1
|
Yu LQ, Ma H, Cao LY, Zhou YL. Noninvasive Evaluation of Acupuncture-Induced Cortical Plasticity in Advanced Rehabilitation of Facial Paralysis. J Craniofac Surg 2024; 35:2015-2020. [PMID: 39178417 DOI: 10.1097/scs.0000000000010544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/13/2024] [Indexed: 08/25/2024] Open
Abstract
OBJECTIVE Facial paralysis (FP), which resulted from head and neck cancer resection, significantly impacts patients' quality of life. Traditional assessments rely on subjective evaluations and electromyography, whereas functional magnetic resonance imaging offers a noninvasive alternative for enhanced rehabilitation. Acupuncture has shown promise in promoting cerebral cortex reorganization, yet the precise relationship between acupuncture-induced structural and functional changes remains unclear, necessitating further investigation into therapeutic mechanisms. METHODS Fifty-five patients afflicted with FP underwent evaluations using voxel-mirrored homotopic connectivity (VMHC) and tract-based spatial statistics and were divided into the acupuncture intervention group (n = 35) and pseudo intervention group (n = 20). Comparative analyses of metrics pre and postintervention were conducted to delineate therapy-induced modifications in acupuncture intervention. The postacupuncture effect between groups to verify the necessity of accurate positioning for the rehabilitation of FP. RESULTS Patients with FP showed deficits in VMHC in regions of the postcentral, precentral, and parietal areas. Corpus callosum and internal capsule showed significantly increased fractional anisotropy of the white matter skeleton in tract-based spatial statistics after treatment. Comparison postintervention results between groups exhibited deficits in VMHC and increased fractional anisotropy in regions of the corpus callosum in the acupuncture intervention group. CONCLUSIONS Early acupuncture intervention may suppress cortical hyperactivation and restore interhemispheric inhibition across the corpus callosum to inhibit maladaptive structural plasticity. Precise acupoint localization is crucial for effective therapy, highlighting the potential of postacupuncture cortical space data for refining therapeutic strategies.
Collapse
Affiliation(s)
- Li-Qing Yu
- Department of Acupuncture, Shanghai Changning Tianshan Traditional Chinese Medicine Hospital
| | - Hao Ma
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lian-Ying Cao
- Department of Acupuncture, Shanghai Changning Tianshan Traditional Chinese Medicine Hospital
| | - Yu-Lu Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Zubler C, Punreddy A, Mayorga-Young D, Leckenby J, Grobbelaar AO. Approaches to the Management of Synkinesis: A Scoping Review. Facial Plast Surg 2024; 40:514-524. [PMID: 38604247 PMCID: PMC11259496 DOI: 10.1055/a-2305-2007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Postparalysis facial synkinesis (PPFS) can develop in any facial palsy and is associated with significant functional and psychosocial consequences for affected patients. While the prevention of synkinesis especially after Bell's palsy has been well examined, much less evidence exists regarding the management of patients with already established synkinesis. Therefore, the purpose of this review is to summarize the available literature and to provide an overview of the current therapeutic options for facial palsy patients with established synkinesis. A systematic literature review was undertaken, following the Preferred Reporting Items of Systematic Reviews and Meta-analyses 2020 guidelines. MEDLINE via PubMed and Cochrane Library were searched using the following strategy: ([facial palsy] OR [facial paralysis] OR [facial paresis]) AND (synkinesis) AND ([management] OR [guidelines] OR [treatment]). The initial search yielded 201 articles of which 36 original papers and 2 meta-analyses met the criteria for inclusion. Overall, the included articles provided original outcome data on 1,408 patients. Articles were divided into the following treatment categories: chemodenervation (12 studies, 536 patients), facial therapy (5 studies, 206 patients), surgical (10 studies, 389 patients), and combination therapy (9 studies, 278 patients). Results are analyzed and discussed accordingly. Significant heterogeneity in study population and design, lack of control groups, differences in postoperative follow-up, as well as the use of a variety of subjective and objective assessment tools to quantify synkinesis prevent direct comparison between treatment modalities. To date, there is no consensus on how PPFS is best treated. The lack of comparative studies and standardized outcome reporting hinder our understanding of this complex condition. Until higher quality scientific evidence is available, it remains a challenge best approached in an interdisciplinary team. An individualized multimodal therapeutic concept consisting of facial therapy, chemodenervation, and surgery should be tailored to meet the specific needs of the patient.
Collapse
Affiliation(s)
- Cédric Zubler
- Department of Plastic and Hand Surgery, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
| | - Ankit Punreddy
- Division of Plastic Surgery, Department of Surgery, University of Rochester Medical Center, Rochester, New York
| | - Danielle Mayorga-Young
- Division of Plastic Surgery, Department of Surgery, University of Rochester Medical Center, Rochester, New York
| | - Jonathan Leckenby
- Division of Plastic Surgery, Department of Surgery, University of Rochester Medical Center, Rochester, New York
- Department of Plastic and Reconstructive Surgery, The Great Ormond Street for Sick Children, London, United Kingdom
| | - Adriaan O. Grobbelaar
- Department of Plastic and Hand Surgery, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
- Department of Plastic and Reconstructive Surgery, The Great Ormond Street for Sick Children, London, United Kingdom
| |
Collapse
|
3
|
Zhang CH, Wang HQ, Lu Y, Wang W, Ma H, Lu YC. Exploration of rich-club reorganization in facial synkinesis: insights from structural and functional brain network analysis. Cereb Cortex 2023; 33:11570-11581. [PMID: 37851710 DOI: 10.1093/cercor/bhad390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023] Open
Abstract
Facial palsy therapies based on cortical plasticity are in development, but facial synkinesis progress is limited. Studying neural plasticity characteristics, especially network organization and its constitutive elements (nodes/edges), is the key to overcome the bottleneck. We studied 55 participants (33 facial synkinesis patients, 22 healthy controls) with clinical assessments, functional magnetic resonance imaging (fMRI), and diffusion tensor imaging (DTI). We analyzed rich-club organization and metrics of structural brain networks (rich-club coefficients, strength, degree, density, and efficiency). Functional brain network metrics, including functional connectivity and its coupling with the structural network, were also computed. Patients displayed reduced strength and density of rich-club nodes and edges, as well as decreased global efficiency. All nodes exhibited decreased nodal efficiency in patients. Patients had significantly increased functional connectivity and decreased structural-functional coupling strength in rich-club nodes, rich-club edges, and feeder edges. Our study indicates that facial synkinesis patients have weakened structural connections but enhanced functional transmission from rich-club nodes. The loss of connections and efficiency in structural network may trigger compensatory increases in functional connectivity of rich-club nodes. Two potential biomarkers, rich-club edge density and structural-functional coupling strength, may serve as indicators of disease outcome. These findings provide valuable insights into synkinesis mechanisms and offer potential targets for cortical intervention.
Collapse
Affiliation(s)
- Chen-Hao Zhang
- Wound Healing Center, Ruijin Hospital , Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai 200025, China
| | - Han-Qi Wang
- Department of Radiology, Ruijin Hospital , Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai 200025, China
| | - Yong Lu
- Department of Radiology, Ruijin Hospital , Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai 200025, China
| | - Wei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Huangpu District, Shanghai 200011, China
| | - Hao Ma
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Huangpu District, Shanghai 200011, China
| | - Ye-Chen Lu
- Wound Healing Center, Ruijin Hospital , Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai 200025, China
| |
Collapse
|
4
|
Ma ZZ, Wu JJ, Hua XY, Zheng MX, Xing XX, Ma J, Shan CL, Xu JG. Evidence of neuroplasticity with brain-computer interface in a randomized trial for post-stroke rehabilitation: a graph-theoretic study of subnetwork analysis. Front Neurol 2023; 14:1135466. [PMID: 37346164 PMCID: PMC10281191 DOI: 10.3389/fneur.2023.1135466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/03/2023] [Indexed: 06/23/2023] Open
Abstract
Background Brain-computer interface (BCI) has been widely used for functional recovery after stroke. Understanding the brain mechanisms following BCI intervention to optimize BCI strategies is crucial for the benefit of stroke patients. Methods Forty-six patients with upper limb motor dysfunction after stroke were recruited and randomly divided into the control group or the BCI group. The primary outcome was measured by the assessment of Fugl-Meyer Assessment of Upper Extremity (FMA-UE). Meanwhile, we performed resting-state functional magnetic resonance imaging (rs-fMRI) in all patients, followed by independent component analysis (ICA) to identify functionally connected brain networks. Finally, we assessed the topological efficiency of both groups using graph-theoretic analysis in these brain subnetworks. Results The FMA-UE score of the BCI group was significantly higher than that of the control group after treatment (p = 0.035). From the network topology analysis, we first identified seven subnetworks from the rs-fMRI data. In the following analysis of subnetwork properties, small-world properties including γ (p = 0.035) and σ (p = 0.031) within the visual network (VN) decreased in the BCI group. For the analysis of the dorsal attention network (DAN), significant differences were found in assortativity (p = 0.045) between the groups. Additionally, the improvement in FMA-UE was positively correlated with the assortativity of the dorsal attention network (R = 0.498, p = 0.011). Conclusion Brain-computer interface can promote the recovery of upper limbs after stroke by regulating VN and DAN. The correlation trend of weak intensity proves that functional recovery in stroke patients is likely to be related to the brain's visuospatial processing ability, which can be used to optimize BCI strategies. Clinical Trial Registration The trial is registered in the Chinese Clinical Trial Registry, number ChiCTR2000034848. Registered 21 July 2020.
Collapse
Affiliation(s)
- Zhen-Zhen Ma
- Department of Rehabilitation Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of Education, Shanghai, China
| | - Jia-Jia Wu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of Education, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of Education, Shanghai, China
- Department of Trauma and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mou-Xiong Zheng
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of Education, Shanghai, China
- Department of Trauma and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Xin Xing
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of Education, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of Education, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chun-Lei Shan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of Education, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of Education, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Ma J, Zheng MX, Wu JJ, Xing XX, Xiang YT, Wei D, Xue X, Zhang H, Hua XY, Guo QH, Xu JG. Mapping the long-term delayed recall-based cortex-hippocampus network constrained by the structural and functional connectome: a case-control multimodal MRI study. Alzheimers Res Ther 2023; 15:61. [PMID: 36964589 PMCID: PMC10037827 DOI: 10.1186/s13195-023-01197-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/23/2023] [Indexed: 03/26/2023]
Abstract
Background Connectome mapping may reveal new treatment targets for patients with neurological and psychiatric diseases. However, the long-term delayed recall based-network with structural and functional connectome is still largely unknown. Our objectives were to (1) identify the long-term delayed recall-based cortex-hippocampus network with structural and functional connectome and (2) investigate its relationships with various cognitive functions, age, and activities of daily living. Methods This case-control study enrolled 131 subjects (73 amnestic mild cognitive impairment [aMCI] patients and 58 age- and education-matched healthy controls [HCs]). All subjects completed a neuropsychological battery, activities of daily living assessment, and multimodal magnetic resonance imaging. Nodes of the cortical-hippocampal network related to long-term delayed recall were identified by probabilistic fiber tracking and functional connectivity (FC) analysis. Then, the main and interaction effects of the network on cognitive functions were assessed by a generalized linear model. Finally, the moderating effects of the network on the relationships between long-term delayed recall and clinical features were analyzed by multiple regression and Hayes’ bootstrap method. All the effects of cortex-hippocampus network were analyzed at the connectivity and network levels. Results The result of a generalized linear model showed that the bilateral hippocampus, left dorsolateral superior frontal gyrus, right supplementary motor area, left lingual gyrus, left superior occipital gyrus, left superior parietal gyrus, left precuneus, and right temporal pole (superior temporal gyrus) are the left and right cortex-hippocampus network nodes related to long-term delayed recall (P < 0.05). Significant interaction effects were found between the Auditory Verbal Learning Test Part 5 (AVLT 5) scores and global properties of the left cortex-hippocampus network [hierarchy, clustering coefficient, characteristic path length, global efficiency, local efficiency, Sigma and synchronization (P < 0.05 Bonferroni corrected)]. Significant interaction effects were found between the general cognitive function/executive function/language and global properties of the left cortex-hippocampus network [Sigma and synchronization (P < 0.05 Bonferroni corrected)]. Conclusion This study introduces a novel symptom-based network and describes relationships among cognitive functions, brain function, and age. The cortex–hippocampus network constrained by the structural and functional connectome is closely related to long-term delayed recall. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-023-01197-7.
Collapse
Affiliation(s)
- Jie Ma
- grid.412540.60000 0001 2372 7462Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 China
- grid.412540.60000 0001 2372 7462School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Mou-Xiong Zheng
- grid.412540.60000 0001 2372 7462Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 China
| | - Jia-Jia Wu
- grid.412540.60000 0001 2372 7462Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 China
| | - Xiang-Xin Xing
- grid.412540.60000 0001 2372 7462Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 China
| | - Yun-Ting Xiang
- grid.412540.60000 0001 2372 7462School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Dong Wei
- grid.412540.60000 0001 2372 7462School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Xin Xue
- grid.412540.60000 0001 2372 7462School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Han Zhang
- grid.440637.20000 0004 4657 8879School of Biomedical Engineering, ShanghaiTech University, Shanghai, 201210 China
| | - Xu-Yun Hua
- grid.412540.60000 0001 2372 7462Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 China
| | - Qi-Hao Guo
- grid.412528.80000 0004 1798 5117Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
| | - Jian-Guang Xu
- grid.412540.60000 0001 2372 7462Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 China
- grid.412540.60000 0001 2372 7462School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
- grid.419897.a0000 0004 0369 313XEngineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, 201203 China
| |
Collapse
|
6
|
Chen Q, Chen F, Zhu Y, Long C, Lu J, Zhang X, Nedelska Z, Hort J, Chen J, Ma G, Zhang B. Reconfiguration of brain network dynamics underlying spatial deficits in subjective cognitive decline. Neurobiol Aging 2023; 127:82-93. [PMID: 37116409 DOI: 10.1016/j.neurobiolaging.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/12/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
Brain dynamics and the associations with spatial navigation in individuals with subjective cognitive decline (SCD) remain unknown. In this study, a hidden Markov model (HMM) was inferred from resting-state functional magnetic resonance imaging data in a cohort of 80 SCD and 77 normal control (NC) participants. By HMM, 12 states with distinct brain activity were identified. The SCD group showed increased fractional occupancy in the states with less activated ventral default mode, posterior salience, and visuospatial networks, while decreased fractional occupancy in the state with general network activation. The SCD group also showed decreased probabilities of transition into and out of the state with general network activation, suggesting an inability to dynamically upregulate and downregulate brain network activity. Significant correlations between brain dynamics and spatial navigation were observed. The combined features of spatial navigation and brain dynamics showed an area under the curve of 0.854 in distinguishing between SCD and NC. The findings may provide exploratory evidence of the reconfiguration of brain network dynamics underlying spatial deficits in SCD.
Collapse
|
7
|
Pan Y, Tang L, Dong S, Xu M, Li Q, Zhu G. Exosomes from Hair Follicle Epidermal Neural Crest Stem Cells Promote Acellular Nerve Allografts to Bridge Rat Facial Nerve Defects. Stem Cells Dev 2023; 32:1-11. [PMID: 36453239 DOI: 10.1089/scd.2022.0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Previous studies showed that acellular nerve allografts (ANAs) have been successfully utilized in repairing peripheral nerve defects, and exosomes produced by stem cells are useful in supporting axon regrowth after peripheral nerve injury. In this study, exosomes from hair follicle epidermal neural crest stem cells (EPI-NCSCs-Exos) combined with ANAs were used to bridge facial nerve defects. EPI-NCSCs-Exos were isolated by ultracentrifuge, and were identified. After coculture, EPI-NCSCs-Exos were internalized into dorsal root ganglions (DRGs) and schwann cells (SCs) in vitro, respectively. EPI-NCSCs-Exos elongate the length of axons and dendrites of DRGs, and accelerated the proliferation and migration of SCs, and increased neurotrophic factor expression of SCs as well. The next step was to assign 24 Sprague Dawley male rats randomly and equally into three groups: the autograft group, the ANA group, and the ANA + EPI-NCSCs-Exos group. Each rat manufactured a 5-mm gap of facial nerve defect and immediately bridged by the corresponding transplants, respectively. After surgery, behavioral changes and electrophysiological testing of each rat were observed and assessed. At 90 days postoperatively, the retrogradely fluorescent tracer-labeled neurons were successfully observed on the injured side in the three groups. Morphological changes of facial nerve regeneration were evaluated by transmission electron microscopy and semithin toluidine blue staining. The results showed that nerve fiber density, nerve fiber diameter, and myelin sheath thickness in the ANA group were significantly worse than those in the other two groups (P < 0.05). No significant difference in nerve fiber density and myelin sheath thickness was observed between the autograft group and the ANA + EPI-NCSCs-Exos group (P = 0.14; P = 0.23). Our data indicated that EPI-NCSCs-Exos facilitate ANAs to bridge facial nerve defects and have the potential to replace autograft therapy in clinic.
Collapse
Affiliation(s)
- Yao Pan
- Department of Otorhinolaryngology-Head and Neck Surgery, Nanjing Medical University Affiliated Wuxi No. 2 People's Hospital, Wuxi, Jiangsu, China
| | - Li Tang
- Department of Otorhinolaryngology-Head and Neck Surgery, Nanjing Medical University Affiliated Wuxi No. 2 People's Hospital, Wuxi, Jiangsu, China
| | - Shuxian Dong
- Department of Otorhinolaryngology-Head and Neck Surgery, Nanjing Medical University Affiliated Wuxi No. 2 People's Hospital, Wuxi, Jiangsu, China
| | - Mengjie Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, Nantong University Affiliated Wuxi Clinical College, Wuxi, Jiangsu, China
| | - Qiong Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Nanjing Medical University Affiliated Wuxi No. 2 People's Hospital, Wuxi, Jiangsu, China
| | - Guochen Zhu
- Department of Otorhinolaryngology-Head and Neck Surgery, Nanjing Medical University Affiliated Wuxi No. 2 People's Hospital, Wuxi, Jiangsu, China
- Department of Otorhinolaryngology-Head and Neck Surgery, Nantong University Affiliated Wuxi Clinical College, Wuxi, Jiangsu, China
| |
Collapse
|
8
|
Ma H, Zhou YL, Wang WJ, Chen G, Li Q, Lu YC, Wang W. Identifying Modulated Functional Connectivity in Corresponding Cerebral Networks in Facial Nerve Lesions Patients With Facial Asymmetry. Front Neurosci 2022; 16:943919. [PMID: 35833088 PMCID: PMC9271667 DOI: 10.3389/fnins.2022.943919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Facial asymmetry is the major complaint of patients with unilateral facial nerve lesions. Frustratingly, although patients experience the same etiology, the extent of oral commissure asymmetry is highly heterogeneous. Emerging evidence indicates that cerebral plasticity has a large impact on clinical severity by promoting or impeding the progressive adaption of brain function. However, the precise link between cerebral plasticity and oral asymmetry has not yet been identified. In the present study, we performed functional magnetic resonance imaging on patients with unilateral facial nerve transections to acquire in vivo neural activity. We then identified the regions of interest corresponding to oral movement control using a smiling motor paradigm. Next, we established three local networks: the ipsilesional (left) intrahemispheric, contralesional (right) intrahemispheric, and interhemispheric networks. The functional connectivity of each pair of nodes within each network was then calculated. After thresholding for sparsity, we analyzed the mean intensity of each network connection between patients and controls by averaging the functional connectivity. For the objective assessment of facial deflection, oral asymmetry was calculated using FACEgram software. There was decreased connectivity in the contralesional network but increased connectivity in the ipsilesional and interhemispheric networks in patients with facial nerve lesions. In addition, connectivity in the ipsilesional network was significantly correlated with the extent of oral asymmetry. Our results suggest that motor deafferentation of unilateral facial nerve leads to the upregulated ipsilesional hemispheric connections, and results in positive interhemispheric inhibition effects to the contralesional hemisphere. Our findings provide preliminary information about the possible cortical etiology of facial asymmetry, and deliver valuable clues regarding spatial information, which will likely be useful for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Hao Ma
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-lu Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-jin Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Li
- MR Collaborations, Siemens Healthineers Ltd., Shanghai, China
| | - Ye-chen Lu
- Wound Healing Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ye-chen Lu,
| | - Wei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Wei Wang,
| |
Collapse
|
9
|
Bréchet L, Michel CM. EEG Microstates in Altered States of Consciousness. Front Psychol 2022; 13:856697. [PMID: 35572333 PMCID: PMC9094618 DOI: 10.3389/fpsyg.2022.856697] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Conscious experiences unify distinct phenomenological experiences that seem to be continuously evolving. Yet, empirical evidence shows that conscious mental activity is discontinuous and can be parsed into a series of states of thoughts that manifest as discrete spatiotemporal patterns of global neuronal activity lasting for fractions of seconds. EEG measures the brain’s electrical activity with high temporal resolution on the scale of milliseconds and, therefore, might be used to investigate the fast spatiotemporal structure of conscious mental states. Such analyses revealed that the global scalp electric fields during spontaneous mental activity are parceled into blocks of stable topographies that last around 60–120 ms, the so-called EEG microstates. These brain states may be representing the basic building blocks of consciousness, the “atoms of thought.” Altered states of consciousness, such as sleep, anesthesia, meditation, or psychiatric diseases, influence the spatiotemporal dynamics of microstates. In this brief perspective, we suggest that it is possible to examine the underlying characteristics of self-consciousness using this EEG microstates approach. Specifically, we will summarize recent results on EEG microstate alterations in mind-wandering, meditation, sleep and anesthesia, and discuss the functional significance of microstates in altered states of consciousness.
Collapse
Affiliation(s)
- Lucie Bréchet
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland.,Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland.,Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| |
Collapse
|