription in BMSCs, mediated the HDAC1-regulated IL-6 expression. Collectively, this study facilitated to develop HDAC1 inhibitors based not only the corresponding direct anti-Ph + ALL activity but also the regulation of bone marrow microenvironment.
Collapse
Affiliation(s)
- Danna Wei
- Department of Pediatric Hematology, Guiyang Maternal and Child Health Care Hospital, Guiyang Children's Hospital, Guiyang, 550002, China
| | - Xiaoling Liang
- Department of Pediatric Hematology, Guiyang Maternal and Child Health Care Hospital, Guiyang Children's Hospital, Guiyang, 550002, China
| | - Meiling Huang
- Department of Pediatric Hematology, Guiyang Maternal and Child Health Care Hospital, Guiyang Children's Hospital, Guiyang, 550002, China
| | - Caili Wang
- Department of Pediatric Hematology, Guiyang Maternal and Child Health Care Hospital, Guiyang Children's Hospital, Guiyang, 550002, China
| | - Zhangmin Ye
- Department of Pediatric Hematology, Guiyang Maternal and Child Health Care Hospital, Guiyang Children's Hospital, Guiyang, 550002, China
| | - Tianzhuo Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Jingrong Zhang
- Department of Pediatric Hematology, Guiyang Maternal and Child Health Care Hospital, Guiyang Children's Hospital, Guiyang, 550002, China.
| |
Collapse
|
11
|
Xue Y, Friedl V, Ding H, Wong CK, Stuart JM. Single-cell signatures identify microenvironment factors in tumors associated with patient outcomes. CELL REPORTS METHODS 2024; 4:100799. [PMID: 38889686 PMCID: PMC11228369 DOI: 10.1016/j.crmeth.2024.100799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024]
Abstract
The cellular components of tumors and their microenvironment play pivotal roles in tumor progression, patient survival, and the response to cancer treatments. Unveiling a comprehensive cellular profile within bulk tumors via single-cell RNA sequencing (scRNA-seq) data is crucial, as it unveils intrinsic tumor cellular traits that elude identification through conventional cancer subtyping methods. Our contribution, scBeacon, is a tool that derives cell-type signatures by integrating and clustering multiple scRNA-seq datasets to extract signatures for deconvolving unrelated tumor datasets on bulk samples. Through the employment of scBeacon on the The Cancer Genome Atlas (TCGA) cohort, we find cellular and molecular attributes within specific tumor categories, many with patient outcome relevance. We developed a tumor cell-type map to visually depict the relationships among TCGA samples based on the cell-type inferences.
Collapse
Affiliation(s)
- Yuanqing Xue
- UC Santa Cruz Department, Biomolecular Engineering, Genomics Institute, Santa Cruz, CA, USA
| | - Verena Friedl
- UC Santa Cruz Department, Biomolecular Engineering, Genomics Institute, Santa Cruz, CA, USA
| | - Hongxu Ding
- UC Santa Cruz Department, Biomolecular Engineering, Genomics Institute, Santa Cruz, CA, USA
| | - Christopher K Wong
- UC Santa Cruz Department, Biomolecular Engineering, Genomics Institute, Santa Cruz, CA, USA
| | - Joshua M Stuart
- UC Santa Cruz Department, Biomolecular Engineering, Genomics Institute, Santa Cruz, CA, USA.
| |
Collapse
|
12
|
Zhou Q, Li Z, Xi Y. EV-mediated intercellular communication in acute myeloid leukemia: Transport of genetic materials in the bone marrow microenvironment. Exp Hematol 2024; 133:104175. [PMID: 38311165 DOI: 10.1016/j.exphem.2024.104175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024]
Abstract
Acute myeloid leukemia (AML) is a common hematological cancer. Cancer cells exchange information with the surrounding microenvironment, which can be transmitted by extracellular vesicles (EVs). In recent years, the genetic materials transported by EVs have attracted attention due to their important roles in different pathological processes. EV-derived ncRNAs (EV-ncRNAs) regulate physiological functions and maintain homeostasis, mainly including microRNAs, long noncoding RNAs, and circular RNAs. However, the mechanism of involvement and potential clinical application of EV-ncRNAs in AML have not been reported. Given the unique importance of the bone marrow microenvironment (BMME) for AML, a greater understanding of the communication between leukemic cells and the BMME is needed to improve the prognosis of patients and reduce the incidence of recurrence. Additionally, studies on leukemic EV-ncRNA transport guide the design of new diagnostic and therapeutic tools for AML. This review systematically describes intercellular communication in the BMME of AML and emphasizes the role of EVs. More importantly, we focus on the information transmission of EV-ncRNAs in the BMME to explore their clinical application as potential biomarkers and therapeutic targets.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Extracellular Vesicles/metabolism
- Extracellular Vesicles/genetics
- Cell Communication
- Tumor Microenvironment
- Bone Marrow/metabolism
- Bone Marrow/pathology
- Animals
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
Collapse
Affiliation(s)
- Qi Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Zijian Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China; Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yaming Xi
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China; Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
13
|
Mendes M, Monteiro AC, Neto E, Barrias CC, Sobrinho-Simões MA, Duarte D, Caires HR. Transforming the Niche: The Emerging Role of Extracellular Vesicles in Acute Myeloid Leukaemia Progression. Int J Mol Sci 2024; 25:4430. [PMID: 38674015 PMCID: PMC11050723 DOI: 10.3390/ijms25084430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Acute myeloid leukaemia (AML) management remains a significant challenge in oncology due to its low survival rates and high post-treatment relapse rates, mainly attributed to treatment-resistant leukaemic stem cells (LSCs) residing in bone marrow (BM) niches. This review offers an in-depth analysis of AML progression, highlighting the pivotal role of extracellular vesicles (EVs) in the dynamic remodelling of BM niche intercellular communication. We explore recent advancements elucidating the mechanisms through which EVs facilitate complex crosstalk, effectively promoting AML hallmarks and drug resistance. Adopting a temporal view, we chart the evolving landscape of EV-mediated interactions within the AML niche, underscoring the transformative potential of these insights for therapeutic intervention. Furthermore, the review discusses the emerging understanding of endothelial cell subsets' impact across BM niches in shaping AML disease progression, adding another layer of complexity to the disease progression and treatment resistance. We highlight the potential of cutting-edge methodologies, such as organ-on-chip (OoC) and single-EV analysis technologies, to provide unprecedented insights into AML-niche interactions in a human setting. Leveraging accumulated insights into AML EV signalling to reconfigure BM niches and pioneer novel approaches to decipher the EV signalling networks that fuel AML within the human context could revolutionise the development of niche-targeted therapy for leukaemia eradication.
Collapse
Affiliation(s)
- Manuel Mendes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana C. Monteiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Estrela Neto
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Cristina C. Barrias
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Manuel A. Sobrinho-Simões
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, 4200-135 Porto, Portugal
- Department of Clinical Haematology, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal
- Clinical Haematology, Department of Medicine, Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| | - Delfim Duarte
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
- Unit of Biochemistry, Department of Biomedicine, Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
- Department of Hematology and Bone Marrow Transplantation, Instituto Português de Oncologia (IPO)-Porto, 4200-072 Porto, Portugal
| | - Hugo R. Caires
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
| |
Collapse
|
14
|
de Jong MME, Chen L, Raaijmakers MHGP, Cupedo T. Bone marrow inflammation in haematological malignancies. Nat Rev Immunol 2024:10.1038/s41577-024-01003-x. [PMID: 38491073 DOI: 10.1038/s41577-024-01003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 03/18/2024]
Abstract
Tissue inflammation is a hallmark of tumour microenvironments. In the bone marrow, tumour-associated inflammation impacts normal niches for haematopoietic progenitor cells and mature immune cells and supports the outgrowth and survival of malignant cells residing in these niche compartments. This Review provides an overview of our current understanding of inflammatory changes in the bone marrow microenvironment of myeloid and lymphoid malignancies, using acute myeloid leukaemia and multiple myeloma as examples and highlights unique and shared features of inflammation in niches for progenitor cells and plasma cells. Importantly, inflammation exerts profoundly different effects on normal bone marrow niches in these malignancies, and we provide context for possible drivers of these divergent effects. We explore the role of tumour cells in inflammatory changes, as well as the role of cellular constituents of normal bone marrow niches, including myeloid cells and stromal cells. Integrating knowledge of disease-specific dynamics of malignancy-associated bone marrow inflammation will provide a necessary framework for future targeting of these processes to improve patient outcome.
Collapse
Affiliation(s)
- Madelon M E de Jong
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Lanpeng Chen
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Tom Cupedo
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| |
Collapse
|
15
|
Miari KE, Williams MTS. Stromal bone marrow fibroblasts and mesenchymal stem cells support acute myeloid leukaemia cells and promote therapy resistance. Br J Pharmacol 2024; 181:216-237. [PMID: 36609915 DOI: 10.1111/bph.16028] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 09/13/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
The bone marrow (BM) is the primary site of adult haematopoiesis, where stromal elements (e.g. fibroblasts and mesenchymal stem cells [MSCs]) work in concert to support blood cell development. However, the establishment of an abnormal clone can lead to a blood malignancy, such as acute myeloid leukaemia (AML). Despite our increased understanding of the pathophysiology of the disease, patient survival remains suboptimal, mainly driven by the development of therapy resistance. In this review, we highlight the importance of bone marrow fibroblasts and MSCs in health and acute myeloid leukaemia and their impact on patient prognosis. We discuss how stromal elements reduce the killing effects of therapies via a combination of contact-dependent (e.g. integrins) and contact-independent (i.e. secreted factors) mechanisms, accompanied by the establishment of an immunosuppressive microenvironment. Importantly, we underline the challenges of therapeutically targeting the bone marrow stroma to improve acute myeloid leukaemia patient outcomes, due to the inherent heterogeneity of stromal cell populations. LINKED ARTICLES: This article is part of a themed issue on Cancer Microenvironment and Pharmacological Interventions. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.2/issuetoc.
Collapse
Affiliation(s)
- Katerina E Miari
- Charles Oakley Laboratories, Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Mark T S Williams
- Charles Oakley Laboratories, Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| |
Collapse
|
16
|
Hou D, Zheng X, Cai D, You R, Liu J, Wang X, Liao X, Tan M, Lin L, Wang J, Zhang S, Huang H. Interleukin-6 Facilitates Acute Myeloid Leukemia Chemoresistance via Mitofusin 1-Mediated Mitochondrial Fusion. Mol Cancer Res 2023; 21:1366-1378. [PMID: 37698549 DOI: 10.1158/1541-7786.mcr-23-0382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/28/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
Acute myeloid leukemia (AML), an aggressive hematopoietic malignancy, exhibits poor prognosis and a high recurrence rate largely because of primary and secondary drug resistance. Elevated serum IL6 levels have been observed in patients with AML and are associated with chemoresistance. Chemoresistant AML cells are highly dependent on oxidative phosphorylation (OXPHOS), and mitochondrial network remodeling is essential for mitochondrial function. However, IL6-mediated regulation of mitochondrial remodeling and its effectiveness as a therapeutic target remain unclear. We aimed to determine the mechanisms through which IL6 facilitates the development of chemoresistance in AML cells. IL6 upregulated mitofusin 1 (MFN1)-mediated mitochondrial fusion, promoted OXPHOS, and induced chemoresistance in AML cells. MFN1 knockdown impaired the effects of IL6 on mitochondrial function and chemoresistance in AML cells. In an MLL::AF9 fusion gene-induced AML mouse model, IL6 reduced chemosensitivity to cytarabine (Ara-C), a commonly used antileukemia drug, accompanied by increased MFN1 expression, mitochondrial fusion, and OXPHOS status. In contrast, anti-IL6 antibodies downregulated MFN1 expression, suppressed mitochondrial fusion and OXPHOS, enhanced the curative effects of Ara-C, and prolonged overall survival. In conclusion, IL6 upregulated MFN1-mediated mitochondrial fusion in AML, which facilitated mitochondrial respiration, in turn, inducing chemoresistance. Thus, targeting IL6 may have therapeutic implications in overcoming IL6-mediated chemoresistance in AML. IMPLICATIONS IL6 treatment induces MFN1-mediated mitochondrial fusion, promotes OXPHOS, and confers chemoresistance in AML cells. Targeting IL6 regulation in mitochondria is a promising therapeutic strategy to enhance the chemosensitivity of AML.
Collapse
Affiliation(s)
- Diyu Hou
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoming Zheng
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Danni Cai
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ruolan You
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jingru Liu
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoting Wang
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xinai Liao
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Maoqing Tan
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Liyan Lin
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jin Wang
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shuxia Zhang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Huifang Huang
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
17
|
Gu M, Jin Y, Gao X, Xia W, Xu T, Pan S. Novel insights into IL-37: an anti-inflammatory cytokine with emerging roles in anti-cancer process. Front Immunol 2023; 14:1278521. [PMID: 37928545 PMCID: PMC10623001 DOI: 10.3389/fimmu.2023.1278521] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Interleukin-37 (IL-37) is a newly discovered member of IL-1 family. The cytokine was proved to have extensive protective effects in infectious diseases, allergic diseases, metabolic diseases, autoimmune diseases and tumors since its discovery. IL-37 was mainly produced by immune and some non-immune cells in response to inflammatory stimulus. The IL-37 precursors can convert into the mature forms after caspase-1 cleavage and activation intracellularly, and then bind to Smad-3 and transfer to the nucleus to inhibit the production and functions of proinflammatory cytokines; extracellularly, IL-37 binds to cell surface receptors to form IL-37/IL-18Rα/IL-1R8 complex to exert immunosuppressive function via inhibiting/activating multiple signal pathways. In addition, IL-37 can attenuate the pro-inflammatory effect of IL-18 through directly or forming an IL-37/IL-18BP/IL-18Rβ complex. Therefore, IL-37 has the ability to suppress innate and acquired immunity of the host, and effectively control inflammatory stimulation, which was considered as a new hallmark of cancer. Specifically, it is concluded that IL-37 can inhibit the growth and migration of tumor cells, prohibit angiogenesis and mediate the immunoregulation in tumor microenvironment, so as to exert effective anti-tumor effects. Importantly, latest studies also showed that IL-37 may be a novel therapeutic target for cancer monitoring. In this review, we summarize the immunoregulation roles and mechanisms of IL-37 in anti-tumor process, and discuss its progress so far and potential as tumor immunotherapy.
Collapse
Affiliation(s)
- Min Gu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Yuexinzi Jin
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Xun Gao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Wenying Xia
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Ting Xu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Shiyang Pan
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| |
Collapse
|
18
|
Pendse S, Chavan S, Kale V, Vaidya A. A comprehensive analysis of cell-autonomous and non-cell-autonomous regulation of myeloid leukemic cells: The prospect of developing novel niche-targeting therapies. Cell Biol Int 2023; 47:1667-1683. [PMID: 37554060 DOI: 10.1002/cbin.12078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 08/10/2023]
Abstract
Leukemic cells (LCs) arise from the hematopoietic stem/and progenitor cells (HSCs/HSPCs) and utilize cues from the bone marrow microenvironment (BMM) for their regulation in the same way as their normal HSC counterparts. Mesenchymal stromal cells (MSCs), a vital component of the BMM promote leukemogenesis by creating a protective and immune-tolerant microenvironment that can support the survival of LCs, helping them escape chemotherapy, thereby resulting in the relapse of leukemia. Conversely, MSCs also induce apoptosis in the LCs and inhibit their proliferation by interfering with their self-renewal potential. This review discusses the work done so far on cell-autonomous (intrinsic) and MSCs-mediated non-cell-autonomous (extrinsic) regulation of myeloid leukemia with a special focus on the need to investigate the extrinsic regulation of myeloid leukemia to understand the contrasting role of MSCs in leukemogenesis. These mechanisms could be exploited to formulate novel therapeutic strategies that specifically target the leukemic microenvironment.
Collapse
Affiliation(s)
- Shalmali Pendse
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra, India
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, Maharashtra, India
| | - Sayali Chavan
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra, India
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, Maharashtra, India
| | - Vaijayanti Kale
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra, India
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, Maharashtra, India
| | - Anuradha Vaidya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra, India
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, Maharashtra, India
| |
Collapse
|
19
|
Sharma P, Borthakur G. Targeting metabolic vulnerabilities to overcome resistance to therapy in acute myeloid leukemia. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:567-589. [PMID: 37842232 PMCID: PMC10571063 DOI: 10.20517/cdr.2023.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/07/2023] [Accepted: 07/22/2023] [Indexed: 10/17/2023]
Abstract
Malignant hematopoietic cells gain metabolic plasticity, reorganize anabolic mechanisms to improve anabolic output and prevent oxidative damage, and bypass cell cycle checkpoints, eventually outcompeting normal hematopoietic cells. Current therapeutic strategies of acute myeloid leukemia (AML) are based on prognostic stratification that includes mutation profile as the closest surrogate to disease biology. Clinical efficacy of targeted therapies, e.g., agents targeting mutant FMS-like tyrosine kinase 3 (FLT3) and isocitrate dehydrogenase 1 or 2, are mostly limited to the presence of relevant mutations. Recent studies have not only demonstrated that specific mutations in AML create metabolic vulnerabilities but also highlighted the efficacy of targeting metabolic vulnerabilities in combination with inhibitors of these mutations. Therefore, delineating the functional relationships between genetic stratification, metabolic dependencies, and response to specific inhibitors of these vulnerabilities is crucial for identifying more effective therapeutic regimens, understanding resistance mechanisms, and identifying early response markers, ultimately improving the likelihood of cure. In addition, metabolic changes occurring in the tumor microenvironment have also been reported as therapeutic targets. The metabolic profiles of leukemia stem cells (LSCs) differ, and relapsed/refractory LSCs switch to alternative metabolic pathways, fueling oxidative phosphorylation (OXPHOS), rendering them therapeutically resistant. In this review, we discuss the role of cancer metabolic pathways that contribute to the metabolic plasticity of AML and confer resistance to standard therapy; we also highlight the latest promising developments in the field in translating these important findings to the clinic and discuss the tumor microenvironment that supports metabolic plasticity and interplay with AML cells.
Collapse
Affiliation(s)
| | - Gautam Borthakur
- Department of Leukemia, Section of Molecular Hematology and Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
20
|
Wang Y, Tang X, Zhu Y, Yang XX, Liu B. Role of interleukins in acute myeloid leukemia. Leuk Lymphoma 2023; 64:1400-1413. [PMID: 37259867 DOI: 10.1080/10428194.2023.2218508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy with strong heterogeneity. Immune disorders are a feature of various malignancies, including AML. Interleukins (ILs) and other cytokines participate in a series of biological processes of immune disorders in the microenvironment, and serve as a bridge for communication between various cellular components in the immune system. The role of ILs in AML is complex and pleiotropic. It can not only play an anti-AML role by enhancing anti-leukemia immunity and directly inducing AML cell apoptosis, but also promote the growth, proliferation and drug resistance of AML. These properties of ILs can be used to explore their potential efficacy in disease monitoring, prognosis assessment, and development of new treatment strategies for AML. This review aims to clarify some of the complex roles of ILs in AML and their clinical applications.
Collapse
Affiliation(s)
- Yin Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiao Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yu Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiao-Xiao Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Bei Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Hematology, The First Affiliated Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
21
|
Stevens AM, Schafer ES, Li M, Terrell M, Rashid R, Paek H, Bernhardt MB, Weisnicht A, Smith WT, Keogh NJ, Alozie MC, Oviedo HH, Gonzalez AK, Ilangovan T, Mangubat-Medina A, Wang H, Jo E, Rabik CA, Bocchini C, Hilsenbeck S, Ball ZT, Cooper TM, Redell MS. Repurposing Atovaquone as a Therapeutic against Acute Myeloid Leukemia (AML): Combination with Conventional Chemotherapy Is Feasible and Well Tolerated. Cancers (Basel) 2023; 15:cancers15041344. [PMID: 36831684 PMCID: PMC9954468 DOI: 10.3390/cancers15041344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Survival of pediatric AML remains poor despite maximized myelosuppressive therapy. The pneumocystis jiroveci pneumonia (PJP)-treating medication atovaquone (AQ) suppresses oxidative phosphorylation (OXPHOS) and reduces AML burden in patient-derived xenograft (PDX) mouse models, making it an ideal concomitant AML therapy. Poor palatability and limited product formulations have historically limited routine use of AQ in pediatric AML patients. Patients with de novo AML were enrolled at two hospitals. Daily AQ at established PJP dosing was combined with standard AML therapy, based on the Medical Research Council backbone. AQ compliance, adverse events (AEs), ease of administration score (scale: 1 (very difficult)-5 (very easy)) and blood/marrow pharmacokinetics (PK) were collected during Induction 1. Correlative studies assessed AQ-induced apoptosis and effects on OXPHOS. PDX models were treated with AQ. A total of 26 patients enrolled (ages 7.2 months-19.7 years, median 12 years); 24 were evaluable. A total of 14 (58%) and 19 (79%) evaluable patients achieved plasma concentrations above the known anti-leukemia concentration (>10 µM) by day 11 and at the end of Induction, respectively. Seven (29%) patients achieved adequate concentrations for PJP prophylaxis (>40 µM). Mean ease of administration score was 3.8. Correlative studies with AQ in patient samples demonstrated robust apoptosis, OXPHOS suppression, and prolonged survival in PDX models. Combining AQ with chemotherapy for AML appears feasible and safe in pediatric patients during Induction 1 and shows single-agent anti-leukemic effects in PDX models. AQ appears to be an ideal concomitant AML therapeutic but may require intra-patient dose adjustment to achieve concentrations sufficient for PJP prophylaxis.
Collapse
Affiliation(s)
- Alexandra McLean Stevens
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-(832)-824-4824; Fax: +1-(832)-825-1206
| | - Eric S. Schafer
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Minhua Li
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maci Terrell
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Raushan Rashid
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hana Paek
- Department of Pharmacy, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Melanie B. Bernhardt
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Allison Weisnicht
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wesley T. Smith
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Noah J. Keogh
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michelle C. Alozie
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hailey H. Oviedo
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alan K. Gonzalez
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tamilini Ilangovan
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Haopei Wang
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Eunji Jo
- Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cara A. Rabik
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Claire Bocchini
- Department of Pediatric Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Susan Hilsenbeck
- Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zachary T. Ball
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Todd M. Cooper
- Cancer and Blood Disorders Center, Seattle Children’s Hospital, Seattle, WA 98105, USA
| | - Michele S. Redell
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
22
|
Skelding KA, Barry DL, Theron DZ, Lincz LF. Bone Marrow Microenvironment as a Source of New Drug Targets for the Treatment of Acute Myeloid Leukaemia. Int J Mol Sci 2022; 24:563. [PMID: 36614005 PMCID: PMC9820412 DOI: 10.3390/ijms24010563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Acute myeloid leukaemia (AML) is a heterogeneous disease with one of the worst survival rates of all cancers. The bone marrow microenvironment is increasingly being recognised as an important mediator of AML chemoresistance and relapse, supporting leukaemia stem cell survival through interactions among stromal, haematopoietic progenitor and leukaemic cells. Traditional therapies targeting leukaemic cells have failed to improve long term survival rates, and as such, the bone marrow niche has become a promising new source of potential therapeutic targets, particularly for relapsed and refractory AML. This review briefly discusses the role of the bone marrow microenvironment in AML development and progression, and as a source of novel therapeutic targets for AML. The main focus of this review is on drugs that modulate/target this bone marrow microenvironment and have been examined in in vivo models or clinically.
Collapse
Affiliation(s)
- Kathryn A. Skelding
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Daniel L. Barry
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Danielle Z. Theron
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Lisa F. Lincz
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Hunter Hematology Research Group, Calvary Mater Newcastle Hospital, Waratah, NSW 2298, Australia
| |
Collapse
|
23
|
Bolouri H, Ries RE, Wiedeman AE, Hylkema T, Scheiding S, Gersuk VH, O'Brien K, Nguyen QA, Smith JL, Alice Long S, Meshinchi S. Inflammatory bone marrow signaling in pediatric acute myeloid leukemia distinguishes patients with poor outcomes. Nat Commun 2022; 13:7186. [PMID: 36418348 PMCID: PMC9684530 DOI: 10.1038/s41467-022-34965-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
High levels of the inflammatory cytokine IL-6 in the bone marrow are associated with poor outcomes in pediatric acute myeloid leukemia (pAML), but its etiology remains unknown. Using RNA-seq data from pre-treatment bone marrows of 1489 children with pAML, we show that > 20% of patients have concurrent IL-6, IL-1, IFNα/β, and TNFα signaling activity and poorer outcomes. Targeted sequencing of pre-treatment bone marrow samples from affected patients (n = 181) revealed 5 highly recurrent patterns of somatic mutation. Using differential expression analyses of the most common genomic subtypes (~60% of total), we identify high expression of multiple potential drivers of inflammation-related treatment resistance. Regardless of genomic subtype, we show that JAK1/2 inhibition reduces receptor-mediated inflammatory signaling by leukemic cells in-vitro. The large number of high-risk pAML genomic subtypes presents an obstacle to the development of mutation-specific therapies. Our findings suggest that therapies targeting inflammatory signaling may be effective across multiple genomic subtypes of pAML.
Collapse
Affiliation(s)
- Hamid Bolouri
- Center for Systems Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA.
| | - Rhonda E Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
| | - Alice E Wiedeman
- Center for Translational Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Tiffany Hylkema
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
| | - Sheila Scheiding
- Center for Translational Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Vivian H Gersuk
- Center for Systems Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Kimberly O'Brien
- Center for Systems Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Quynh-Anh Nguyen
- Center for Systems Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Jenny L Smith
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
- Research Scientific Computing, Seattle Children's Research Institute, 818 Stewart Street, Seattle, WA, USA
| | - S Alice Long
- Center for Translational Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA.
| |
Collapse
|
24
|
Rationale for Combining the BCL2 Inhibitor Venetoclax with the PI3K Inhibitor Bimiralisib in the Treatment of IDH2- and FLT3-Mutated Acute Myeloid Leukemia. Int J Mol Sci 2022; 23:ijms232012587. [PMID: 36293442 PMCID: PMC9604078 DOI: 10.3390/ijms232012587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/04/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022] Open
Abstract
In October 2020, the FDA granted regular approval to venetoclax (ABT-199) in combination with hypomethylating agents for newly-diagnosed acute myeloid leukemia (AML) in adults 75 years or older, or in patients with comorbidities precluding intensive chemotherapy. The treatment response to venetoclax combination treatment, however, may be short-lived, and leukemia relapse is the major cause of treatment failure. Multiple studies have confirmed the upregulation of the anti-apoptotic proteins of the B-cell lymphoma 2 (BCL2) family and the activation of intracellular signaling pathways associated with resistance to venetoclax. To improve treatment outcome, compounds targeting anti-apoptotic proteins and signaling pathways have been evaluated in combination with venetoclax. In this study, the BCL-XL inhibitor A1331852, MCL1-inhibitor S63845, dual PI3K-mTOR inhibitor bimiralisib (PQR309), BMI-1 inhibitor unesbulin (PTC596), MEK-inhibitor trametinib (GSK1120212), and STAT3 inhibitor C-188-9 were assessed as single agents and in combination with venetoclax, for their ability to induce apoptosis and cell death in leukemic cells grown in the absence or presence of bone marrow stroma. Enhanced cytotoxic effects were present in all combination treatments with venetoclax in AML cell lines and AML patient samples. Elevated in vitro efficacies were observed for the combination treatment of venetoclax with A1331852, S63845 and bimiralisib, with differing response markers for each combination. For the venetoclax and bimiralisib combination treatment, responders were enriched for IDH2 and FLT3 mutations, whereas non-responders were associated with PTPN11 mutations. The combination of PI3K/mTOR dual pathway inhibition with bimiralisib and BCL2 inhibition with venetoclax has emerged as a candidate treatment in IDH2- and FLT3-mutated AML.
Collapse
|
25
|
Luciano M, Krenn PW, Horejs-Hoeck J. The cytokine network in acute myeloid leukemia. Front Immunol 2022; 13:1000996. [PMID: 36248849 PMCID: PMC9554002 DOI: 10.3389/fimmu.2022.1000996] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous malignancy of the blood and bone marrow, characterized by clonal expansion of myeloid stem and progenitor cells and rapid disease progression. Chemotherapy has been the first-line treatment for AML for more than 30 years. Application of recent high-throughput next-generation sequencing technologies has revealed significant molecular heterogeneity to AML, which in turn has motivated efforts to develop new, targeted therapies. However, due to the high complexity of this disease, including multiple driver mutations and the coexistence of multiple competing tumorigenic clones, the successful incorporation of these new agents into clinical practice remains challenging. These continuing difficulties call for the identification of innovative therapeutic approaches that are effective for a larger cohort of AML patients. Recent studies suggest that chronic immune stimulation and aberrant cytokine signaling act as triggers for AML initiation and progression, facets of the disease which might be exploited as promising targets in AML treatment. However, despite the greater appreciation of cytokine profiles in AML, the exact functions of cytokines in AML pathogenesis are not fully understood. Therefore, unravelling the molecular basis of the complex cytokine networks in AML is a prerequisite to develop new therapeutic alternatives based on targeting cytokines and their receptors.
Collapse
Affiliation(s)
- Michela Luciano
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Peter W. Krenn
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| |
Collapse
|
26
|
Díaz-Beyá M, García-Fortes M, Valls R, Artigas L, Gómez-Casares MT, Montesinos P, Sánchez-Guijo F, Coma M, Vendranes M, Martínez-López J. A Systems Biology- and Machine Learning-Based Study to Unravel Potential Therapeutic Mechanisms of Midostaurin as a Multitarget Therapy on FLT3-Mutated AML. BIOMEDINFORMATICS 2022; 2:375-397. [DOI: 10.3390/biomedinformatics2030024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Acute myeloid leukemia (AML), a hematologic malignancy that results in bone marrow failure, is the most common acute leukemia in adults. The presence of FMS-related tyrosine kinase 3 (FLT3) mutations is associated with a poor prognosis, making the evaluation of FLT3-inhibitors an imperative goal in clinical trials. Midostaurin was the first FLT3-inhibitor approved by the FDA and EMA for the treatment of FLT3-mutated AML, and it showed a significant improvement in overall survival for newly diagnosed patients treated with midostaurin, in combination with standard chemotherapy (RATIFY study). The main interest of midostaurin has been the FLT3-specific inhibition, but little is known about its role as a multikinase inhibitor and whether it may be used in relapse and maintenance therapy. Here, we used systems biology- and machine learning-based approaches to deepen the potential benefits of the multitarget activity of midostaurin and to better understand its anti-leukemic effect on FLT3-mutated AML. The resulting in silico study revealed that the multikinase activity of midostaurin may play a role in the treatment’s efficacy. Additionally, we propose a series of molecular mechanisms that support a potential benefit of midostaurin as a maintenance therapy in FLT3-mutated AML, by regulating the microenvironment. The obtained results are backed up using independent gene expression data.
Collapse
Affiliation(s)
- Marina Díaz-Beyá
- Department of Hematology, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Myeloid Neoplasms Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - María García-Fortes
- Hematology Department, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Raquel Valls
- Molecular Health Department, Anaxomics Biotech SL, 08007 Barcelona, Spain
| | - Laura Artigas
- Molecular Health Department, Anaxomics Biotech SL, 08007 Barcelona, Spain
| | - Mª Teresa Gómez-Casares
- Hematology Service, Hospital Universitario Insular Materno-Infantil, 35016 Las Palmas de Gran Canaria, Spain
| | - Pau Montesinos
- Departament of Hematology, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | - Fermín Sánchez-Guijo
- Cancer Research Center (CIC), Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Mireia Coma
- Molecular Health Department, Anaxomics Biotech SL, 08007 Barcelona, Spain
| | | | - Joaquín Martínez-López
- Hospital 12 de Octubre. Universidad Complutense. CNIO. Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Instituto Carlos III, 28041 Madrid, Spain
| |
Collapse
|
27
|
Zhang Y, Guo H, Zhang Z, Lu W, Zhu J, Shi J. IL-6 promotes chemoresistance via upregulating CD36 mediated fatty acids uptake in acute myeloid leukemia. Exp Cell Res 2022; 415:113112. [DOI: 10.1016/j.yexcr.2022.113112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 11/04/2022]
|
28
|
Metformin sensitizes AML cells to chemotherapy through blocking mitochondrial transfer from stromal cells to AML cells. Cancer Lett 2022; 532:215582. [PMID: 35122876 DOI: 10.1016/j.canlet.2022.215582] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
Abstract
Interaction between stromal cells and acute myeloid leukemia (AML) cells in bone marrow (BM) is known to contribute importantly to chemoresistance and disease recurrence. Therefore, disruption of a crosstalk between AML cells and BM microenvironment may offer a promising therapeutic strategy for AML treatment. Here, we demonstrate that in a niche-like co-culture system, AML cells took up functional mitochondria from bone marrow stromal cells (BMSCs) and inhibition of such mitochondrial transfer by metformin, the most commonly prescribed drug for type 2 diabetes mellitus, significantly enhanced the chemosensitivity of AML cells co-cultured with BMSCs. The chemo-sensitizing effect of metformin was acted through reducing the mitochondrial transfer and mitochondrial oxidative phosphorylation (OXPHOS) in the recipient AML cells. In addition, metformin potentiated the antitumor efficacy of cytarabine (Ara-C) in vivo in an NCG immunodeficient mouse xenograft model by inhibiting the mitochondrial transfer and OXPHOS activity in the engrafted human AML cells. Altogether, this study identifies a potential application of metformin in sensitizing AML cells to chemotherapy and unveils a novel mechanism by which metformin executes such effect via blocking the mitochondrial transfer from stromal cells to AML cells.
Collapse
|
29
|
Clar KL, Weber LM, Schmied BJ, Heitmann JS, Marconato M, Tandler C, Schneider P, Salih HR. Receptor Activator of NF-κB (RANK) Confers Resistance to Chemotherapy in AML and Associates with Dismal Disease Course. Cancers (Basel) 2021; 13:cancers13236122. [PMID: 34885231 PMCID: PMC8657109 DOI: 10.3390/cancers13236122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/19/2022] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults. Despite the emergence of new therapeutic agents in recent years, curation remains challenging, and new and better treatment options are needed. In the present study, we investigated the expression, prognostic significance, and functional role of the Receptor Activator of Nuclear Factor-κB (RANK) in AML. We found that RANK is expressed on leukemic cells in a substantial proportion of AML patients and is associated with a dismal disease course. We further demonstrated that signaling via RANK induces release of factors that favor AML cell survival and confers resistance to chemotherapeutics in AML treatment. Together, our findings identify RANK as novel prognostic marker and putative candidate for therapeutic intervention in AML to enhance response to treatment. Abstract Although treatment options of acute myeloid leukemia (AML) have improved over the recent years, prognosis remains poor. Better understanding of the molecular mechanisms influencing and predicting treatment efficacy may improve disease control and outcome. Here we studied the expression, prognostic relevance and functional role of the tumor necrosis factor receptor (TNFR) family member Receptor Activator of Nuclear Factor (NF)-κB (RANK) in AML. We conducted an experimental ex vivo study using leukemic cells of 54 AML patients. Substantial surface expression of RANK was detected on primary AML cells in 35% of the analyzed patients. We further found that RANK signaling induced the release of cytokines acting as growth and survival factors for the leukemic cells and mediated resistance of AML cells to treatment with doxorubicin and cytarabine, the most commonly used cytostatic compounds in AML treatment. In line, RANK expression correlated with a dismal disease course as revealed by reduced overall survival. Together, our results show that RANK plays a yet unrecognized role in AML pathophysiology and resistance to treatment, and identify RANK as “functional” prognostic marker in AML. Therapeutic modulation of RANK holds promise to improve treatment response in AML patients.
Collapse
Affiliation(s)
- Kim L. Clar
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Department of Internal Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany; (K.L.C.); (L.M.W.); (B.J.S.); (J.S.H.); (M.M.); (C.T.)
- DFG Cluster of Excellence 2180 “Image-Guided and Functional Instructed Tumor Therapy (iFIT)”, University of Tuebingen, 72076 Tuebingen, Germany
| | - Lisa M. Weber
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Department of Internal Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany; (K.L.C.); (L.M.W.); (B.J.S.); (J.S.H.); (M.M.); (C.T.)
- DFG Cluster of Excellence 2180 “Image-Guided and Functional Instructed Tumor Therapy (iFIT)”, University of Tuebingen, 72076 Tuebingen, Germany
| | - Bastian J. Schmied
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Department of Internal Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany; (K.L.C.); (L.M.W.); (B.J.S.); (J.S.H.); (M.M.); (C.T.)
- DFG Cluster of Excellence 2180 “Image-Guided and Functional Instructed Tumor Therapy (iFIT)”, University of Tuebingen, 72076 Tuebingen, Germany
| | - Jonas S. Heitmann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Department of Internal Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany; (K.L.C.); (L.M.W.); (B.J.S.); (J.S.H.); (M.M.); (C.T.)
- DFG Cluster of Excellence 2180 “Image-Guided and Functional Instructed Tumor Therapy (iFIT)”, University of Tuebingen, 72076 Tuebingen, Germany
| | - Maddalena Marconato
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Department of Internal Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany; (K.L.C.); (L.M.W.); (B.J.S.); (J.S.H.); (M.M.); (C.T.)
| | - Claudia Tandler
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Department of Internal Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany; (K.L.C.); (L.M.W.); (B.J.S.); (J.S.H.); (M.M.); (C.T.)
- DFG Cluster of Excellence 2180 “Image-Guided and Functional Instructed Tumor Therapy (iFIT)”, University of Tuebingen, 72076 Tuebingen, Germany
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland;
| | - Helmut R. Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Department of Internal Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany; (K.L.C.); (L.M.W.); (B.J.S.); (J.S.H.); (M.M.); (C.T.)
- DFG Cluster of Excellence 2180 “Image-Guided and Functional Instructed Tumor Therapy (iFIT)”, University of Tuebingen, 72076 Tuebingen, Germany
- Correspondence: ; Tel.: +49-7071-29-83275
| |
Collapse
|
30
|
Chashchina A, Märklin M, Hinterleitner C, Salih HR, Heitmann JS, Klimovich B. DNAM-1/CD226 is functionally expressed on acute myeloid leukemia (AML) cells and is associated with favorable prognosis. Sci Rep 2021; 11:18012. [PMID: 34504191 PMCID: PMC8429762 DOI: 10.1038/s41598-021-97400-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/20/2021] [Indexed: 11/09/2022] Open
Abstract
DNAM-1 is reportedly expressed on cytotoxic T and NK cells and, upon interaction with its ligands CD112 and CD155, plays an important role in tumor immunosurveillance. It has also been reported to be functionally expressed by myeloid cells, but expression and function on malignant cells of the myeloid lineage have not been studied so far. Here we analyzed expression of DNAM-1 in leukemic cells of acute myeloid leukemia (AML) patients. We found substantial levels of DNAM-1 to be expressed on leukemic blasts in 48 of 62 (> 75%) patients. Interaction of DNAM-1 with its ligands CD112 and CD155 induced release of the immunomodulatory cytokines IL-6, IL-8 IL-10 and TNF-α by AML cells and DNAM-1 expression correlated with a more differentiated phenotype. Multivariate analysis did not show any association of DNAM-1 positivity with established risk factors, but expression was significantly associated with clinical disease course: patients with high DNAM-1 surface levels had significantly longer progression-free and overall survival compared to DNAM-1low patients, independently whether patients had undergone allogenic stem cell transplantation or not. Together, our findings unravel a functional role of DNAM-1 in AML pathophysiology and identify DNAM-1 as a potential novel prognostic maker in AML.
Collapse
Affiliation(s)
- Anna Chashchina
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) Department of Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany.,DFG Cluster of Excellence 2180 "Image-Guided and Functional Instructed Tumor Therapy (iFIT)", 72076, Tübingen, Germany
| | - Melanie Märklin
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) Department of Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany.,DFG Cluster of Excellence 2180 "Image-Guided and Functional Instructed Tumor Therapy (iFIT)", 72076, Tübingen, Germany
| | - Clemens Hinterleitner
- DFG Cluster of Excellence 2180 "Image-Guided and Functional Instructed Tumor Therapy (iFIT)", 72076, Tübingen, Germany.,Department of Medical Oncology and Pulmonology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) Department of Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany.,DFG Cluster of Excellence 2180 "Image-Guided and Functional Instructed Tumor Therapy (iFIT)", 72076, Tübingen, Germany
| | - Jonas S Heitmann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) Department of Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany. .,DFG Cluster of Excellence 2180 "Image-Guided and Functional Instructed Tumor Therapy (iFIT)", 72076, Tübingen, Germany.
| | - Boris Klimovich
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) Department of Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany.,DFG Cluster of Excellence 2180 "Image-Guided and Functional Instructed Tumor Therapy (iFIT)", 72076, Tübingen, Germany
| |
Collapse
|
31
|
Mihaila RG, Topircean D. The high-performance technology CRISPR/Cas9 improves knowledge and management of acute myeloid leukemia. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2021; 165:249-257. [PMID: 34446939 DOI: 10.5507/bp.2021.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022] Open
Abstract
Knowledge on acute myeloid leukemia pathogenesis and treatment has progressed recently, but not enough to provide ideal management. Improving the prognosis of acute myeloid leukemia patients depends on advances in molecular biology for the detection of new therapeutic targets and the production of effective drugs. The CRISPR/Cas9 technology allows gene insertions and deletions and it is the first step in investigating the function of their encoded proteins. Thus, new experimental models have been developed and progress has been made in understanding protein metabolism, antitumor activity, leukemic cell maintenance, differentiation, growth, apoptosis, and self-renewal, the combined pathogenetic mechanisms involved in leukemogenesis. The CRISPR/Cas9 system is used to understand drug resistance and find solutions to overcome it. The therapeutic progress achieved using the CRISPR/Cas9 system is remarkable. FST gene removal inhibited acute myeloid leukemia cell growth. Lysine acetyltransferase gene deletion contributed to decreased proliferation rate, increased apoptosis, and favored differentiation of acute myelid leukemia cells carrying MLL-X gene fusions. The removal of CD38 gene from NK cells decreased NK fratricidal cells contributing to increased efficacy of new CD38 CAR-NK cells to target leukemic blasts. BCL2 knockout has synergistic effects with FLT3 inhibitors. Exportin 1 knockout is synergistic with midostaurin treatment in acute myeloid leukemia with FLT3-ITD mutation. Using the results of CRISPR/Cas9 libraries and technology application will allow us to get closer to achieving the goal of curing acute myeloid leukemia in the coming decades.
Collapse
Affiliation(s)
- Romeo Gabriel Mihaila
- Faculty of Medicine, "Lucian Blaga" University of Sibiu, Romania.,Department of Hematology, Emergency County Clinical Hospital Sibiu, Romania
| | - Diana Topircean
- Department of Hematology, Emergency County Clinical Hospital Sibiu, Romania
| |
Collapse
|
32
|
Seipel K, Graber C, Flückiger L, Bacher U, Pabst T. Rationale for a Combination Therapy with the STAT5 Inhibitor AC-4-130 and the MCL1 Inhibitor S63845 in the Treatment of FLT3-Mutated or TET2-Mutated Acute Myeloid Leukemia. Int J Mol Sci 2021; 22:ijms22158092. [PMID: 34360855 PMCID: PMC8347059 DOI: 10.3390/ijms22158092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022] Open
Abstract
The FMS-like tyrosine kinase 3 (FLT3) gene is mutated in one-third of patients with de novo acute myeloid leukemia (AML). Mutated FLT3 variants are constitutively active kinases signaling via AKT kinase, MAP kinases, and STAT5. FLT3 inhibitors have been approved for the treatment of FLT3-mutated AML. However, treatment response to FLT3 inhibitors may be short-lived, and resistance may emerge. Compounds targeting STAT5 may enhance and prolong effects of FLT3 inhibitors in this subset of patients with FLT3-mutated AML. Here STAT5-inhibitor AC-4-130, FLT3 inhibitor midostaurin (PKC412), BMI-1 inhibitor PTC596, MEK-inhibitor trametinib, MCL1-inhibitor S63845, and BCL-2 inhibitor venetoclax were assessed as single agents and in combination for their ability to induce apoptosis and cell death in leukemic cells grown in the absence or presence of bone marrow stroma. Synergistic effects on cell viability were detected in both FLT3-mutated and FLT3-wild-type AML cells treated with AC-4-130 in combination with the MCL1 inhibitor S63845. AML patient samples with a strong response to AC-4-130 and S63845 combination treatment were characterized by mutated FLT3 or mutated TET2 genes. Susceptibility of AML cells to AC-4-130, PTC596, trametinib, PKC412, and venetoclax was altered in the presence of HS-5 stroma. Only the MCL1 inhibitor S63845 induced cell death with equal efficacy in the absence or presence of bone marrow stroma. The combination of the STAT5-inhibitor AC-4-130 and the MCL1 inhibitor S63845 may be an effective treatment targeting FLT3-mutated or TET2-mutated AML.
Collapse
Affiliation(s)
- Katja Seipel
- Department for Biomedical Research, University of Bern, 2008 Bern, Switzerland; (C.G.); (L.F.)
- Correspondence: (K.S.); (T.P.); Tel.: +41-31-632-0934 (K.S.)
| | - Carolyn Graber
- Department for Biomedical Research, University of Bern, 2008 Bern, Switzerland; (C.G.); (L.F.)
| | - Laura Flückiger
- Department for Biomedical Research, University of Bern, 2008 Bern, Switzerland; (C.G.); (L.F.)
| | - Ulrike Bacher
- Department of Hematology, University Hospital Bern, 3010 Bern, Switzerland;
| | - Thomas Pabst
- Department of Medical Oncology, University Hospital Bern, 3010 Bern, Switzerland
- Correspondence: (K.S.); (T.P.); Tel.: +41-31-632-0934 (K.S.)
| |
Collapse
|
33
|
Wei X, Li Y, Zhang G, Wang N, Mi M, Xin Y, Jiang H, Sun C. IL-37 Was Involved in Progress of Acute Myeloid Leukemia Through Regulating IL-6 Expression. Cancer Manag Res 2021; 13:3393-3402. [PMID: 33907463 PMCID: PMC8064683 DOI: 10.2147/cmar.s303017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
Background Interleukin-37, which was discovered in 2000, is a natural suppressor of immune and inflammatory responses. Recent studies reported that IL-37 was abnormally expressed in several tumor patients, including those with hepatocellular carcinoma, gastric cancer, lung cancer, colon cancer, epithelial ovarian cancer, and multiple myeloma. However, the expression and potential function of IL-37 in leukemia remain unknown. Objective The aim of this study was to evaluate IL-37 as a prognostic factor and its possible mechanism of action. Methods Polymerase chain reaction products were analyzed by agarose gel electrophoresis and were purified and subsequently sequenced by a genetic testing laboratory. Human PBMC was purified from whole blood samples by using Ficoll-Paque PLUS. The concentrations of human IL-37 and human IL-6 were measured using enzyme-linked immunosorbent assay (ELISA) kits. Results IL-37, especially isoform b and d, was expressed in the bone marrow of AML, CML, ALL, and CLL. Importantly, IL-37 expression was downregulated in newly diagnosed AML patients and restored in patients in complete remission. Moreover, a significant association was found between IL-37 expression and NPM1 mutation or possible prognosis evaluated by karyotype and gene mutation. Further analysis revealed that IL-37 expression was negatively correlated with IL-6 expression. With regard to the mechanism, recombinant human IL-37 could suppress IL-6 expression stimulated by LPS in PBMC of AML patients. Conclusion Our study suggested that IL-37 may be an important prognostic factor in AML and is involved in AML via the IL-6 signaling pathway, indicating that IL-37 is an innovative research strategy for AML pathogenesis and therapy.
Collapse
Affiliation(s)
- Xiaonan Wei
- Qingdao Women and Children's Hospital, Qingdao University, Qingdao, Shandong, 266000, People's Republic of China
| | - Yulan Li
- Center for Laboratory Diagnosis, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai Shandong, 264000, People's Republic of China
| | - Guili Zhang
- Center for Laboratory Diagnosis, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai Shandong, 264000, People's Republic of China
| | - Na Wang
- Center for Laboratory Diagnosis, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai Shandong, 264000, People's Republic of China
| | - Miaomiao Mi
- School of Medicine, Qingdao University, Qingdao, Shandong, 266000, People's Republic of China
| | - Yu Xin
- School of Clinical Medical, Binzhou Medical University Clinical Laboratory, Yantai Yuhuangding Hospital, Yantai, Shandong, 264000, People's Republic of China
| | - Huihui Jiang
- School of Medicine, Qingdao University, Qingdao, Shandong, 266000, People's Republic of China
| | - Chengming Sun
- Center for Laboratory Diagnosis, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai Shandong, 264000, People's Republic of China
| |
Collapse
|